Skip to main content
Log in

Error Estimates for an Immersed Finite Element Method for Second Order Hyperbolic Equations in Inhomogeneous Media

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A group of partially penalized immersed finite element (PPIFE) methods for second-order hyperbolic interface problems were discussed in Yang (Numer Math Theor Methods Appl 11:272–298, 2018) where the author proved their optimal O(h) convergence in an energy norm under a sub-optimal piecewise \(H^3\) regularity assumption. In this article, we reanalyze the fully discrete PPIFE method presented in Yang (2018). Utilizing the error bounds given recently in Guo et al. (Int J Numer Anal Model 16(4):575–589, 2019) for elliptic interface problems, we are able to derive optimal a-priori error bounds for this PPIFE method not only in the energy norm but also in \(L^2\) norm under the standard piecewise \(H^2\) regularity assumption in the space variable of the exact solution, rather than the excessive piecewise \(H^3\) regularity. Numerical simulations for standing and travelling waves are presented, which corroboratively confirm the reported error analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adjerid, S., Chaabane, N., Yue, P., Lin, T.: An immersed finite element method for the Stokes problem with a moving interface. Comput. Appl. Math. (2018). In press

  2. Adjerid, S., Moon, K.: A higher order immersed discontinuous Galerkin finite element method for the acoustic interface problem. In: Ansari, A., Temimi, H. (eds.) Advances in Applied Mathematics. vol. 18, pp. 57–69, New York, Springer (2014)

  3. Adjerid, S., Moon, K.: An immersed discontinuous Galerkin method for acoustic wave propagation in inhomogeneous media. SIAM J. Sci. Comput. (2018). In press

  4. Adjerid, S., Lin, T.: Higher-order immersed discontinuous Galerkin methods. Int. J. Inf. Syst. Sci. 3, 558–565 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Adjerid, S., Chaabane, N., Lin, T.: An immersed discontinuous finite element method for Stokes interface problems. Comput. Methods Appl. Mech. Eng. 293, 170–190 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Adjerid, S., Guo, R., Lin, T.: High degree immersed finite element spaces by a least-squares method. Int. J. Numer. Anal. Model. 14(4–5), 604–626 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Adjerid, S., Ben-Romdhane, M., Lin, T.: Higher-degree immersed finite element spaces according to the actual interface. Comput. Math. Appl. 75, 1868–1881 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Annavarapu, C., Hautefeuille, M., Dolbow, J.: A finite element method for crack growth without remeshing. Comput. Methods. Appl. Mech Eng. 225–228, 44–54 (2012)

  9. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    MathSciNet  MATH  Google Scholar 

  10. Babuška, I.: The finite element method for elliptic equations with discontinuous coefficients. Computing (Arch. Elektron. Rechnen), 5, 207–213 (1970)

  11. Babuska, I., Osborn, J.E.: Generalized finite element methods: their performance and relation to mixed methods. SIAM J. Numer. Anal. 20(3), 510–536 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Belytschko, T., Moës, N., Usui, S., Primi, C.: Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50, 993–1013 (2001)

    MATH  Google Scholar 

  13. Brenner, S.: Poincaré–Friedrichs inequalities for piecewise \({H}^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Carey, G.F., Oden, J.T.: Finite Elements, Vol. 3: Computational Aspects. Prentice Hall, London (1984)

  15. Chu, C.C., Graham, I.G., Hou, T.Y.: A new multiscale finite element method for high-contrast elliptic interface problems. Math. Comput. 79(272), 1915–1955 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Deka, B., Ahmed, T.: Convergence of finite element method for linear second-order wave equations with discontinuous coefficients. Numer. Methods Partial Differ. Equ. 29(5), 1522–1542 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Deka, B., Sinha, R.: Finite element methods for second order linear hyperbolic interface problems. Appl. Math. Comput. 218, 10922–10933 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Dolbow, J., Moës, N., Belyschko, T.: Numerical treatment of two-dimensional interfaces for acoustic and elastic waves. Comput. Methods Appl. Mech. Eng. 190(51–52), 6825–6846 (2001)

    MATH  Google Scholar 

  19. Dupont, T.: \({L}^2\)-estimates for Galerkin methods for second order hyperbolic equations. SIAM J. Numer. Anal. 10(5), 880–889 (1973)

    MathSciNet  MATH  Google Scholar 

  20. Guo, R., Lin, T., Lin, Y.: Error estimates for a partially penalized immersed finite element method for elasticity interface problems. ESAIM: M2AN (2019). https://doi.org/10.1051/m2an/2019051

  21. Guo, R., Lin, T.: A group of immersed finite element spaces for elliptic interface problems. IMA J. Numer. Anal.p. drx074 (2017)

  22. Guo, T.R., Lin, Y.: Approximation capabilities of immersed finite element spaces for elasticity interface problems. Numer. Methods Partial Differ. Equ. (in press) (2019). https://doi.org/10.1002/num.22348

  23. Guo, R., Lin, T.: A higher degree immersed finite element method based on a cauchy extension for elliptic interface problems. SIAM J. Numer. Anal. 57(4), 1545–1573 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Guo, R., Lin, T., Lin, Y.: A fixed mesh method with immersed finite elements for solving interface inverse problems. J. Sci. Comput. 79, 148–175 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Guo, R., Lin, T., Zhuang, Q.: An improved error estimation for partially penalized immersed finite element methods for elliptic interface problems. Int. J. Numer. Anal. Model. 16(4), 575–589 (2019)

    MathSciNet  MATH  Google Scholar 

  26. He, X.: Bilinear immersed finite elements for interface problems. Ph.D. thesis, Virginia Polytechnic Institute and State University (2009)

  27. He, X., Lin, T., Lin, Y.: Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient. J. Syst. Sci. Complex. 23, 467–483 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Hou, T.Y., Wu, X.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Kafafy, R., Lin, T., Lin, Y., Wang, J.: Three-dimensional immersed finite element methods for electric field simulation in composite materials. Int. J. Numer. Methods Eng. 64, 904–972 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Leguillon, D., Sanchez-Palencia, E.: Computation of Singular Solutions in Elliptic Problems and Elasticity. Wiley, London (1987)

    MATH  Google Scholar 

  31. LeVeque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019–1044 (1994)

    MathSciNet  MATH  Google Scholar 

  32. Li, Z., Ito, K.: The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains. Frontiers in Applied Mathematics, 33. Cambridge University Press, SIAM (2006)

  33. Li, Z.: The immersed interface method using a finite element formulation. Appl. Numer. Math. 27, 253–267 (1998)

    MathSciNet  MATH  Google Scholar 

  34. Li, Z., Lin, T., Wu, X.: New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96(1), 61–98 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Li, Z., Lin, T., Lin, Y., Rogers, R.C.: An immersed finite element space and its approximation capability. Numer. Methods Partial Differ. Equ. 20(3), 338–367 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Li, J., Melenk, J.M., Wohlmuth, B., Zou, J.: Optimal a priori estimates for higher order finite elemens for elliptic interface problems. Appl. Numer. Math. 60, 19–37 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Lin, Y., He, X., Lin, T.: Approximation capability of a bilinear immersed finite element space. Numer. Methods Partial Differ. Equ. 24(5), 1265–1300 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Lin, T., He, X., Lin, Y.: Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions. Int. J. Numer. Anal. Model. 8(2), 284–301 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Lin, T., Sheen, D., Zhang, X.: A locking-free immersed finite element method for planar elasticity interface problems. J. Comput. Phys. 247, 228–247 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Lin, Y., He, X., Lin, T., Zhang, X.: Immersed finite element methods for parabolic equations with moving interface. Numer. Methods Partial Differ. Equ. 29(2), 619–646 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Lin, T., Lin, Y., Zhang, X.: Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. 53(2), 1121–1144 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Lin, T., Yang, Q., Zhang, X.: Partially penalized immersed finite element methods for parabolic interface problems. Numer. Methods Partial Differ. Equ. 31, 749–763 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Lombard, B., Piraux, J.: Numerical treatment of two-dimensional interfaces for acoustic and elastic waves. J. Comput. Phys. 195, 90–116 (2004)

    MathSciNet  MATH  Google Scholar 

  44. Moon, K.: Immersed Discontinuous Galerkin Methods for Acoustic Wave Propagation in Inhomogeneous Media. Ph.D. thesis, Virginia Tech (2016)

  45. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, vol. 35 of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. Theory and implementation

  46. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 25 of Springer Series in Computational Mathematics, 2nd ed. Springer, Berlin (2006)

  47. Yang, Q.: Numerical analysis of partially penalized immersed finite element methods for hyperbolic interface problems. Numer. Math. Theor. Methods Appl. 11, 272–298 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Yang, Q., Zhang, X.: Discontinuous Galerkin immersed finite element methods for parabolic interface problems. J. Comput. Appl. Math. 299, 127–139 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, C.: Immersed Interface Methods for Hyperbolic Systems of Partial Diferential Equations with Discontinuous Coefficients. Ph.D. thesis, University of Washington (1996)

  50. Zhang, C., LeVeque, R.J.: The immersed interface method for acoustic wave equations with discontinuous coefficients. Wave Motion 25, 237–263 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Zhuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adjerid, S., Lin, T. & Zhuang, Q. Error Estimates for an Immersed Finite Element Method for Second Order Hyperbolic Equations in Inhomogeneous Media. J Sci Comput 84, 35 (2020). https://doi.org/10.1007/s10915-020-01283-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01283-0

Keywords

Navigation