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Abstract

In this paper, two flux-only least-squares finite element methods (LSFEM) for the linear hyper-
bolic transport problem are developed. The transport equation often has discontinuous solutions
and discontinuous inflow boundary conditions, but the normal component of the flux across the
mesh interfaces is continuous. In traditional LSFEMs, the continuous finite element space is
used to approximate the solution. This will cause unnecessary error around the discontinuity and
serious overshooting. In [13], we reformulate the equation by introducing a new flux variable
to separate the continuity requirements of the flux and the solution. Realizing that the Raviart-
Thomas mixed element space has enough degrees of freedom to approximate both the flux and
its divergence, we eliminate the solution from the system and get two flux-only formulations,
and develop corresponding LSFEMs. The solution then is recovered by simple post-processing
methods using its relation with the flux. These two versions of flux-only LSFEMs use less DOFs
than the method we developed in [13].

Similar to the LSFEM developed in [13], both flux-only LSFEMs can handle discontinu-
ous solutions better than the traditional continuous polynomial approximations. We show the
existence, uniqueness, a priori and a posteriori error estimates of the proposed methods. With
adaptive mesh refinements driven by the least-squares a posteriori error estimators, the solution
can be accurately approximated even when the mesh is not aligned with discontinuity. The over-
shooting phenomenon is very mild if a piecewise constant reconstruction of the solution is used.
Extensive numerical tests are done to show the effectiveness of the methods developed in the
paper.

Keywords: least-squares finite element method, linear transport equation, error estimate,
discontinuous solution, overshooting, adaptive LSFEM

∗Corresponding author
Email addresses: qjliu2-c@my.cityu.edu.hk (Qunjie Liu), shun.zhang@cityu.edu.hk (Shun Zhang )

Preprint submitted to ... July 17, 2019

ar
X

iv
:1

90
7.

06
99

1v
1 

 [
m

at
h.

N
A

] 
 1

5 
Ju

l 2
01

9



1. Introduction

In this paper, we consider the following linear transport equation in the conservative form:

∇ · (βu) + γu = f in Ω, (1.1)
u = g on Γ−,

with β an advection field and Γ− the inflow boundary. Detailed descriptions of the equation can
be found in Section 2.

It is crucial to realize that unlike the elliptic or parabolic equations whose solutions are gen-
erally smooth, hyperbolic equations commonly have discontinuous solutions. For the transport
equation, the solution space is

W = {v ∈ L2(Ω) : ∇ · (βv) ∈ L2(Ω)}.

For the space W, there is no simple finite element subspace of it. The usual continuous finite
element space requires too much continuity while the discontinuous finite element space lacks
the continuity of the flux βu. To separate the continuity requirement, we realize that for a true
solution u ∈ W, the condition ∇ · (βu) ∈ L2(Ω) essentially means that

u ∈ L2(Ω) and βu ∈ H(div; Ω).

In [13], we propose new least-squares variational formulations with a flux reformulation. Intro-
ducing the flux σ = βu ∈ H(div; Ω), we have a first order system (with appropriate boundary
conditions):

σ − βu = 0 and ∇ · σ + γu = f . (1.2)

The space requirement of u is reduced to L2(Ω) only. In [13], we use H(div; Ω)-conforming
Raviart-Thomas finite element space RTk and discontinuous piecewise polynomial space Pk to
approximate σ ∈ H(div; Ω) and u ∈ L2(Ω) separately. Notice that the space RTk has enough
degrees of freedom to approximate both σ and the divergence of σ in the same order k, this
suggests us that it is possible to remove the u-variable from the system and get a system with the
flux only to reduce the degrees of freedom of the discrete system.

In this paper, two reformulations are suggested. In the first reformulation, under the assump-
tion that |β| , 0, we use σ = βu to get u = σ · β/|β|2, then a single equation for σ is obtained:

∇ · σ + γ
β · σ

|β|2
= f .

An extra orthogonal condition is also added to ensure the uniqueness of the flux σ.
The second reformulation uses ∇·σ+γu = f to eliminate u with the assumption γ , 0. Then

we can have a single equation for σ:

γσ + β(∇ · σ − f ) = 0.

Based on these two reformulations with the flux variable only, two least-squares finite element
methods are developed in the paper. A simple post-processing using either u = σ · β/|β|2 or
u = ( f − ∇ · σ)/γ can get an approximation of the original variable u.

LSFEMs for the transport equations can be found in [6, 12, 1, 2, 8, 3, 4]. In these papers,
the u-only formulation is used and continuous finite element space is used to approximate it.
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Since continuous functions are used to approximate discontinuous solutions, it will introduce
unnecessary error. The error indicator will always indicate unnecessary big errors for those el-
ements on the discontinuity if an adaptive method is used. Compared with a P0 discontinuous
approximations for u which is easily available for the methods in this paper, Gibbs phenomenon
like spurious over-shooting is more intense near the discontinuity in these continuous approxi-
mations, see also discussions in [17] on overshooting with adaptive finite elements.

The nonconforming LSFEM in [7] and the similar method in [14] use discontinuous approx-
imations with a penalty term to enforce the continuity of the normal component of the flux.
The H(div) flux-only methods use natural finite element spaces without any penalty terms. In
addition, these two methods have to use at least piecewise linear functions, which can lead to
non-trivial overshooting, see discussions in [17]. The methods developed in this paper can sim-
ply recover the solution in a piecewise constant space to avoid overshooting.

The paper is organized as follows. Section 2 describes the model linear hyperbolic transport
problem. Based on two flux-only reformulations, two least-squares variational problem are pre-
sented in Section 3. Corresponding LSFEMs are developed in Section 4, a priori and a posteriori
error estimates are established. Section 5 provides numerical results for many test problems. In
Section 6, we make some concluding remarks.

2. Model Linear Hyperbolic Transport Equation

Let Ω be a bounded polyhedral domain in<d (d = 2 or 3) with a Lipschitz boundary. Assume
that

γ(x) ∈ L∞(Ω) and β(x) = (β1, · · · , βd)T ∈ [C1(Ω)]d. (2.1)

Define the inflow and outflow parts of ∂Ω in the usual fashion:

Γ− = {x ∈ ∂Ω : β(x) · n∂Ω(x) < 0} = inflow,
Γ+ = {x ∈ ∂Ω : β(x) · n∂Ω(x) > 0} = outflow,

where n∂Ω(x) denotes the unit outward normal vector to ∂Ω at x ∈ ∂Ω. In order to specify the
boundary condition in (1.1), define

L2(|β · n|; Γ−) := {v is measurable on ∂Ω :
∫

Γ−

|β · n|v2 < ∞}.

In this paper, we assume that the coefficients are nice enough to guarantee the existence and
uniqueness of the solution.

Assumption 2.1. (Assumption on the data β and γ) Assume that for g ∈ L2(|β · n|; Γ−), the
linear transport equation (1.1) has a unique solution in W for the given data β and γ.

Several known conditions that guarantee the existence and uniqueness of the solution are:

(i) There exists a positive γ0, such that

γ +
1
2
∇ · β ≥ γ0 > 0 in Ω.

(ii) β is a nonzero constant vector with γ = 0.
3



The proof of the uniqueness and existence with the condition (i) can be founded in [7] and
Chapter 2 of [9]. For the case with the condition (ii) (and more general cases), the proof is based
on the standard ODE theory, and can be founded in [7, 8].

Remark 2.2. An equivalent non-conservative reformulation is

β · ∇u + µu = f in Ω, (2.2)
u = g on Γ−,

with µ = γ + ∇ · β. We can apply the methods developed in this paper to the non-conservative
version by changing it to the conservative formulation.

3. Flux-Only Least-Squares Variational Problems

In this section, two flux only least-squares variational problems are introduced. The existence
and uniqueness of the formulations are discussed.

3.1. Reformulation with both flux σ and solution u

In [13], a flux σ = βu is introduced to separate the continuity requirements, then the diver-
gence of the flux is in L2(Ω), ∇ · σ = f − γu ∈ L2(Ω). Thus the flux σ ∈ H(div; Ω). Since the
inflow condition is essentially a condition of the flux, we write the condition u = g on Γ− as

σ · n = (β · n)g, on Γ−.

Thus we get the following system of σ and u:
σ − βu = 0 in Ω,

∇ · σ + γu = f in Ω,

σ · n = (β · n)g on Γ−.

(3.1)

Define the following spaces:

Hg,−(div; Ω) := {τ ∈ H(div; Ω) : τ · n = (β · n)g on Γ−},

H0,−(div; Ω) := {τ ∈ H(div; Ω) : τ · n = 0 on Γ−}.

3.2. Flux-only least-squares variational problem: first reformulation

In this reformulation, we assume:

|β(x)| > 0, ∀ x ∈ Ω. (3.2)

From the equation σ = βu, we have

u =
β · σ

|β|2
.

Then we obtain a single equation of σ:

∇ · σ + γ
β · σ

|β|2
= f .
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Such σ is not unique, since a single scalar equation is used to compute a vector function σ. For
example, when γ = 0, the only requirement is ∇ ·σ = f . Thus some extra conditions are needed
to ensure the uniqueness of σ. Notice that since σ = βu, we should also have

σ · β(i)
⊥ = βu · β(i)

⊥ = 0, ∀i ∈ I := {1, · · · , d − 1},

where {β(i)
⊥ }

d−1
i=1 is an orthonormal family of vectors satisfying

β(x) · β(i)
⊥ (x) = 0, ∀i ∈ I, and β(i)

⊥ (x) · β( j)
⊥ (x) = δi j, ∀i, j ∈ I.

For d = 2, we can simply choose β⊥(x) = (−β2(x), β1(x))/|β(x)|. For d = 3, β(1)
⊥ (x) and β(2)

⊥ (x)
can be obtained by first finding two linearly independent vector functions orthogonal to β(x),
then performing a Gramm-Schmidt orthonormalization procedure.

Define
γ̃ = γ/|β|2. (3.3)

We get the following linear system with respect to σ:
∇ · σ + γ̃(β · σ) = f in Ω,

σ · β(i)
⊥ = 0 in Ω, i ∈ I,

σ · n = (β · n)g on Γ−.

(3.4)

The least-squares minimization problem of (3.4) is: we seek σ ∈ Hg,−(div; Ω), such that

J1(σ; f , g) = inf
τ∈Hg,−(div;Ω)

J1(τ; f , g), (3.5)

with the least-squares functional J1 defined as

J1(τ; f , g) := ‖∇ · τ + γ̃(β · τ) − f ‖20 +

d−1∑
i=1

‖τ · β(i)
⊥ ‖

2
0, ∀ τ ∈ Hg,−(div; Ω). (3.6)

Its corresponding Euler-Lagrange formulation is: find σ ∈ Hg,−(div; Ω), such that

a1(σ, τ) = f1(τ), ∀ τ ∈ H0,−(div; Ω), (3.7)

where the bilinear form a1 is defined as

a1(τ, ρ) := (∇ · τ + γ̃(β · τ),∇ · ρ + γ̃β · ρ) +

d−1∑
i=1

(
τ · β(i)

⊥ , ρ · β
(i)
⊥

)
,

for all τ, ρ ∈ H(div; Ω), and the linear form f1 is defined as

f1(τ) = ( f ,∇ · τ + γ̃(β · τ)), ∀ τ ∈ H(div; Ω).

Lemma 3.1. Assuming that the coefficients β and γ satisfy Assumption 2.1, the following defines
a norm for τ ∈ H0,−(div; Ω):

|||τ|||1 :=

‖∇ · τ + γ̃(β · τ)‖20 +

d−1∑
i=1

‖τ · β(i)
⊥ ‖

2
0


1/2

. (3.8)
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Proof. The linearity and the triangle inequality are obvious for the definition |||τ|||1.
When |||τ|||1 = 0, we have

∇ · τ + γ̃(β · τ) = 0 and τ · β(i)
⊥ = 0, ∀i ∈ I.

Note that β · β(i)
⊥ = 0, ∀i ∈ I, then β(x) and τ(x) are linear dependent for all x ∈ Ω. Thus there

must exist a function v(x) such that τ(x) = β(x)v(x) for all x ∈ Ω. Substituting this into the first
equation yields ∇ · (βv) + γv = 0. On the inflow boundary, τ ·n = 0 on Γ−, thus we get β ·nv = 0.
Since β · n , 0 on Γ−, v is identically 0 on Γ−. By Assumption 2.1, the equation has a unique
solution, and the solution has to be v = 0. So we have τ = βv = 0. Thus the norm ||| · |||1 is well
defined.

Remark 3.2. It is also clear that

|||τ|||1,K :=

‖∇ · τ + γ̃(β · τ)‖20,K +

d−1∑
i=1

‖τ · β(i)
⊥ ‖

2
0,K


1/2

is a semi-norm on an element K ∈ T .

Theorem 3.3. The least-squares problem (3.5) has a unique solution σ ∈ Hg,−(div; Ω) with the
assumption g ∈ L2(|β · n|; Γ−) and the data β and γ satisfying Assumption 2.1.

Proof. For the existence, with the assumption of g ∈ L2(|β · n|; Γ−) and Assumption 2.1, there
exists a ũ ∈ W ⊂ L2(Ω), such that ũ = g on Γ− satisfying (1.1). Let σ̃ = βũ, then

ũ =
β · σ̃

|β|2
, ‖σ̃‖0 ≤ ‖β‖∞‖ũ‖0, ‖∇ · σ̃‖0 = ‖ f − γũ‖0 ≤ ‖ f ‖0 + ‖γ‖∞‖ũ‖0.

Also, on the inflow boundary, σ̃ · n = β · nũ = (β · n)g. Thus σ̃ ∈ Hg,−(div; Ω) and satisfies (3.4).
So σ̃ ∈ Hg,−(div; Ω) is the minimizer such that J1(σ̃; f , g) = 0.

To prove the uniqueness, let σ1 and σ2 in Hg,−(div; Ω) be two solutions of (3.5) or (3.14).
Let E = σ1 − σ2 ∈ H0,−(div; Ω), then |||E|||21 = a1(E, E) = 0. Since in Lemma 3.1, we already
showed that ||| · |||1 is a norm, the uniqueness is proved.

3.3. Flux-only least-squares variational problem: second reformulation

If we assume that γ , 0, or more precisely, we assume that

γ(x) , 0, ∀x ∈ Ω a.e..

We can use u =
1
γ

( f − ∇ · σ) to eliminate u and get

σ +
β

γ
(∇ · σ − f ) = 0, (3.9)

by σ = βu. Notice this is a vector equation, thus this reformulation does not need the extra
orthogonal condition to guarantee the uniqueness of σ. We can also reformulate it as

γσ + β(∇ · σ − f ) = 0. (3.10)
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We get the following linear system with respect to σ for γ , 0: γσ + β(∇ · σ − f ) = 0 in Ω,

σ · n = (β · n)g on Γ−.
(3.11)

The least-squares variational problem of (3.11) is: we seek σ ∈ Hg,−(div; Ω), such that

J2(σ; f , g) = inf
τ∈Hg,−(div;Ω)

J2(τ; f , g), (3.12)

with the least-squares functional J2 defined as

J2(τ; f , g) := ‖γτ + β(∇ · τ − f )‖20 , ∀ τ ∈ Hg,−(div; Ω). (3.13)

Its corresponding Euler-Lagrange formulation is: find σ ∈ Hg,−(div; Ω), such that

a2(σ, τ) = f2(τ), ∀ τ ∈ H0,−(div; Ω), (3.14)

where the bilinear form a2 is defined as

a2(τ, ρ) := (γτ + β∇ · τ, γρ + β∇ · ρ)

= (γ2τ, ρ) + (|β|2∇ · τ,∇ · ρ) + (γβ · τ,∇ · ρ) + (γβ · ρ,∇ · τ),

for all τ, ρ ∈ H(div; Ω), and

f2(τ) := (β f ,β∇ · τ + γτ) = ( f , |β|2∇ · τ + γβ · τ).

Remark 3.4. Note that f1(τ) and f2(τ) are essentially the same if we weight the system with |β|2

(or simply normalize β to make |β| = 1), but the a1 and a2 are not the same when γ , 0 since

(β · τ,β · ρ) , (|β|2τ, ρ).

Thus these two reformulations are indeed different.

Lemma 3.5. Assuming that the coefficients β and γ , 0 satisfy the assumption of the data
ensuring the existence and uniqueness of original equation (1.1), the following defines a norm
for τ ∈ H0,−(div; Ω):

|||τ|||2 := ‖γτ + β∇ · τ‖0. (3.15)

Proof. We only need to check that τ = 0 when |||τ|||2 = 0.
If |||τ|||2 = 0, we have

γτ + β∇ · τ = 0.

Choose v = − 1
γ
∇ · τ ∈ L2(Ω), then we have γτ − βγv = 0. Since γ , 0, τ = βv. Thus we have a

pair (τ, v) satisfying
∇ · τ + γv = 0 and τ = βv.

This yields ∇ · (βv) + γv = 0. Similar to Lemma 3.1, we have v = 0 on Γ−, and thus v = 0 in Ω

and τ = βv = 0. The lemma is proved.

Theorem 3.6. The least-squares problem (3.12) has a unique solution σ ∈ Hg,−(div; Ω) with the
assumption g ∈ L2(|β · n|; Γ−) and the coefficients β and γ , 0 satisfying Assumption 2.1.
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Proof. Similar to the proof of Theorem 3.3, there exists a ũ ∈ W ⊂ L2(Ω), such that ũ = g on Γ−
satisfying (1.1). Let σ̃ = βũ, then ∇ · σ̃+ γũ = f , thus γσ̃ = β( f −∇ · σ̃). Similar to the proof of
Theorem 3.3, σ̃ ∈ Hg,−(div; Ω). So σ̃ is the minimizer such that J2(σ̃; f , g) = 0. The uniqueness
is due to that ||| · |||2 is a norm.

Remark 3.7. In traditional least-squares methods, a norm equivalence is often seeked to prove
to the existence and uniqueness. As we will see, it is not possible in our case. Thus an indirect
proof is used. Another example of such least-squares method is its application in non-divergence
equation, see [16].

4. Flux-only Least-Squares Finite Element Methods

In this section, least-squares finite element methods based on the flux-only least-squares
variational problems are developed. A priori and a posteriori error estimates are derived.

Let T = {K} be a triangulation of Ω using simplicial elements. The mesh T is assumed to be
regular. We denote the set of edges/faces of the triangulation T on inflow boundary Γ− by E−.
For an element K ∈ T and an integer k ≥ 0, let Pk(K) be the space of polynomials with degrees
less than or equal to k. The space Pk(F) is defined similarly on an edge/face F. Define the finite
element spaces RTk and Pk as follows:

RTk := {τ ∈ H(div; Ω) : τ|K ∈ Pk(K)d + xPk(K), ∀K ∈ T },

and
Pk := {v ∈ L2(Ω) : v|K ∈ Pk(K), ∀K ∈ T }.

Assumption 4.1. (Assumption on the boundary data) For simplicity, we assume (β ·n)g on Γ−
can be approximated exactly by the trace of RTk space on Γ−, i.e., g|F ∈ Pk(F), for all faces/edges
F ∈ E−.

Note that this assumption still allows a discontinuous boundary condition, but it does require
that the boundary mesh is aligned with the discontinuity. For an arbitrary g, we need to first
interpolate or project (β · n)g to the piecewise polynomial space.

Define
RTk,g,− := {τ ∈ RTk : τ · n = (β · n)g on Γ−}.

4.1. Interpolations and their properties

In order to derive a priori error estimates, we introduce some interpolations and their proper-
ties. Note that all properties here are local with respect to the element K.

For s > 0, denote by Irt
k : H(div; Ω)∩[Hs(Ω)]d 7→ RTk the standard RT interpolation operator

[5]. It satisfies the following approximation property: for τ ∈ Hs(K)d, s > 0,

‖τ − Irt
k τ‖0,K ≤ Chmin{s,k+1}

K |τ|min{s,k+1},K , ∀ K ∈ T . (4.1)

In addition, another approximation property holds: for τ ∈ Hs(K) and ∇ · τ ∈ Hs(K), s > 0,

‖∇ · (τ − Irt
k τ)‖0,K ≤ Chmin{s,k+1}

K |∇ · τ|min{s,k+1},K , ∀ K ∈ T . (4.2)

The discussion of the above two properties can be found in [13].
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4.2. Least-squares finite element methods
(Flux-only LSFEM Problems) We seek σh ∈ RTk,g,−, such that

Ji(σh; f , g) = inf
τ∈RTk,g,−

Ji(τ; f , g), i = 1 or 2. (4.3)

Or equivalently, find σh ∈ RTk,g,−, such that

ai(σh; τ) = fi(τ), ∀ τ ∈ RTk,0,−, i = 1 or 2. (4.4)

We call LSFEM1 and LSFEM2 for least-squares finite element methods with i = 1 and 2 sep-
arately. Note that we need the assumption |β| > 0 for LSFEM1, and the assumption γ , 0 is
needed for LSFEM2.

4.3. Post-processing for uh

Once the numerical flux σh is known, since we have two equations to relate u and σ, there
are two simple ways to recover a discrete approximation uh:

The first recovery uh =
σh · β

|β|2
, assuming |β| > 0. (4.5)

The second recovery uh =
1
γ

( f − ∇ · σh), assuming γ , 0. (4.6)

Note that both post-processing procedures can be used for both LSFEMs as long as the assump-
tion of the coefficients holds.

We can also use a simple element-wise L2-projection to get an approximation uh ∈ Pk if
needed. To ensure the overshoot effect is mild, we should project uh onto P0 as suggested in
[17].

4.4. A priori error estimates
The following best approximation property is simple and straight.

Theorem 4.2. (Cea’s lemma type of result) Let σ be the solution of least-squares variational
problems (3.5) or (3.12), and σh be the solution of the corresponding LSFEM (4.3) satisfying
the corresponding condition on β and γ and the assumption on the boundary data, the following
best approximation result holds:

|||σ − σh|||i ≤ inf
τh∈RTk,g,−

|||σ − τh|||i, i = 1 or 2. (4.7)

Proof. For an arbitrary τh ∈ RTk,0,−, the following error equation holds:

ai(σ − σh, τh) = 0, ∀τh ∈ RTk,0,−.

From the definition of the norm ||| · |||i, the error equation, and the Cauchy-Schwarz inequality, we
have

|||σ − σh|||
2
i = ai(σ − σh,σ − σh) = ai(σ − σh,σ − τh) ≤ |||σ − σh|||i|||σ − τh|||i.

Thus |||σ − σh|||i ≤ |||σ − τh|||i. Since τh is chosen arbitrarily, the theorem is proved.
9



Define the following piecewise function spaces on the triangulation T ,

Hs(T ) = {v ∈ L2(Ω) : v|K ∈ HsK (K) ∀K ∈ T },

Hs(div;T ) = {τ ∈ (L2(Ω))d : τ|K ∈ (HsK (K))d,∇ · τ|K ∈ HsK (K) ∀K ∈ T },

with s a piecewisely defined function, s|K = sK > 0.

Theorem 4.3. Assume the exact solution σ ∈ Hs(div;T ), for s > 0 defined piecewisely, and σh

is the solution of the corresponding LSFEM (4.3) satisfying the corresponding condition on β
and γ and the assumption on the boundary data, there exists a constant C > 0 independent of the
mesh size h, such that

|||σ − σh|||i ≤ C
∑
K∈T

hodK
K

(
‖σ‖odK ,K + ‖∇ · σ‖odK ,K

)
, i = 1 or 2, (4.8)

where odK = min(k + 1, sK).

Proof. By the definitions of ||| · |||i and the triangle inequality, it is easy to see that

|||τ|||1,K ≤ ‖∇ · τ‖0,K + (‖γ‖∞,K + d − 1)‖τ‖0,K , (4.9)
and |||τ|||2,K ≤ ‖|β|‖∞,K‖∇ · τ‖0,K + ‖γ‖∞,K‖τ‖0,K . (4.10)

Then the inequality (4.8) is a direct consequence of Theorem 4.2 and the approximation proper-
ties (4.1) and (4.2).

Theorem 4.4. For the recovered uh by the first post-processing method (4.5) with |β| > 0, we
have

‖u − uh‖0 ≤ ‖σ − σh‖0. (4.11)

For the recovered uh by the second post-processing method (4.6) with γ , 0, we have

‖u − uh‖0 ≤
1
γ
‖∇ · (σ − σh)‖0. (4.12)

Proof. For the recovered uh by (4.5) with |β| > 0, we have

‖u − uh‖0 = ‖(β · σ − β · σh)/|β|2‖0 ≤ ‖σ − σh‖0.

For the recovered uh by (4.6) with γ , 0, (4.12) is obvious.

Remark 4.5. For both ||| · |||i norms, we have the following simple upper bound w.r.t. the standard
H(div)-norm:

|||τ|||i ≤ C‖τ‖H(div), ∀τ ∈ H0,−(div; Ω),

with C depending on β and γ only.
On the other hand, our numerical test will also disprove the possibility of a coercivity w.r.t.

the standard H(div)-norm:

|||τ|||i ≥ C‖τ‖H(div;Ω), ∀τ ∈ H0,−(div; Ω),
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or a weak discrete version with an h-independent C > 0,

|||τ|||i ≥ C‖τ‖H(div;Ω), ∀τ ∈ RTk,0,−.

Because if one of such coercivity results holds, we will have

‖u − uh‖0 ≤ C‖σ − σh‖H(div) ≤ C|||σ − σh|||i.

For a uniform mesh and an RT0 approximation of σh, we should have

‖u − uh‖0 ≤ C‖σ − σh‖H(div) ≤ Ch,

for piecewise smooth solutions with a discontinuity aligned mesh or a global smooth solution
with a Peterson’s mesh, which is not the case in our numerical examples 5.2, 5.3, and 5.4.

4.5. A posteriori error estimation
The least-squares functionals can be used to define the following fully computable a posteri-

ori local indicators and global error estimators:

η1,K =

‖∇ · σh + γ̃(β · σh) − f ‖20 +

d−1∑
i=1

‖σh · β
(i)
⊥ ‖

2
0


1/2

, ∀K ∈ T ,

η2,K = ‖γσh + β(∇ · σh − f )‖0,K , ∀K ∈ T ,

and

ηi :=

∑
K∈T

η2
i,K

1/2

= Ji(σh; f , g)1/2, i = 1 or 2.

Theorem 4.6. The a posteriori error estimator ηi is exact with respect to the least-squares norm
||| · |||i:

ηi = |||σ − σh|||i and ηi,K = |||σ − σh|||i,K .

The following local efficiency bound is also true with C > 0 independent of the mesh size h:

ηi,K ≤ C‖σ − σh‖H(div;K), ∀K ∈ T .

Proof. For LSFEM1, using the facts f = ∇ · σ + γ̃(β · σ) and σ · β(i)
⊥ = 0,∀i ∈ I, for the exact

solution σ, we get

η2
1 = ‖∇ · σh + γ̃(β · σh) − f ‖20 +

d−1∑
i=1

‖σh · β
(i)
⊥ ‖

2
0

= ‖∇ · (σ − σh) + γ̃β · (σ − σh)‖20 +

d−1∑
i=1

‖(σ − σh) · β(i)
⊥ ‖

2
0

= |||σ − σh|||
2
1.

The proofs of LSFEM2 and the local exactness are identical.
With local bounds (4.9) and (4.10), the local efficiency bound for the standard H(div) norm

can be easily proved.

Remark 4.7. Due to the fact that the least-squares functional norm is not equivalent to the
standard H(div) norm, it is impossible to get the corresponding reliability result w.r.t. the H(div)
norm.
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5. Computational Examples

In all our numerical examples, the lowest order element RT0 is used to approximate the flux
σ. In the adaptive mesh refinement algorithm, the Döfler’s bulk marking strategy with θ = 0.5 is
used and the algorithm is stopped when the total number of DOFs reaches 106. All refinements
are based on the longest edge bisection algorithm. For all the numerical examples with domain
(0, 1)2, the mesh shown in Fig. 1 is used as an initial mesh.

Figure 1: Initial mesh for all examples with a (0, 1)2 domain

Since we have two formulations for σh and two recoveries for uh, there are four variants to
find the numerical solution pair (uh,σh). We use LSFEMi-j to denote them, with i denoting the
method to get σh and j denoting the method to recover uh. For example, LSFEM1-2 means
we use LSFEM1 to get σh and use the second recovery to get uh. For almost all our numerical
tests, we find that the results of the four combinations are identical. We only show the full 4
combinations for one example, and show only one option for other examples.

5.1. An example with a constant advection field and a piecewise constant solution, on a matching
grid

In this example, we only need to do a thought experiment, although the actual computation
does confirm our result.

Consider the following problem: Ω = (0, 1)2 with β = (1/
√

2, 1/
√

2)T . The inflow boundary
is {x = 0, y ∈ (0, 1)} ∪ {x ∈ (0, 1), y = 0}, i.e., the west and south boundaries of the domain. Let
γ = 1 and choose g and f such that the exact solution u is

u =

 1 in y > x,

0 in y < x.

If we choose the mesh aligned with the discontinuity, for example, any refinements of the mesh
in Fig. 1. Note that the exact σ ∈ RT0. By the best approximation property Theorem 4.2, the
numerical solution σh is identical to the exact solution. The recovered uh is also identical to
u. So no further refinements are needed. This is not true when C0 finite elements are used to
approximate the discontinuous u as in [1, 8, 3, 4], many unnecessary refinements are needed.
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5.2. An example with a global smooth solution

Consider the following simple problem: Ω = (0, 1)2 with β = (1, 1)T . The inflow boundary
is {x = 0, y ∈ (0, 1)} ∪ {x ∈ (0, 1), y = 0}, i.e., the west and south boundaries of the domain. Let
γ = 1. Choose f and g such that the exact solution is u = sin(x + y).
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(b) LSFEM1-2
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Figure 2: Global smooth solution: convergence histories on uniformly refined meshes

In Fig. 2, the convergence histories on uniformly refined meshes are shown. For all 4 meth-
ods, errors measured in the least-squares energy norms, ‖σ − σh‖H(div), and ‖u − uh‖0 are all of
order 1.

In Fig. 2, we also notice that all combinations of the methods have almost identical numerical
results.

5.3. Peterson example

We consider a famous example from Peterson [15]. Consider the test problem from section 3
of Peterson [15]: Let Ω = (0, 1)2 and β = (0, 1)T . The inflow boundary Γ− is {x ∈ (0, 1), y = 0},
i.e., the south boundary of the domain.

uy = ∇ · (βu) = 0 in Ω, (5.13)
u|Γ− = x on Γ−. (5.14)

13



The exact solution is u = x. The mesh is chosen to be in the pattern on the left of Fig. 3. Since
γ = 0, we only test this example with the method LSFEM1-1. We compute a series of solutions
by LSFEM1-1 on meshes with h from 1/6, 1/12, · · · , to 1/768. The convergence result is plotted
on the right of Fig. 3. It is observed that the error in LS norm still converges in the order of 1,
but the L2-norm of u − uh and H(div)-norm of σ − σh only converges in the order of 3/4.

(a) Peterson mesh with h = 1/6
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(b) LSFEM convergence

Figure 3: Peterson example

5.4. An example with a piecewise smooth solution, on a matching grid
Consider the following problem: Ω = (0, 1)2 with β = (1/

√
2, 1/

√
2)T . The inflow boundary

is {x = 0, y ∈ (0, 1)} ∪ {x ∈ (0, 1), y = 0}, i.e., the west and south boundaries of the domain. Let
γ = 1. Choose f and g such that the exact solution u is

u =

 sin(x + y) if y > x,

cos(x + y) if y < x.

We choose an initial mesh that matches the discontinuity (Fig. 1) and uniformly refine it for 8
times. In Fig. 4, we show the convergence histories. The convergence order of the error in least-
squares norms is 1, which matches the optimal convergence theory. The orders of ‖σ − σh‖H(div)
and ‖u − uh‖0 are less than 1 (about 0.6 at late stages).

This one and example 5.3 suggest that the norm equivalence (or in discrete sub-spaces):

|||τ||| ≈ ‖τ‖H(div;Ω) ∀τ ∈ H0,−(div; Ω),

should not be true.

5.5. An example with a piecewise smooth solution, on non-matching grid
In this example, we discuss the over/undershooting of the solution when the mesh is not

matched with discontinuity.
Consider the problem: Ω = (0, 2) × (0, 1) with β = (0, 1)T . The inflow boundary is {x ∈

(0, 2), y = 0}, i.e., the south boundary of the domain. Let γ = 1 and f = 1. Choose the inflow
boundary condition

u(x, 0) =

 0 if x < π/3,

1 if x > π/3,
14
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Figure 4: Piecewise smooth solution with a matching mesh: convergence histories for on uniformly refined meshes

such that the exact solution is

u(x, y) =

 1 − e−y if x < π/3,

1 if x > π/3.

We set the initial mesh to be as shown in Fig. 5. The bottom central node is (π/3, 0) and
the top central node is (1, 1). So the inflow boundary mesh is matched with the inflow boundary
discontinuity while the mesh is not aligned with the discontinuity in general and will never match
it if a bisection mesh refinement is used.
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Figure 5: Piecewise continuous problem on a non-matching mesh: the initial mesh

On the left of Fig. 6, we show the solution uh on a mesh after 8 uniform refinements of the
initial mesh. In order to study the overshooting phenomenon on the outflow boundary, we only
draw the graph of uh on y = 1, that is, we plot the uh value at the midpoint of x-axis of each
elements with edges on y = 1. The solutions are almost identical for all 4 combinations. Small
under/overshooting can be found. The maximum of numerical uh on y = 1 is 1.0430 with the
exact solution u = 1, and the minimum of numerical uh is 0.6210 with the exact u = 0.6321.

On the right of Fig. 6, we plot the convergence results of uniform refinements. The order of
convergence of errors measured in least-squares norms is still about 1, the optimal order. The
order of ‖u − uh‖0 is smaller than 1/2.
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(a) outflow solution
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Figure 6: Piecewise continuous problem on a non-matching uniform mesh

We then test the problem with adaptive algorithm. In Fig. 7, adaptively refined meshes after
several iterations are shown. Clearly, more refinements are required along the discontinuity. We
do find that for both two LSFEMs, the meshes are almost identical.

(a) LSFEM 1 (b) LSFEM 2

Figure 7: Piecewise continuous problem on a non-matching mesh: adaptively refined meshes after several iterations

In Fig. 8, the convergence histories for the adaptive meshes are shown. The convergence
order of the error measured in the least-squares norm is optimal with order 1, while the order
of ‖u − uh‖0 is about 1/2, which is the same order (also the best possible order) as uniform
refinements for discontinuous solution on an aligned mesh, Example 5.4.

On the left of Fig. 9, we show the decreasing of the overshooting values by adaptive mesh
refinements. Here, the overshooting value is defined as max(max(uh − 1),min(1 − e−1 − uh)) on
y = 1, still along the outflow boundary. We clearly see that the overshooting value begins to
decrease after the mesh is reasonably fine. When the mesh is very coarse, the overshooting is
actually not very severe since u is approximated by P0.

On the right of Fig. 9, we show the numerical solution uh on the outflow boundary for
the final mesh. It is clear that when with the adaptive mesh and P0 recovery, the overshooting
phenomenon is almost neglectable.
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Figure 8: Piecewise continuous problem on a non-matching mesh: convergence histories on adaptive refined meshes
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Figure 9: Piecewise continuous problem on a non-matching adaptive mesh

5.6. An example with a piecewise smooth solution on a non-matching grid

Consider the following simple problem: β = (sin(1/8), cos(1/8))T and Ω = (0, 1)2. The
inflow boundary is {x = 0, y ∈ (0, 1)} ∪ {x ∈ (0, 1), y = 0}, i.e., the west and south boundaries of
the domain. Let γ = 1. Choose f and g such that the exact solution u is

u =

 sin(x + y) if y > tan(1/8)x,

cos(x + y) if y < tan(1/8)x.

Note that with an initial mesh as in Fig. 1, any refinement of it will never match the discontinuity.
We show the convergence results after uniform refinements in Fig. 10. The convergence

order in the least-square norm is about 0.8. Similar to example 5.5, it is worse than order 1 but
better than order 1/2. The convergence order for ‖u − uh‖0 is about 0.3.

On the left of Fig. 11, adaptively refined meshes after several iterations are shown. Many
refinements are generated near the discontinuity. On the right of Fig. 11, convergence histories
of the adaptive LSFEMs are shown. The rate of convergence of the error in least-squares norms
is about order 1, and the order of ‖u − uh‖0 is about 0.5.
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Figure 10: Piecewise smooth solution on a non-matching grid: convergence histories on uniformly refined meshes

(a) adaptively refined meshes after several iterations
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Figure 11: Piecewise smooth solution on a non-matching grid

5.7. Curved transport example

We consider an example similar to Example in 4.4.2 of [10]. Consider the problem on the
half disk Ω = {(x, y) : x2 + y2 < 1; y > 0}. Let the inflow boundary be {−1 < x < 0; y = 0}.
Choose the advection field β = (sin θ,− cos θ)T = (y/

√
x2 + y2,−x/

√
x2 + y2)T , with θ the polar

angle. Let γ = 0, f = 0, and the inflow condition and the exact solution be

g =

 1 if −1 < x < −0.5,

0 if −0.5 < x < 0,
and u =

 1 if x2 + y2 > 0.25,

0 otherwise.

We use an initial mesh as shown on the left of Fig. 12. We choose the bottom central node to
be (0, 0) and the node left of it to be (−0.5, 0). So the inflow boundary mesh is alighed with the
inflow boundary discontinuity. Since the advection field is curved and so is the discontinuity, the
mesh will never be aligned with the discontinuity even after refinements. Since the boundary is
a half circle, when we refine the mesh, we take an extra step to map those boundary nodes to the
right positions on the circle.

Since γ = 0 in this example, so we only use the LSFEM1-1 to compute it.
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Figure 12: Curved transport problem: initial mesh(left), numerical solution (LSFEM 1-1) on an almost uniform mesh
(right)

We show the numerical recovered solution uh computed by LSFEM1-1 on a mesh after 8
uniform refinements of the initial mesh on the right of Fig. 12. Small overshootings can be
observed near the discontinuity. Along the radius, the solution is essentially one dimensional,
we project the graph of the solution onto the radius, see the left of Fig. 13. We do see the under
and overshooting. The maximum and minimum values of numerical solution uh are 1.0404 and
−0.0383, respectively.

With uniform refinements, the convergence rate of the error in the least-squares norm is about
0.75 and the rates of ‖u−uh‖0 and ‖σ−σh‖H(div) are about 0.28, see the right of Fig. 13. Since the
mesh is not aligned with the discontinuities, the convergence order of the least-sqaures energy
norm is smaller than 1.
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Figure 13: Curved transport problem: projected numerical solutions on an almost uniform mesh (left), convergence
behaviors on uniformly refined meshes (right)

On the left of Fig. 14, we show the adaptive mesh generated by LSFEM1-1 after several
iterations. Along the discontinuity, we see many refinements. Also, almost uniform refinements
can be found in the half ring where u = 1. The reason is that even u is a constant 1, the flux
σ = β is not a constant vector and has approximation errors. On the other hand, in the region
where u = 0, the flux is also a zero vector and can be exactly computed. So no refinement is
needed in the inner half ring.
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On the right of Fig. 14, we show the convergence history of the adaptive method. With
the adaptive least-squares finite element method, the convergence order of the error in the least-
squares norm is about 1 and is optimal, and the rates of ‖u − uh‖0 and ‖σ − σh‖H(div) are about
0.5.
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Figure 14: Curved transport problem: adaptively refined meshes after several iterations (left), convergence behaviors on
adaptively refined meshes (right)

On the left of Fig. 15, we show the reduction of overshooting values obtained by LSFEM1-
1. After the initial stages, the overshooting values are decreasing with refinements along the
discontinuities. On the right of Fig. 15, the projected solution on the radius is shown on the final
mesh. We can see that the overshooting is very small compared with the uniform refinements.
The Gibbs phenomena is not observed.
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Figure 15: Curved transport problem: reduction of overshootings by adaptive LSFEM (left), projection solution on an
adaptively refined mesh (right)

5.8. A smooth example with a sharp transient layer
Consider the following problem: β = (y + 1,−x)T /

√
x2 + (y + 1)2, Ω = (0, 1)2, γ = 0.1, and

f = 0. The inflow boundary is {x = 0, y ∈ (0, 1)} ∪ {x ∈ (0, 1), y = 1}, i.e., the west and north
boundaries of the domain. Choose g such that the exact solution u is

u =
1
4

exp
(
γr arcsin

(
y + 1

r

))
arctan

(
r − 1.5
ε

)
, with r =

√
x2 + (y + 1)2.
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When ε = 0.01, the layer can be fully resolved. When ε = 10−10, the layer is never fully
resolved in our experiments and can be viewed as discontinuous.
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(a) ε = 0.01
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Figure 16: Transient layer problem: adaptive convergence behaviors

(a) adaptive meshe after several iterations (b) contour of the solution

Figure 17: Transient layer problem ε = 0.01

For ε = 0.01, we show the numerical results in Figs. 17 and 16. The behaviors of the methods
are very similar to the global continuous solution case. For ε = 10−10, we show the numerical
results in Figs. 16 and 18. The behaviors of the methods are very similar to the piecewise
smooth solution example with a non-matching grid, the example 5.6. The order of convergence
of ‖u − uh‖0 is about 0.12. The contour of the solution on the right of Fig. 18 shows that the
overshooting is neglectable when the mesh is fine enough.

Remark 5.1. The numerical tests here show that the convergence rate of the flux-only LSFEMs
is the same as the original flux-solution LSFEMs that we suggested in [13].

As mentioned in [13], the common rumor that of the least-squares method is it tends to have
a strong smearing effect which is actually often the effect of Galerkin least-squares or stabilized
methods where some least-squares terms are added to variational problems, see for example
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(a) adaptive mesh after several iterations (b) contour of solution

Figure 18: Transient layer problem ε = 10−10

[11]. We do not observe smearing effect for the bona fide least-squares methods developed in
this paper.

6. Concluding Remarks

In this paper, two flux-only least-squares finite element methods (LSFEM) for the linear
hyperbolic transport problem are developed. We first reformulate the linear transport equation
into a flux-solution system, then eliminate the solution from the system and get two flux-only
formulations, and develop corresponding LSFEMs. The solution then is recovered by simple
post-processing methods using its relation with the flux. These two versions of flux-only LS-
FEMs use less DOFs than the method we developed in [13].

In this paper, we only discuss the versions of LSFEMs with boundary condition strongly
enforced. We can also weakly enforce the condition as we did in [13].

Similar to the LSFEM developed in [13], both flux-only LSFEMs can handle discontinu-
ous solutions better than the traditional continuous polynomial approximations. We show the
existence, uniqueness, a priori and a posteriori error estimates of the proposed methods. With
adaptive mesh refinements driven by the least-squares a posteriori error estimators, the solution
can be accurately approximated even when the mesh is not aligned with discontinuity. The over-
shooting phenomenon is very mild if a piecewise constant reconstruction of the solution is used.
Extensive numerical tests are done to show the effectiveness of the methods developed in the
paper.
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