Skip to main content

Advertisement

Log in

Energy Stable Numerical Schemes for Ternary Cahn-Hilliard System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present and analyze a uniquely solvable and unconditionally energy stable numerical scheme for the ternary Cahn-Hilliard system, with a polynomial pattern nonlinear free energy expansion. One key difficulty is associated with presence of the three mass components, though a total mass constraint reduces this to two components. Another numerical challenge is to ensure the energy stability for the nonlinear energy functional in the mixed product form, which turns out to be non-convex, non-concave in the three-phase space. To overcome this subtle difficulty, we add a few auxiliary terms to make the combined energy functional convex in the three-phase space, and this, in turn, yields a convex-concave decomposition of the physical energy in the ternary system. Consequently, both the unique solvability and the unconditional energy stability of the proposed numerical scheme are established at a theoretical level. In addition, an optimal rate convergence analysis in the \(\ell ^\infty (0,T; H_N^{-1}) \cap \ell ^2 (0,T; H_N^1)\) norm is provided, with Fourier pseudo-spectral discretization in space, which is the first such result in this field. To deal with the nonlinear implicit equations at each time step, we apply an efficient preconditioned steepest descent (PSD) algorithm. A second order accurate, modified BDF scheme is also discussed. A few numerical results are presented, which confirm the stability and accuracy of the proposed numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.F.: Sobolev Spaces, vol. 140. Elsevier, New York (2003)

    MATH  Google Scholar 

  2. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085 (1979)

    Google Scholar 

  3. Barrett, J., Blowey, J.: Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy. Numer. Math. 77, 1–34 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Barrett, J., Blowey, J.: Finite element approximation of a model for phase separation of a multi-component alloy with a concentration-dependent mobility matrix. IMA J. Numer. Anal. 18, 287–328 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Barrett, J., Blowey, J.: An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy. IMA J. Numer. Anal. 19, 147–168 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Barrett, J., Blowey, J.: An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy with a concentration dependent mobility matrix. Numer. Math. 88, 255–297 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Barrett, J., Blowey, J., Garcke, H.: On fully practical finite element approximations of degenerate Cahn-Hilliard systems. M2AN Math. Model. Numer. Anal. 35, 286–318 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Baskaran, A., Hu, Z., Lowengrub, J., Wang, C., Wise, S.M., Zhou, P.: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 250, 270–292 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Baskaran, A., Lowengrub, J., Wang, C., Wise, S.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51, 2851–2873 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Blowey, J.F., Copetti, M.I.M., Elliott, C.M.: Numerical analysis of a model for phase separation of a multi-component alloy. IMA J. Numer. Anal. 16, 111–139 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Boyd, J.: Chebyshev and Fourier Spectral Methods. Dover, New York (2001)

    MATH  Google Scholar 

  12. Boyer, F., Lapuerta, C.: Study of a three-component Cahn-Hilliard flow model. M2AN Math. Model. Numer. Anal 40, 653–687 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Boyer, F., Minjeaud, S.: Numerical schemes for a three component Cahn-Hilliard model. M2AN Math. Model. Numer. Anal 45(4), 697–738 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795 (1961)

    Google Scholar 

  15. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys 28, 258–267 (1958)

    MATH  Google Scholar 

  16. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in sobolev spaces. Math. Comput. 38(157), 67–86 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Chen, C., Yang, X.: Fast, provably unconditionally energy stable, and second-order accurate algorithms for the anisotropic Cahn-Hilliard model. Comput. Methods Appl. Mech. Eng. 351, 35–59 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52(3), 546–562 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Chen, W., Feng, W., Liu, Y., Wang, C., Wise, S.M.: A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equation. Discrete Contin. Dyn. Syst. Ser. B 24(1), 149–182 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Chen, W., Li, W., Luo, Z., Wang, C., Wang, X.: A stabilized second order ETD multistep method for thin film growth model without slope selection. Math. Model. Numer. Anal. 54, 727–750 (2020)

    MATH  Google Scholar 

  21. Chen, W., Liu, Y., Wang, C., Wise, S.M.: An optimal-rate convergence analysis of a fully discrete finite difference scheme for Cahn-Hilliard-Hele-Shaw equation. Math. Comp. 85, 2231–2257 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Chen, W., Wang, C., Wang, X., Wise, S.M.: A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 59(3), 574–601 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Chen, W.,  Wang,C.,  Wang, X., Wise, S.M.: Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential. J. Comput. Phys.: X, 3:100031 (2019)

  24. Chen, Y., Lowengrub, J.S., Shen, J., Wang, C., Wise, S.M.: Efficient energy stable schemes for isotropic and strongly anisotropic Cahn-Hilliard systems with the Willmore regularization. J. Comput. Phys. 365, 57–73 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Cheng, K., Feng, W., Gottlieb, S., Wang, C.: A Fourier pseudospectral method for the “Good” Boussinesq equation with second-order temporal accuracy. Numer. Methods Partial Differ. Equ. 31(1), 202–224 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Cheng, K., Feng, W., Wang, C., Wise, S.M.: An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation. J. Comput. Appl. Math. 362, 574–595 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Cheng, K., Qiao, Z., Wang, C.: A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability. J. Sci. Comput. 81(1), 154–185 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Cheng, K., Wang, C.: Long time stability of high order multi-step numerical schemes for two-dimensional incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 54, 3123–3144 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Cheng, K.,  Wang, C., Wise, S.M.: A weakly nonlinear, energy stable scheme for the strongly anisotropic Cahn-Hilliard equation and its convergence analysis. J. Comput. Phys., Submitted and in review (2019)

  30. Cheng, K., Wang, C., Wise, S.M., Yue, X.: A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method. J. Sci. Comput. 69(3), 1083–1114 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Diegel, A., Feng, X., Wise, S.M.: Convergence analysis of an unconditionally stable method for a Cahn-Hilliard-Stokes system of equations. SIAM J. Numer. Anal. 53, 127–152 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Diegel, A., Wang, C., Wang, X., Wise, S.M.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system. Numer. Math. 137, 495–534 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Diegel, A., Wang, C., Wise, S.M.: Stability and convergence of a second order mixed finite element method for the Cahn-Hilliard equation. IMA J. Numer. Anal. 36, 1867–1897 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Dong, L., Feng, W., Wang, C., Wise, S.M., Zhang, Z.: Convergence analysis and numerical implementation of a second order numerical scheme for the three-dimensional phase field crystal equation. Comput. Math. Appl. 75(6), 1912–1928 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving, energy stable and convergent numerical scheme for the Cahn-Hilliard equation with a Flory-Huggins-deGennes energy. Commun. Math. Sci. 17, 921–939 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Elliot, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal 30, 1622–1663 (1993)

    MathSciNet  MATH  Google Scholar 

  37. Elliott, C.M., Garcke, H.: Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix. Physica D 109, 242–256 (1997)

    MathSciNet  MATH  Google Scholar 

  38. Elliott, C.M., Luckhaus, S.: A generalized diffusion equation for phase separation of a multi-component mixture with interfacial free energy. IMA Preprint Ser. 887, 242–256 (1991)

    Google Scholar 

  39. Elliott, C.M., Stuart, A.M.: Viscous Cahn-Hilliard equation. II. Anal. J. Differ. Eq. 128, 387–414 (1996)

    MathSciNet  MATH  Google Scholar 

  40. Eyre, D.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Bullard, J.W., Kalia, R., Stoneham, M., Chen, L.Q. (eds.) Computational and Mathematical Models of Microstructural Evolution, vol. 53, pp. 1686–1712. Materials Research Society, Warrendale (1998)

    Google Scholar 

  41. Feng, W., Guan, Z., Lowengrub, J.S., Wang, C., Wise, S.M., Chen, Y.: A uniquely solvable, energy stable numerical scheme for the functionalized Cahn-Hilliard equation and its convergence analysis. J. Sci. Comput. 76(3), 1938–1967 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Feng, W., Salgado, A., Wang, C., Wise, S.M.: Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms. J. Comput. Phys. 334, 45–67 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Feng, W., Wang, C., Wise, S.M., Zhang, Z.: A second-order energy stable Backward Differentiation Formula method for the epitaxial thin film equation with slope selection. Numer. Methods Partial Differ. Equ. 34(6), 1975–2007 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Feng, X., Wise, S.M.: Analysis of a fully discrete finite element approximation of a Darcy-Cahn-Hilliard diffuse interface model for the Hele-Shaw flow. SIAM J. Numer. Anal. 50, 1320–1343 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Gong, Y.,  Zhao, J.,  Wang, Q.: Arbitrarily high-order linear energy stable schemes for gradient flow models. J. Comput. Phys., Submitted and in review (2020)

  46. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods. Theory and Applications. SIAM, Philadelphia, PA (1977)

  47. Gottlieb, S., Tone, F., Wang, C., Wang, X., Wirosoetisno, D.: Long time stability of a classical efficient scheme for two dimensional Navier-Stokes equations. SIAM J. Numer. Anal. 50, 126–150 (2012)

    MathSciNet  MATH  Google Scholar 

  48. Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-d viscous Burgers equation. J. Sci. Comput. 53(1), 102–128 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Guan, Z., Lowengrub, J.S., Wang, C.: Convergence analysis for second order accurate schemes for the periodic nonlocal Allen-Cahn and Cahn-Hilliard equations. Math. Methods Appl. Sci. 40(18), 6836–6863 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Guan, Z., Lowengrub, J.S., Wang, C., Wise, S.M.: Second-order convex splitting schemes for nonlocal Cahn-Hilliard and Allen-Cahn equations. J. Comput. Phys. 277, 48–71 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Guan, Z., Wang, C., Wise, S.M.: A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation. Numer. Math. 128, 377–406 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Guo, J., Wang, C., Wise, S.M., Yue, X.: An \(H^2\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation. Commu. Math. Sci. 14, 489–515 (2016)

    MATH  Google Scholar 

  53. Han, D., Brylev, A., Yang, X., Tan, Z.: Numerical analysis of second order, fully discrete energy stable schemes for phase field models of two phase incompressible flows. J. Sci. Comput. 70(3), 965–989 (2017)

    MathSciNet  MATH  Google Scholar 

  54. Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  55. Hu, Z., Wise, S., Wang, C., Lowengrub, J.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)

    MathSciNet  MATH  Google Scholar 

  56. Li, W., Chen, W., Wang, C., Yan, Y., He, R.: A second order energy stable linear scheme for a thin film model without slope selection. J. Sci. Comput. 76(3), 1905–1937 (2018)

    MathSciNet  MATH  Google Scholar 

  57. Liu, Y., Chen, W., Wang, C., Wise, S.M.: Error analysis of a mixed finite element method for a Cahn-Hilliard-Hele-Shaw system. Numer. Math. 135, 679–709 (2017)

    MathSciNet  MATH  Google Scholar 

  58. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    MathSciNet  MATH  Google Scholar 

  59. Wang, C., Wang, X., Wise, S.M.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Sys. A 28, 405–423 (2010)

    MathSciNet  MATH  Google Scholar 

  60. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49, 945–969 (2011)

    MathSciNet  MATH  Google Scholar 

  61. Wise, S.M.: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations. J. Sci. Comput. 44, 38–68 (2010)

    MathSciNet  MATH  Google Scholar 

  62. Wise, S.M., Kim, J.S., Lowengrub, J.S.: Solving the regularized, strongly anisotropic Chan-Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226, 414–446 (2007)

    MathSciNet  MATH  Google Scholar 

  63. Wise, S.M., Wang, C., Lowengrub, J.S.: An energy stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

    MathSciNet  MATH  Google Scholar 

  64. Yan, Y., Chen, W., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation. Commun. Comput. Phys. 23, 572–602 (2018)

    MathSciNet  Google Scholar 

  65. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three-component Cahn-Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl. Sci. 27(11), 1993–2030 (2017)

    MathSciNet  MATH  Google Scholar 

  66. Zhang, J., Yang, X.: Decoupled, non-iterative, and unconditionally energy stable large time stepping method for the three-phase Cahn-Hilliard phase-field model. J. Comput. Phys. 404, 109115 (2020)

    MathSciNet  Google Scholar 

  67. Zhang, J., Yang, X.: Unconditionally energy stable large time stepping method for the L2-gradient flow based ternary phase-field model with precise nonlocal volume conservation. Comput. Meth. Appl. Mech. Eng. 361, 112743 (2020)

    MATH  Google Scholar 

  68. Zhao, J., Li, H., Wang, Q., Yang, X.: Decoupled energy stable schemes for a phase field model of three-phase incompressible viscous fluid flow. J. Sci. Comput. 70(3), 1367–1389 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Grants NSFC 11671098, 91630309, a 111 Project B08018 (W. Chen), NSF DMS-1418689 (C. Wang), NSF DMS-1715504, NSFC 11871159, Guangdong Key Laboratory 2019B030301001 (X. Wang) and NSF DMS-1719854 (S. Wise). C. Wang also thanks the Key Laboratory of Mathematics for Nonlinear Sciences, Fudan University, for support during his visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of Lemma 6

A Proof of Lemma 6

To prove the inverse inequality (3.16), we begin with the following observation:

$$\begin{aligned} \left( \sum _{i,j,k=0}^{2K} | f_{i,j,k} |^p \right) ^{q/p} \ge \sum _{i,j,k=0}^{2K} ( | f_{i,j,k} |^p )^{q/p} = \sum _{i,j,k=0}^{2K} | f_{i,j,k} |^q , \quad \forall 1\le p \le q < \infty ,\nonumber \\ \end{aligned}$$
(A.1)

due to the fact that \(\frac{q}{p} \ge 1\). This is equivalent to

$$\begin{aligned} \left( \sum _{i,j,k=0}^{2K} | f_{i,j,k} |^q \right) ^{1/q} \le \left( \sum _{i,j,k=0}^{2K} | f_{i,j,k} |^p \right) ^{1/p} , \quad \forall 1\le p \le q < \infty . \end{aligned}$$
(A.2)

In turn, we get

$$\begin{aligned} \left( h^3 \sum _{i,j,k=0}^{2K} | f_{i,j,k} |^q \right) ^{1/q} \le h^{3/q - 3/p} \left( h^3 \sum _{i,j,k=0}^{2K} | f_{i,j,k} |^p \right) ^{1/p} , \end{aligned}$$
(A.3)

which is exactly (3.16), because of the fact that \(h = \frac{L}{2K+1}\).

For the rest three inequalities, we assume the periodic grid f has the discrete Fourier transformation as given by (3.1). For simplicity of presentation, we also assume that \(L=1\). In addition, we denote its extension to a continuous function as

$$\begin{aligned} f_{\mathbf{F}} (x,y,z) = \sum _{\ell , m, n=-K}^{K} {\hat{f}}_{\ell , m, n}^{N} \exp \left( 2\pi \mathrm {i} (\ell x +m y +n z )\right) . \end{aligned}$$
(A.4)

The following estimates could be derived with the help of the Parseval’s identity; also see the related analysis in  [30, 42, 43, 52]:

$$\begin{aligned} \Vert f \Vert _2^2= & {} \Vert f_{\mathbf{F}} \Vert _{L^2}^2 = \sum _{\ell , m, n=-K}^{K} | {\hat{f}}_{\ell , m, n}^{N} |^2 , \end{aligned}$$
(A.5)
$$\begin{aligned} \overline{f}= & {} \int _\Omega \, f_{\mathbf{F}} d \mathbf{x} = {\hat{f}}_{0,0,0}^{N} , \end{aligned}$$
(A.6)
$$\begin{aligned} \Vert \nabla _N f \Vert _2^2= & {} \Vert \nabla f_{\mathbf{F}} \Vert ^2 . \end{aligned}$$
(A.7)

As a result, the discrete Poincaré inequality (3.17) is a direct consequence of its continuous version:

$$\begin{aligned} \Vert f_{\mathbf{F}} \Vert _{H^1}&\le C_2 ( | \overline{ f_{\mathbf{F}}} | + \Vert \nabla f_{\mathbf{F}} \Vert ) , \end{aligned}$$
(A.8)

combined with the identities (A.5)–(A.7).

On the other hand, we recall a key estimate given by Lemma A.2 in an existing work  [43]:

$$\begin{aligned} \Vert f \Vert _p \le \sqrt{\frac{p}{2}} \Vert f_{\mathbf{F}} \Vert _{L^p} , \quad \text{ in } \text{2-D, } p = 4, 6, ... , \end{aligned}$$
(A.9)

In addition, such an analysis could also be extended to the 3-D case

$$\begin{aligned} \Vert f \Vert _p \le ( \frac{p}{2} )^{3/4} \Vert f_{\mathbf{F}} \Vert _{L^p} , \quad \text{ in } \text{3-D, } p = 4, 6, ... . \end{aligned}$$
(A.10)

For the 3-D discrete Sobolev inequality (3.18), we begin with the observation that

$$\begin{aligned} f \in \mathring{{\mathcal {G}}} \, \, \, \text{ is } \text{ equivalent } \text{ to } {\hat{f}}_{0,0,0}^{N}=0\text{, } \text{ so } \text{ that } \int _\Omega \, f_{\mathbf{F}} d \mathbf{x} =0 . \end{aligned}$$
(A.11)

Subsequently, an application of the 3-D estimate (A.10) results in

$$\begin{aligned} \Vert f \Vert _6 \le 3^{3/4} \Vert f_{\mathbf{F}} \Vert _{L^6} \le C_4 \Vert \nabla f_{\mathbf{F}} \Vert = C_4 \Vert \nabla _N f \Vert _2 , \end{aligned}$$
(A.12)

in which a continuous Sobolev embedding has been applied in the second step, due to the fact that \(\int _\Omega \, f_{\mathbf{F}} d \mathbf{x} =0\).

Similarly, for the 2-D discrete Sobolev inequality (3.19), we apply the estimate (A.9) and obtain

$$\begin{aligned} \Vert f \Vert _8 \le 2 \Vert f_{\mathbf{F}} \Vert _{L^8} \le C_5 \Vert f_{\mathbf{F}} \Vert _{H^1} = C_5 \Vert f \Vert _{H_N^1} . \end{aligned}$$
(A.13)

Again a continuous Sobolev embedding has been applied in the second step, and the last step is based on the identities (A.5), (A.7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wang, C., Wang, S. et al. Energy Stable Numerical Schemes for Ternary Cahn-Hilliard System. J Sci Comput 84, 27 (2020). https://doi.org/10.1007/s10915-020-01276-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01276-z

Keywords

Mathematics Subject Classification

Navigation