Skip to main content
Log in

A Minimization Approach for Constructing Generalized Barycentric Coordinates and Its Computation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We are interested in constructing more generalized barycentric coordinates (GBC) over arbitrary polygon in the 2D setting. We propose a constrained minimization over the class of infinitely differentiable functions subject to the GBC constraints of preserving linear functions and the non-negativity condition. It includes the harmonic GBC, biharmonic GBC, maximum entropy GBC, local barycentric coordinates as special cases. We mainly show that the constrained minimization has a unique solution when the minimizing functional is strictly convex. Next we use a \(C^r\) smoothness spline function space \(S^r_d(\triangle )\) with \(r\ge 2\) over a triangulation \(\triangle \) of a polygon of interest in \(\mathbb {R}^2\) to approximate the minimizer. One advantage of using smooth splines is that derivaties, e.g. the mean curvature and/or Gaussian curvature of spline GBC functions can be calculated. As the minimization restricted to the spline space \(S^r_d\) certainly has a unique minimizer, we use the standard projected gradient descent (PGD) method to approximate the spline minimizer. To find the projection of each iteration, we shall explain an alternating projection algorithm (APA). A convergence of the APA and the convergence of the PGD with the APA will be presented. As an example of this approach, a new kind of biharmonic GBC functions which preserve the nonnegativity is constructed. Finally, we have implemented the PGD method based on bivariate splines of arbitrary degree d and arbitrary smoothness r over arbitrary triangulation as long as \(d>>r\). The surfaces of many new GBC’s will be shown. Some standard GBC applications will be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Anisimov, D.: Barycentric coordinates and their properties. In: Hormann, K., Sukuma, N. (eds.) Generalized Barycentric coordinates in Computer Graphics and Computational Mechanics. CRC Press, Boca Raton (2018)

    Google Scholar 

  2. Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov’s accelerated forward-backward method is actually faster than \(1/k^2\). SIAM J. Optim. 26, 1824–1834 (2016)

    Article  MathSciNet  Google Scholar 

  3. Awanou, G., Lai, M.-J., Wenston, P.: The multivariate spline method for scattered data fitting and numerical solution of partial differential equations. In: Wavelets and splines: Athens 2005, pp. 24–74. Nashboro Press, Brentwood (2006)

  4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  5. Deng, W., Lai, M.-J., Peng, Z., Yin, W.: Parallel multi-block ADMM with \(o(1/k)\) convergence. J. Sci. Comput. 71, 712–736 (2017)

    Article  MathSciNet  Google Scholar 

  6. Deutsch, F.: Best Approximation in Inner Product Spaces, Canadian Mathematical Society. Springer, New York (2001)

    Book  Google Scholar 

  7. Deutsch, F.: A private communication, December 18 (2018)

  8. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  9. Floater, M.: Generalized barycentric coordinates and applications. Acta Numer. 24, 161–214 (2015)

    Article  MathSciNet  Google Scholar 

  10. Floater, M., Lai, M.-J.: Polygonal spline spaces and the numerical solution of the Poisson equation. SIAM J. Numer. Anal. 54, 797–824 (2016)

    Article  MathSciNet  Google Scholar 

  11. Von Golitschek, M., Lai, M.-J., Schumaker, L.L.: Bounds for minimal energy bivariate polynomial splines. Numer. Math. 93, 315–331 (2002)

    Article  MathSciNet  Google Scholar 

  12. Hormann, K., Sukumar, N.: Generalized Barycentric Coordinates in Computer Graphs and Computational Mechanics. CRC Press, Boca Raton (2018)

    MATH  Google Scholar 

  13. Jacobson, A., Baran, I., Popovic, J., Sorkine, O.: Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30(4), 78 (2011)

    Article  Google Scholar 

  14. Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic Coordinates for Character Articulation, Pixar Technical Memo#06–02b, Pixar Animation Studio (2006)

  15. Hormann, K., Sukumar, N.: Maximum entropy coordinates for arbitrary polytopes. In: Symposium on Geometry Processing 2008, Eurographics Association, pp. 1513–1520 (2008)

  16. Lai, M.-J., Lanterman, J.: A polygonal spline method for general 2nd order elliptic equations and its applications. In: Fasshauer, G., Schumaker, L.L. (eds.) Approximation Theory XV: San Antonio, 2016, pp. 119–154. Springer, New York (2017)

    Chapter  Google Scholar 

  17. Lai, M. -J., and Schumaker, L. L.: Approximation Power of Bivariate Splines, Advances in Computational Mathematics, vol. 9, pp. 251–279 (1998)

  18. Lai, M.-J., Schumaker, L.L.: Spline Functions over Triangulations. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  19. Lanterman, J.: Construction of Smooth Vertex Splines over Quadrilaterials, Ph.D. Dissertation, the University of Georgia, Summer (2018)

  20. Manzini, G., Russo, A., Sukumar, N.: New perspectives on polygonal and polyhedral finite element methods. Math. Models Methods Appl. Sci. 24(8), 1665–1699 (2014)

    Article  MathSciNet  Google Scholar 

  21. Nesterov, Y.E.: A method for solving the convex programming problem with convergence rate \(O(1/k^2)\). Dokl. Akad. Nauk SSSR 269, 543–547 (1983). (in Russian)

    MathSciNet  Google Scholar 

  22. Nesterov, Y.: Introductory Lectures on Convex Optimization. Kluwer Academic Publications, Hingham (2004)

    Book  Google Scholar 

  23. Rand, A., Gillette, A., Bajaj, C.: Quadratic serendipity finite elements on polygons using generalized barycentric coordinates. Math. Comput. 83(290), 2691–2716 (2014)

    Article  MathSciNet  Google Scholar 

  24. Sukumar, N.: Construction of polygonal interpolants: a maximum entropy approach. Int. J. Numer. Meth. Eng. 61, 2159–2181 (2004)

    Article  MathSciNet  Google Scholar 

  25. Sukumar, N., Tabarraei, A.: Conforming polygonal finite elements. Int. J. Numer. Meth. Eng. 61, 2045–2066 (2004)

    Article  MathSciNet  Google Scholar 

  26. Wachspress, E.L.: A Rational Finite Element Basis, Mathematics in Science and Engineering, vol. 114. Academic, New York (1975)

    MATH  Google Scholar 

  27. Web, O., Poranne, R., Gotsman, G.: Biharmonic coordinates. Comput. Graph. Forum 31, 2409–2422 (2012)

    Article  Google Scholar 

  28. Zhang, J., Deng, B., Liu, Z., Patané, G., Bouaziz, S., Hormann, J., Liu, L.: Local Barycentric Coordinates. SIGGRAPH, Asia (2014)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Jun Lai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is partially supported by the National Science Foundation under the Grant #DMS 1521537.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, C., Fan, X. & Lai, MJ. A Minimization Approach for Constructing Generalized Barycentric Coordinates and Its Computation. J Sci Comput 84, 11 (2020). https://doi.org/10.1007/s10915-020-01267-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01267-0

Keywords

Navigation