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Abstract Problems with topological uncertainties appear in many fields ranging
from nano-device engineering to the design of bridges. In many of such problems,
a part of the domains boundaries is subjected to random perturbations making
inefficient conventional schemes that rely on discretization of the whole domain.
In this paper, we study elliptic PDEs in domains with boundaries comprised of
a deterministic part and random apertures, and apply the method of modified
potentials with Green’s kernels defined on the deterministic part of the domain.
This approach allows to reduce the dimension of the original differential problem
by reformulating it as a boundary integral equation posed on the random apertures
only. The multilevel Monte Carlo method is then applied to this modified integral
equation and its optimal ε−2 asymptotical complexity is shown. Finally, we provide
the qualitative analysis of the proposed technique and support it with numerical
results.
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1 Introduction

Scientific and technological development is often linked to the increase in the re-
quirements to the accuracy of mathematical models and numerical methods. As
an example, consideration of uncertainties in model inputs and parameters has
been attracting a lot of attention of a research community in recent years and a
large database of methods for the numerical treatment of boundary-value problems
with random coefficients and random input data has been collected. Problems with
topological uncertainties have been also studied and their importance has been rec-
ognized in many applied fields ranging from nano-device engineering and analysis
of micro electromechanical systems (MEMS) [1,51] to the design of bridges [5].
Other applications include flows over rough surfaces [45,50], surface imaging [47],
corrosion or wear of surfaces, homogenization of random heterogeneous media [40]
and even modelling of blood flow [37].

Existing numerical methods for PDEs in random domains differ by the way of
approximating the spatial and random components of the solution. For example,
the random solution of a boundary value problem under the small noise assumption
can be often represented as a sum of a deterministic component corresponding
to the fixed nominal boundary and a small random perturbation which can be
quantified using the methods of the “shape calculus” [19,17].

Alternatively, the original problem in a random domain can be transformed to
the problem with random coefficients posed on a deterministic reference domain
by means of the random change of variables estimated from a series of auxiliary
PDEs [48]. In conjunction with the stochastic Galerkin method, this approach was
considered in [45,22,16] while the stochastic collocation approximation in random
space was applied in [7,8]. An equivalent Lagrangian approach was also proposed
in [1] where the mapping to the reference domain was combined with the stochastic
spectral boundary element approximation.

Similarly to the domain mapping method, the random displacement field can
be applied directly to the mesh-based representation of the geometry producing
the new mesh with random coordinates of nodes but the same fixed connectiv-
ity. The main advantage of the mesh-based formulation is that the structure of
the underlying linear system remains unchanged enabling reusability of the exist-
ing deterministic solvers. This idea was proposed in [31] in combination with the
polynomial chaos approximation in random space and later was studied in [16]
in the context of the Quasi-Monte Carlo method applied to the random interface
problem.

In fictitious domain methods, the original problem is reformulated on a larger
deterministic domain containing all realizations of the random boundary. The en-
closing domain can be chosen arbitrarily allowing for simple discretizations which
do not have to conform with the random boundaries at the cost of adding new
variables to enforce the true boundary conditions. For example, the authors of [36,
35] enriched the finite element approximation spaces with the suitably constructed
functions which allow for the explicit representation of a solution in terms of the
random variables describing the geometry. In [40,23,34], this method was success-
fully applied to a number of problems with stochastic material interfaces. The
authors of [6] satisfied the boundary conditions by introducing the Lagrange mul-
tiplier which transformed the original elliptic equation into the larger saddle-point
problem. However, the information on the random geometry in the resulting linear
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system was encoded only in the part of the matrix coupling the primal variable
and the boundary supported Lagrange multiplier. Such localization property is a
certain advantage of this approach over the domain mapping methods which prop-
agate the boundary uncertainty to the whole domain. Additionally, the method
requires no assumptions on the size of the random displacements which is a major
limitation of the perturbation techniques.

The aim of this paper is to construct an efficient and accurate numerical method
with good localization properties in the sense described above. Our motivation for
such formulation is driven by the problems with only certain (often relatively
small) part of the boundary being subjected to the random perturbations. In
particular, the emphasis of this effort is on elliptic equations in arbitrary (oth-
erwise deterministic) domains with random apertures. The fully discrete formu-
lations of conventional solvers for such problems can lack efficiency due to the
necessity in the discretization of the whole physical domain. In this regard, the
semi-analitical approximations hold a vast potential. Here we propose to adapt
the method of Green’s potentials for elliptic equations to the case of domains with
random boundaries. Green’s potentials are the layer potentials with the modified
kernels given by the suitably constructed Green’s functions. We will show that
the proposed method allows to formulate the original boundary value problem in
terms of the integral equations on the random part of the boundary only lead-
ing to the potentially significant computational savings. The first step towards
the practical application of this approach was done in [25] where the so-called
method of “modified potentials” was introduced. Later it was successfully applied
to both stationary and time-dependent deterministic problems [30,27]. It is worth
noting that the importance of Green’s functions has been already recognized in
various areas of the uncertainty quantification [11,4,32,33,24]. Here we apply the
Multilevel Monte Carlo (MLMC) method [14] for the statistical approximation.
However, we note that any method of collocation type can be trivially adopted to
the proposed numerical technique.

The paper is organized as follows. In section 2, we formulate the problem and
introduce the equations and necessary analytical tools. In section 3, we discuss
the discretization scheme for the given equations. The complexity analysis of the
proposed scheme is given in section 4. Finally, the numerical examples in section
5 are provided in support of the obtained analytical results.

2 Problem setting

Let (Ω,F ,P) be a complete probability space with a set of outcomes Ω, a sigma
algebra of events F and a probability measure P defined on it. For each outcome
ω ∈ Ω, define D(ω) to be the realization of a random domain with a boundary
comprised of deterministic and random parts ∂D(ω) := ∂D1 ∪ ∂D2(ω). ∂D1 is
assumed to be Lipschitz and ∂D2(ω) is assumed to be analytic. We are concerned
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Fig. 1: Realization of the random domain D(ω) (left) and the corresponding de-
terministic domain D1 (right).

with the solutions of the following boundary value problem

−∇2u(x, ω) = f(x) for x ∈ D(ω),

α1u(x, ω) + β1
∂u(x, ω)

∂n
= b1(x) for x ∈ ∂D1, (1)

α2u(x, ω) + β2
∂u(x, ω)

∂n
= b2(x) for x ∈ ∂D2(ω).

We assume that, for each ω, the solution u(x, ω) to the above problem exists, is
unique and belongs to H1(D), the space of square integrable functions with square
integrable first derivatives. Additionally, we require u(x, ω) to be a Bochner inte-
grable function with values in H1(D), i.e., u(x, ω) ∈ Lp(Ω;H1(D)), the function
space given by

Lp
(
Ω;H1(D)

)
:=
{
u : Ω → H1(D)

∣∣∣u is strongly measurable and ‖u‖Lp(Ω;H1(D)) <∞
}

with the corresponding norm

‖u‖pLp(Ω;H1(D)) =


∫
Ω

‖u(·, ω)‖pH1(D) dP(ω) if 0 < p <∞,

ess sup
ω∈Ω
‖u(·, ω)‖H1(D) if p =∞.

(2)

For compactness, we will use Lp(Ω) instead of Lp(Ω;H1(D)) in later discussions.

Denote by D1 the reference deterministic domain containing all realizations
of the random boundary ∂D2(ω). This definition is similar to that used in the
fictitious domain methods. However, we explicitly require that the deterministic
part of the boundary ∂D1 is also the boundary of D1. This definition is depicted
graphically in Figure 1. Due to linearity of the operators in (1), one can represent
the solution u(x, ω) as a superposition of two functions

u(x, ω) = u1(x) + u2(x, ω), (3)
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where u1(x) is the deterministic component which satisfies the boundary value
problem in the reference domain D1

−∇2u1(x) = f(x) for x ∈ D1, (4)

α1u1(x) + β1
∂u1(x)

∂n
= b1(x) for x ∈ ∂D1

and the random component u2(x, ω) can be determined from the following homo-
geneous boundary value problem

−∇2u2(x, ω) = 0 for x ∈ D(ω),

α1u2(x, ω) + β1
∂u2(x, ω)

∂n
= 0 for x ∈ ∂D1, (5)

α2u2(x, ω) + β2
∂u2(x, ω)

∂n
= φ(x) for x ∈ ∂D2(ω)

with the boundary condition on ∂D2(ω) defined by the trace of u1(x) as follows

φ(x) = b2(x)− α2u1(x)− β2
∂u1(x)

∂n
. (6)

2.1 Method of Green’s potentials

The particularly simple structure of the problem in (5) is very well suited for the
construction of efficient solvers. One of such solvers, namely the method of Green’s
potentials, is proposed in this section.

Firstly, define the Green’s function corresponding to the boundary value prob-
lem (4) as a solution of the complementary problem

−∇2G1(x, ξ) = δ(ξ) for x, ξ ∈ D1, (7)

α1G1(x, ξ) + β1
∂G1(x, ξ)

∂nx
= 0 for x ∈ ∂D1, (8)

where δ(ξ) is the Dirac measure of unit mass at point ξ. With this function at
hand, the solution u2(x, ω) of the problem in (5) allows the representation in the
form of the single-layer potential [20,44]

u2(x, ω) =

∫
∂D1

G1(x, y)ν1(y)dl(y) +

∫
∂D2(ω)

G1(x, y(ω))ν2(y(ω))dl(y(ω))

=

∫
∂D2(ω)

G1(x, y(ω))ν2(y(ω))dl(y(ω)) =

1∫
0

G1(x, ηω(t))µ(ηω(t))dt, (9)

where µ(ηω(t)) = ν2(ηω(t))
∣∣η′ω(t)

∣∣ and ηω(t) defines a smooth parameterization
of the random boundary curve. Note that in the above expression, the first inte-
gral over the deterministic part of the boundary vanishes because of the Green’s
function G1(x, ξ).
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Using (6) and the jump conditions of the derivative of the single-layer potential
on the boundary, the unknown density µ(ηω(t)) of the potential in (9) can be
obtained from the following boundary integral equation

−β2
2

µ(ηω(s))

|η′ω(s)| + β2

∫ 1

0

∂

∂nηω(s)
G1(ηω(s), ηω(t))µ(ηω(t))dt (10)

+ α2

∫ 1

0

G1(ηω(s), ηω(t))µ(ηω(t))dt = φ(ηω(s)), s ∈ [0; 1],

which is a Fredholm equation of the second kind. The pure Neumann problem
(α2 = 0, β2 = 1) yields the similar equation

−1

2

µ(ηω(s))

|η′ω(s)| +

∫ 1

0

∂G1(ηω(s), ηω(t))

∂nηω(s)
µ(ηω(t))dt = φ(ηω(s)), s ∈ [0; 1]. (11)

It is well known that equations of the second kind are well-posed. On the
other side, Dirichlet boundary conditions (α2 = 1, β2 = 0) convert (10) into the
Fredholm equation of the first kind∫ 1

0

G1(ηω(s), ηω(t))µ(ηω(t))dt = φ(ηω(s)), s ∈ [0; 1], (12)

which is intrinsically ill-posed and must be treated with a special care. It has been
established that equations of the first kind with logarithmically singular kernels
admit unique solutions when the conformal radius of the boundary is not equal to
one [49,9]. Therefore, we assume that all boundaries satisfy this condition.

Note that the traditional approach in solving the Dirichlet problems with meth-
ods of potential is based on representing the solution in the form of the double-layer
potential which results in equations of the second kind. The use of the single-layer
potentials, however, has the advantage of satisfying the governing equation on
the deterministic boundary. As a result, when the length of the boundary ∂D1

is large, the method of Green’s potentials can lead to significant computational
savings compared to the traditional approaches relying on the discretization of the
whole boundary.

Of course, the efficiency of the method of Green’s potentials relies on the
availability of Green’s functions for the specific geometries of the domain. Un-
fortunately, analytical expressions for the Green’s functions are known only for
very simple domains and the construction of approximations adds an additional
level of complexity to the proposed scheme. However, in the case of uncertain
domains, the deterministic complementary problem (7)-(8) has to be solved only
once and the value of the Green’s function at any field point is then readily avail-
able through the simple matrix-vector product which can be done very efficiently.
The implementation aspects of this approach are discussed in succeeding sections.

3 Discretization scheme

3.1 Spatial discretization

The boundary integral equation (11) has been extensively studied in the literature
as the classical equation of potential theory [3,2,15,21,41,9,10]. It is an equation
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of the second kind with a continuous kernel and any approximation technique
is expected to work well. For the sake of completeness, we will use the classical
Nyström method. We start with the boundary integral operator

(Aµ)(s) =

∫ 1

0

K(ηω(s), ηω(t))µ(ηω(t))dt

with a kernel K and approximate it with the trapezoidal rule on the uniform grid
with the step h = 1/N for some integer N

(Aµ)(s) ≈ (Ahµ)(s) = h

N−1∑
k=0

K(ηω(s), ηω(kh))µ(ηω(kh)), s ∈ [0; 1]. (13)

After collocating the resulting discrete operator at the quadrature nodes this
yields the following numerical scheme for the integral equation in (11)

−1

2

µ(ηω(k′h))

|η′ω(k′h)| + h

N−1∑
k=0

∂G1(ηω(k′h), ηω(kh))

∂nηω(s)
µ(ηω(kh)) = φ(ηω(k′h)), (14)

k′ = 0, ..., N − 1.

The order of this scheme is determined by the order of the trapezoidal quadrature
rule in (13), i.e., it is at least O(h2) for sufficiently smooth µ [2].

The direct extension of the scheme in (14) to the equations of the first kind
is not possible due to the singularity of the kernel. In this case, we will use the
quadrature technique proposed in [42] for the first kind Fredholm equations with
logarithmic kernels on closed curves. It is a fully discrete method of qualocation
type based on the composite quadrature rule, i.e., both the integral operator and
the Galerkin projection are approximated with suitable quadratures. In particular,
we use the trapezoidal approximation of the integral operator in (13) and then
project it on the test space Sh of 1-periodic smoothest splines of order r with the
discrete inner product

(v, w)h = Qh(vw),

where

Qhg = h

N−1∑
k=0

J∑
j=1

wjg((k + ζj)h), 0 < ζ1 < ζ2 < ... < ζJ < 1

and

J∑
j=1

wj = 1, wj > 0, for 1 ≤ j ≤ J.

The problem now can be formulated as follows: find µh such that

(Ahµh, χ)h = (φ, χ)h, ∀χ ∈ Sh.
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3

Fig. 2: Trapezoidal rule quadrature points (circles) and collocation points (crosses)
for the case of Neumann (left) and Dirichlet (right) boundary conditions.

For r = 2, the basis (v0, ..., vN−1) of Sh is represented by the classical hat
functions

vk(s) =

{
1− |s− kh|/h, if |x− kh| ≤ h,
0, otherwise.

(15)

Given the basis, one can write the discrete formulation of the problem: find µh
such that

N−1∑
k=0

al,kµh(ηω(kh)) = (φ, vl)h, l = 0, ..., N − 1, (16)

where

al,k = h2
N−1∑
k′=0

J∑
j=1

wjG1

(
ηω
(
(k′ + ζj)h

)
, ηω(kh)

)
vl
(
(k′ + ζj)h

)
.

It was shown in [42] that the following unique choices of the quadrature rules
are optimal in terms of stability of the approximation

J = 1,

ζ1 =
1

6
, (17)

w1 = 1.

J = 2,

ζ1 =
1

6
, ζ2 =

5

6
, (17’)

w1 =
1

2
, w2=

1

2
,

The choice of nodes in (17’) gives the O(h3) order of uniform convergence. The
scheme with nodes in (17) has O(h2) accuracy but the linear system in (16) has
the simpler form

h

N−1∑
k=0

G1

(
ηω
(
(k′ + ζ1)h

)
, ηω(kh)

)
µh(ηω(kh)) = φ

(
ηω
(
(k′ + ζ1)h

))
, (18)

k′ = 0, ..., N − 1.

The discrete systems in (14) and (18) have similar form and we use them
to solve equations of the second and first kind respectively. The combined linear



Method of Green’s potentials for elliptic PDEs in domains with random apertures 9

system for the problems with both Dirichlet and Neumann boundary conditions
can be written as

Gµ = φ (19)

where the elements Gk′,k of the matrix G are given by

Gk′,k =


hG1

(
ηω
(
(k′ + ζ1)h

)
, ηω(kh)

)
if ηω(k′h) ∈ D,

−1

2

µ(ηω(k′h))

|η′ω(k′h)| Ik
′−k + h

∂G1(ηω(k′h), ηω(kh))

∂nηω(s)
if ηω(k′h) ∈ N ,

Ik′−k is the indicator function and D, N denote the collections of nodes with
Dirichlet and Neumann boundary conditions respectively. The quadrature and
collocation points for the case of the Neumann and Dirichlet boundary conditions
are depicted in Figure 2.

After the density of the potential is determined from (19), one can calculate the
solution u2(x, ω) at any field point by evaluating the integral with the trapezoidal
quadrature rule (13) as

u2(x, ω) ≈ h
N−1∑
k=0

G1(x, ηω(kh))µ(ηω(kh)).

3.2 Evaluation of Green’s functions for arbitrary domains

Recall the definition of the Green’s function for the Laplace operator as a solution
of the following boundary value problem

−∇2G1(x, ξ) = δ(ξ) for x, ξ ∈ D1, (7)

α1G1(x, ξ) + β1
∂G1(x, ξ)

∂nx
= 0 for x ∈ ∂D1. (8)

It was mentioned previously that the proposed numerical technique relies heavily
on the ability to evaluate Green’s functions for the domains of arbitrary shapes.
We outline here several methods which allow to solve (7)-(8) in a computationally
attractive way.

3.2.1 Analytical Green’s functions.

In certain cases, it is possible to solve (7)-(8) analytically. The fundamental
solution of the 2-D Laplace equation is one of such examples of an exceptional
importance. It satisfies the equation (7) in the entire space and has the form

G(x, ξ) = − 1

2π
ln r, r =

√
(x1 − ξ1)2 + (x2 − ξ2)2. (20)

The Green’s function to (7)-(8) can then be written as a sum of (20) and a
“corrector” function aiming to satisfy the boundary condition in (8)

G1(x, ξ) = G(x, ξ) + ψ(x, ξ). (21)
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Defined in this way, the corrector function is called the regular component of the
Green’s function. It solves the following complementary problem

−∇2ψ(x, ξ) = 0 for x, ξ ∈ D1, (22)

α1ψ(x, ξ) + β1
∂ψ(x, ξ)

∂nx
= −α1G(x, ξ)− β1

∂G(x, ξ)

∂nx
for x ∈ ∂D1. (23)

For simple geometries possessing certain symmetry properties, the problem in (22)-
(23) admits the closed form solution which can be constructed via the method of
images. Two classical examples of such Green’s functions are given below.

Dirichlet problem in the upper half-plane D1(x1, x2) = {x1, x2 ≥ 0}

G1(x, ξ) =
1

2π
ln

√
(x1 − ξ1)2 + (x2 + ξ2)2

(x1 − ξ1)2 + (x2 − ξ2)2
.

Dirichlet problem in the disk D1(r, ϕ) = {0 ≤ r < a, 0 ≤ ϕ ≤ 2π}

G1

(
x, ξ
)

=
1

4π
ln
a4 − 2a2rρ cos(ϕ− ς) + r2ρ2

a2(r2 − 2rρ cos(ϕ− ς) + ρ2)
,

(x1, x2) = r(cos(ϕ), sin(ϕ)), (ξ1, ξ2) = ρ(cos(ς), sin(ς)).

More examples can be found, for instance, in [12,28]. Additionally, the infinite
product representation of Green’s functions arising from applying the method of
images was discussed in [29,38].

3.2.2 Direct numerical approximation of Green’s functions.

By its definition, Green’s function of the boundary value problem is the inverse
of the corresponding differential operator. Numerical methods can be viewed as
implicitly approximating such inverse operators. For instance, it was shown in
[46] that the finite element solution uh(x) of the boundary value problem with
homogeneous boundary conditions has the form

uh(x) =

∫
D

Gh(x, ξ)f(ξ)dξ,

where Gh(x, ξ) is the FE-Green’s function, i.e., the projection of the exact Green’s
function on the finite element space Vh. Solving for Gh(x, ξ) yields

Theorem 1 ([18]). Let K be the stiffness matrix of the linear system arising after
the finite element disretization. The FE-Green’s function has the form

Gh(x, ξ) = v(x)TK−1v(ξ), (24)

where v(x) = (v1(x), ..., vM (x)) are the basis functions of the FE-space Vh.
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For the spectral finite element method, the formula (24) simplifies to

Gh(x, ξ) = v(x)TΛ−1v(ξ) =
M∑
i=1

vi(x)vi(ξ)

λi
, (25)

where (v1, ..., vM ) ∈ Vh are the M leading eigenfunctions of the differential oper-
ator and Λ is the diagonal matrix with the corresponding eigenvalues. One can
immediately recognize in (25) the truncation of the classical eigenfunction rep-
resentation of the Green’s function which is guaranteed to exist by the Mercer’s
theorem [13]. Spectral representations of the Green’s functions can be found, for
instance, in [12]. As an example, we provide the Green’s function for the

Dirichlet problem in the rectangle D1(x1, x2) = {0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b}

G1

(
x, ξ
)

= 4ab
∞∑
n=1

∞∑
m=1

sin
(mπx1

a

)
sin
(nπx2

b

)
sin

(
mπξ1
a

)
sin

(
nπξ2
b

)
n2π2a2 +m2π2b2

. (26)

3.2.3 Numerical approximation of the regular part of Green’s functions.

Green’s functions generally do not belong to the function spaces approximated by
the span(v1(x), ..., vM (x)) resulting in the very slow convergence of the represen-
tations in (24)-(25). For instance, solutions to the Poisson equation are usually
constructed in H1(D1) but the solution to the problem in (7)-(8) is not in H1(D1)
since the delta function δ(ξ) /∈ H−1 for d ≥ 2, where d is the physical dimension
of the problem. Analogously, analytical expansions like (26) do not have uniform
error estimates which seriously limits their immediate practical utilization.

In certain cases, one can obtain uniformly convergent spectral representations
by partial summation of the series leading to the explicit extraction of the singu-
larity. Justification of this approach with practical examples can be found in [26].
For instance, the series in (26) is transformed to the following form

G1

(
x, ξ
)

=
1

2π
ln

[
E(z − ζ∗)E(z + ζ∗)E(z1 + ζ∗1 )E(z2 + ζ∗2 )

E(z − ζ)E(z + ζ)E(z1 + ζ1)E(z2 + ζ2)

]
(27)

− 2

b

∞∑
n=1

Sn(x1, ξ1) sin (νξ2) sin (νx2) ,

where ν = nπ/b, z = x1 + ix2, z1 = (x1 +a)+ ix2, z2 = (x1−a)+ ix2, ζ = ξ1 + iξ2,
ζ1 = (ξ1 + a) + iξ2, ζ2 = (ξ1 − a) + iξ2, ζ∗1 = (ξ1 + a) − iξ2, ζ∗2 = (ξ1 − a) − iξ2,

E(z) =
∣∣∣eπz/b − 1

∣∣∣ and

Sn(x1, ξ1) =
eνx1 sinh(ν(ξ1 − a))− e−νx1 sinh(ν(ξ1 + a))

2νe2νa sinh(νa)
.

The remainder term RM (x, ξ) of the M -term truncation of the expansion in (27)
has the upper bound

|RM (x, ξ)| ≤ b

2π

(
ln
(

1− e−πa/b
)
−

N∑
n=1

e−nπa/b

n

)
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which reveals the extremely high rate of convergence.

Similarly, the corrector function ψ(x, ξ) in (21) is harmonic everywhere in D1

and thus can be efficiently approximated with any conventional numerical method.
For instance, the finite element approximation has the form

ψh(x, ξ) = v(x)TK−1g(ξ), (28)

where K is the same stiffness matrix as in (24) and g(ξ) encodes the negative trace
of the fundamental solution on the boundary.

One can also construct the regular part of the Green’s function in the form of
the single layer potential

ψ(x, ξ) =

∫
∂D1

G(x, y)ν1(y, ξ)dl(y) =

∫ 1

0

G(x, η1(t))µψ(η1(t), ξ)dt, (29)

where G(x, y) is the fundamental solution of the differential operator, µψ(η1(t), ξ) =
ν1(η1(t), ξ)

∣∣η′1(t)
∣∣ and η1(t) defines a parameterization of the boundary ∂D1. It

is natural to build the approximate solution of the above equation with the same
method used for the approximation of the original integral equation, e.g., with
the scheme given in section 3.1. For this, note that similarly to (28), the density

µψ(η1(t), ξ) encodes the negative trace of the fundamental solution G(·, ξ) on the
boundary ∂D1.

Denote by G the marix of the linear system in (19) for the problem formulated
over the whole boundary D = D1 ∪ D2 and using fundamental solution G(x, ξ)

instead of the Green’s function G1(x, ξ). By taking µψ(ξ) =
(
µψ0 (ξ), ..., µψN−1(ξ)

)
with µψk (ξ) = µψ(η1(kh), ξ), we get

µψ(ξ) = G−1
11 g(ξ),

where G11 is a N1×N1 submatrix of G with both ηω(k′h) ∈ D1 and ηω(kh) ∈ D1.
The matrix G11 needs to be inverted only once and the approximation of the
regular part of the Green’s function at any point is then readily available as

ψh(x, ξ) = h

N−1∑
k=0

G(x, η1(kh))µψ(η1(kh), ξ).

It is easy to verify that in this case the matrix G ∈ RN2×N2 of the original linear
system in (19) takes the form of the Schur complement of G11

G = G22 −G21G
−1
11 G12, (30)

where by analogy with G11, G22 is a N2×N2 submatrix of G with ηω(k′h) ∈ D2

and ηω(kh) ∈ D2, and similarly for G21 ∈ RN2×N1 and G12 ∈ RN1×N2 . We will
use this approach in the subsequent sections. Two examples of the approximate
Green’s function obtained in this way are given in Figure 3.
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Fig. 3: Numerical Green’s functions in the L-shaped and multiconnected domains
with a combination of Dirichlet and Neumann boundary conditions.

3.3 Statistical discretization

Let u(x, ω) be the solution of the random partial differential equation and denote
by f(ω) := f(u(x, ω)) some functional of u(x, ω). The expected value of f(ω) can
be approximated by the Monte-Carlo (MC) estimator of the form

E[f(ω)] ≈ EMC [f ] =
1

M

M∑
m=1

fm(x),

where the deterministic functions fm represent i.i.d. realizations of f(ω).
Monte Carlo method is a purely statistical technique which ignores any in-

formation about regularity of the functions in the physical space. The multilevel
Monte Carlo method can exploit some of this information by relating the sampling
error of the estimator to the convergence properties of the spatial discretization
[14]. For instance, consider a hierarchical family of nested discretizations with step
sizes

hL < hL−1 < ... < hl < ... < h0, hl = q−lh0,

where q ∈ N \ 1 is a refinement parameter. Denote by ul(x, ω) the approximation
of u(x, ω) at the level l and let fl(ω) = f(ul(x, ω)). Then the solution at the finest
discretization level L is given as the telescoping sum

fL(ω) = f0(ω) +

L∑
l=1

(
fl(ω)− fl−1(ω)

)
.

Taking advantage of the linearity of the expectation, we obtain

E
[
fL(ω)

]
= E

[
f0(ω)

]
+

L∑
l=1

E
[
fl(ω)− fl−1(ω)

]
.

By setting ∆l(ω) = fl(ω) − fl−1(ω), l = 0, ..., L, the above expression yields
the multilevel Monte-Carlo estimator

E [f(x, ω)] ≈ EML [fL] =
L∑
l=0

EMC [∆l] =
L∑
l=0

M−1
l

Ml∑
ml=1

∆ml

l , (31)
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where ∆0(ω) = f0(ω) and Ml is the number of random samples at the level l.

4 Complexity analysis

4.1 Asymptotical complexity of the MLMC estimator

Consider the cost function of the MLMC estimator

CML =
L∑
l=0

MlCl,

where Ml is the number of samples at the level l and Cl is the cost of generating the
single realization of fl(ω). The following theorem shows that the above cost can
be optimized by appropriately balancing the errors of the Monte Carlo estimators
at different levels.

Theorem 2 ([14]). If there exist independent estimators EMC [∆l] based on Ml

Monte Carlo samples, each with expected cost Cl and variance Vl, and positive
constants α, β, ρ such that min(β, ρ) ≤ 2α and

1.
∣∣∣E [fl(ω)− f

(
u(x, ω

)] ∣∣∣ . hαl ,

2. Vl . hβl ,

3. Cl . h−ρl ,

then for any ε < e−1 there are values L and Ml for which the multilevel estimator
(31) has a mean-square-error with bound

E
[(

EML [fL(ω)]− E
[
f
(
u(x, ω)

)] )2]
< ε2

with a computational complexity CML with bound

CML .


ε−2 if ρ− β < 0,

ε−2
∣∣ ln ε∣∣2 if ρ− β = 0,

ε−2− ρ−β
α if ρ− β > 0.

(32)

Corollary. According to Theorem 2, the optimal ε−2 complexity of the MLMC
estimator is achieved when ρ < β, i.e., when the decay of the variance Vl of the level
corrections is faster than the growth of the computational cost Cl. For Lipschitz
continuous f and given the convergence rate α of the spatial discretization scheme,
the variance Vl decays with order β = 2α. In practice, ρ ∈ (2, 3] for different

methods yielding α >
ρ

2
∈ (1, 1.5] as an optimality condition which is easily

satisfied with most practical schemes including the one utilized in this paper.
However, the complexity estimate in (32) has a silent constant which determines
the actual relative performace of different algorithms with the same asymptotic
complexity. In the following sections, we provide the complexity analysis for the
proposed numerical scheme and use it to justify our choice of the method of Green’s
potentials.
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4.2 Error component analysis

Consider the following decomposition of the total error of the MLMC estimator

‖EML [ũL]− E [u]‖L2(Ω) ≤ ‖E [ũL − u]‖H1(D)︸ ︷︷ ︸
I := Discretization error

+
∥∥(EML − E

)
[ũL]

∥∥
L2(Ω)︸ ︷︷ ︸

II := Sampling error

, (33)

where u and ũL are the exact and the approximate values of the potential (9). The
error components I and II correspond to the spatial approximation error and the
sampling error. To achieve the desired accuracy ε, it is sufficient to balance the
total error between these two components in the following way

‖EML [ũL]− E [u]‖L2(Ω) ≤ εI + εII = ε. (34)

The error analysis for each of the components is provided below.

4.2.1 Spatial discretization error.

Jensen’s inequality gives

‖E [uL(x, ω)− u(x, ω)]‖H1(D) ≤ E
[
‖uL(x, ω)− u(x, ω)‖H1(D)

]
= εI (35)

and the estimate of the error component I can be derived from the convergence
properties of the spatial discretization scheme. The order of such scheme is in turn
controlled by the convergence properties of the boundary integral equation solver
and the numerical error of the single-layer potential evaluation.

For instance, it was shown in [42] that the qualocation-type discretization (18)
of the first-kind integral equation in (12) admits the following estimate for the
approximation error of µ ∈ Ht([0, 1])

‖µl − µ‖Hs([0,1]) ≤ ch
t−s
l ‖µ‖Ht([0,1]) (36)

provided that s >
1

2
, s +

1

2
< t ≤ s + α and the right hand side of the integral

equation is continuous and 1-periodic. In the case of optimal regularity, i.e., for
µ ∈ Ht([0, 1]) with t > α+ 1/2, the following error bound is valid

sup
t∈[0,1]

|µl(t)− µ(t)| = ‖µl − µ‖L∞([0,1]) ≤ ch
α
l ‖µ‖Ht([0,1]) (37)

due to the embedding of Hs (s > 1/2) in Cp, the space of 1-periodic continuous
functions. The order of convergence is α = 2 for the scheme in (18) and hence the
method is O(h2l ) accurate.

The error of the Nyström method in (14) for the integral equations of the second
kind is given by the error of the corresponding numerical quadrature rule. Since
the trapezoidal rule is exteremely well-behaved for smooth periodic functions, the
order of the Nyström-trapezoidal method is also at least O(h2l ) [2].

To determine the overall order of the spatial discretization at the level l, con-
sider the error in approximating the single-layer potential (9)

|ũl(x)− u(x)| ≤ |ul(x)− u(x)|+ |ũl(x)− ul(x)|,
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where the first term on the right side gives the error of the numerical scheme with
the exact Green’s function and the second term is the error due to the approxi-
mation of the Green’s kernel itself. We get for the first component that

ul(x)− u(x) = hl

Nl−1∑
k=0

G1(x, ηω(kh))µ(khl)−
∫ 1

0

G1(x, ηω(t))µ(t)dt

=

∫ 1

0

G1(x, ηω(t))(µl(t)− µ(t))dt+R(x),

where R(x) is the error of the trapezoidal rule in (13). For a periodic function
µ ∈ Ht, R(x) is also O(ht) [42, Lemma A1], and since t > α in (37), one gets

|ul(x)− u(x)| ≤
∣∣∣∣∫ 1

0

G1(x, ηω(t))(µl(t)− µ(t))dt

∣∣∣∣+O(htl) (38)

≤ ‖µl − µ‖L∞([0,1])

∫ 1

0

|G1(x, ηω(t))|dt+O(htl) = c ‖µl − µ‖L∞([0,1]) .

Similarly, the Green’s kernel is a harmonic and thus analytic function at any inter-
nal point of the domain which gives the estimate for the error in the approximation
of the derivatives of the potential

|u(i)l (x)− u(i)(x)| ≤
∣∣∣∣∫ 1

0

G
(i)
1 (x, ηω(t))

(
µl(t)− µ(t)

)
dt

∣∣∣∣+O(htl) (39)

≤ ‖µl − µ‖L∞([0,1])

∫ 1

0

|G(i)
1 (x, ηω(t))|dt+O(htl) = c ‖µl − µ‖L∞([0,1]) ,

where i = (i1, i2) is a multi-index and f (i) =
∂|i|f

∂xi11 ∂x
i2
2

.

Now consider the approximation of the Green’s kernel. From (21) and (29), we
have

G1(x, ξ) = G(x, ξ) +

∫ 1

0

G(x, η1(t))µψ(η1(t), ξ)dt.

By analogy with (38), there holds the error estimate∣∣∣G̃1(x, ·)−G1(x, ·)
∣∣∣ = |ψl(x, ·)− ψ(x, ·)| = c

∥∥∥µψl − µψ∥∥∥
L∞([0,1])

. (40)

By combining (37), (38) and (40), one gets the error bound

|ũl(x)− ul(x)| ≤ hl · sup
k
|µ(khl)| ·

Nl−1∑
k=0

∣∣∣G̃1(x, ξ(khl))−G1(x, ξ(khl))
∣∣∣ = chαl .

The estimate for the first error component follows trivially from (39) as

I := E
[
‖ul(x, ω)− u(x, ω)‖H1(D)

]
≤ chαl = εI . (41)
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Hence, the condition in (35) on the spatial discretization error can be satisfied by
choosing the number of levels according to

hL = q−Lh0 → L =
⌈
logq

(
h0(c1ε

−1
I )1/α

)⌉
≤ c+ logq

(
h0ε
−1/α
I

)
.

Remark. We used the embedding argument in (37), the analyticity of the
Green’s kernel away from the boundary and the high accuracy of the trapezoidal
rule for smooth periodic functions to find the errors (38)-(39) of the PDE solution

u(x) and its derivatives u(i)(x). For Galerkin methods, similar estimates can be
determined directly from the energy errors of the form (36) using the Aubin-
Nitsche-duality argument [39,43]. Any such method to solve boundary integral
equations can be trivially applied instead of the one utilized in this paper which
might be of interest for the problems in higher dimensions or in regions with
piecewise smooth boundaries. In this case, the results of the MLMC theory remain
valid but with possibly different values for the rates α, β, ρ in conditions (1)− (3)
of Theorem 2. For planar regions with analytic contours, the high accuracy of the
quadrature based methods combined with the trivial construction of their matrices
motivated our choice of the solvers in (14)-(18).

4.2.2 Sampling error.

From the definition of the norm in (2), we obtain

∥∥(EMC − E
)

[u]
∥∥2
L2(Ω)

= E
[∥∥(EMC − E

)
[u]
∥∥2
H1(D)

]
=

1

M2

s∑
i=0

∫
D

M∑
m=1

Var
(
u(i),m

)
dx+

1

M2

s∑
i=0

∫
D

M∑
m=1

M∑
m′=1
m 6=m′

Cov
(
u(i),m, u(i),m

′)
dx.

By virtue of the independence of i.i.d. samples um, we have Cov
(
u(i),m, u(i),m

′)
= 0

and

∥∥(EMC − E
)

[u]
∥∥
L2(Ω)

=

√
V (u)

M
, (42)

where V (u) = E
[
‖u− E [u]‖2H1(D)

]
.

Due to the independence of the MC estimators at each level, one gets the error
of the MLMC estimator as follows

∥∥(EML − E
)

[uL]
∥∥2
L2(Ω)

=

∥∥∥∥∥E [uL]−
L∑
l=0

EMC [ul − ul−1]

∥∥∥∥∥
2

L2(Ω)

=
L∑
l=0

E
[
‖EMC [∆l]− E [∆l]‖2H1(D)

]
=

L∑
l=0

V l
Ml

,

where V l = V (∆l) and ∆l = ul − ul−1.
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Thus, the sampling error can be estimated as

II2 :=
∥∥(EML − E

)
[uL]

∥∥2
L2(Ω)

=
L∑
l=0

V l
Ml

= ε2II . (43)

The above condition can be satisfied by taking

Ml =
V l
alε2II

and
L∑
l=0

al = 1,

where the coefficients al are the weights assigning certain part of the sampling
error to each level. It was shown in [14] that the optimal cost in Theorem 2 is
achieved with the following choice

al =
(ClV l)

1/2

L∑
k=0

(CkV k)1/2
→ Ml = ε−2

II

(
V l
Cl

)1/2 L∑
k=0

(CkV k)1/2. (44)

Note that, in view of (41), one has V l = O(h2αl ), i.e., β = 2α ≥ 4 in Theorem 2.

4.2.3 Complexity of the method of Green’s potentials with different kernels

In this section, we study and compare the complexity of the method of Green’s
potentials for three different choices of the kernel function: fundamental solution,
analytical Green’s kernel and approximate Green’s kernel.

4.2.4 Fundamental solution

Here we provide the complexity analysis of the scheme in section 3.1 with the
boundary integral equations formulated on the whole boundary ∂D = ∂D1 ∪ ∂D2.
Consider the overall cost of the MLMC estimator with Ml as in (44)

CML =

L∑
l=0

⌈
Ml

⌉
Cl ≤

L∑
l=0

Cl + ε−2
II

(
L∑
l=0

(ClV l)
1/2

)2

.

The costs Cl of the BIE solver consist of the two main components

1. the cost Cal of assembling the matrix of the linear system,
2. the cost Csl of solving the linear system.

With the appropriate enumeration of the degrees of freedom, one can write the
linear system in (19) as [

G11 G12(ω)
G21(ω) G22(ω)

] [
µ1

µ2

]
=

[
f1
f2

]
,
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where the block G11 involves only points on the fixed boundary ∂D1 and the
remaining blocks depend on realizations of the boundary ∂D2(ω). Using the Schur
complement, the above system can be reduced to the simpler one(

G22(ω)−G21(ω)G−1
11 G12(ω)

)
µ2 = f2 −G21(ω)G−1

11 f1, (45)

µ1 = G−1
11 f1 −G−1

11 G12(ω)µ2. (46)

Since G11 is fixed, it should be inverted only once using, e.g., LU decomposition.
Hence the cost of evaluating G−1

11 can be neglected.
Let N1,l and N2,l be the numbers of degrees of freedom corresponding to the

fixed and random parts of the boundary ∂D1 and ∂D2 at the level l ∈ [0, L]. Then
the total number of degrees of freedom is Nl = N1,l+N2,l. The construction of ma-
trices G22, G21 and G12 requires O(N2

l −N2
1,l) evaluation operations. Evaluation

of the Schur complement G22−G21G
−1
11 G12 requires O(N1,lN2,lNl +N2

2,l) arith-

metic operations assuming standard matrix multiplication algorithm and that G−1
11

is given. Evaluation of the right hand side requires additional O(N1,lN2,l +N2,l)
arithmetic operations since G−1

11 f1 is fixed. Hence the cost Cal of assembling the
matrix involves O(N1,lN2,lNl +N2

2,l +N1,lN2,l +N2,l) arithmetic operations and

O(N2
l −N2

1,l) evaluation operations.
For direct linear solvers, the cost of solving the resulting linear system is equal

to O(Nγ
2,l) for some γ ∈ (2, 3]; we assume that γ = 3. Evaluation of µ1 requires

only O(N1,lN2,l + N1,l) arithmetic operations since G−1
11 f1 and G−1

11 G12(ω) are
available from the first equation. Therefore, the overall cost of solving the linear
system can be estimated as Csl = O(N3

2,l +N1,lN2,l +N1,l).
Omitting evaluation operations, one may conclude that the total cost at each

level l ∈ [0, L] behaves asymptotically as

Cl = Cal + Csl = O
(
N3

2,l +N1,lN2,lNl +N2
2,l +N1,lN2,l +Nl

)
' h−3

l (47)

since Nl ' |∂D|h−1
l .

Taking into account (47) and since ρ = 3, β = 2α ≥ 4, the ε-cost of the MLMC
estimator follows from Theorem 2 as

CFSML '
(
|∂D2|3 + |∂D1||∂D2||∂D|

)
ε−2. (48)

4.2.5 Analytical Green’s kernel.

For analytical Green’s kernel, the cost Cal of assembling the matrix involves only
O(N2

2,l) evaluation operations and the cost of solving the linear system is Csl =

O(N3
2,l). Omitting evaluation operations, the total asymptotical cost at each level

l ∈ [0, L] is just

Cl = Cal + Csl = O
(
N3

2,l

)
' |∂D2|3h−3

l . (49)

Hence ρ = 3 and the ε-cost of the MLMC estimator follows from Theorem 2 as

CGFML ' |∂D2|3ε−2. (50)
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4.2.6 Approximate Green’s kernel.

Both (30) and (45) have the Schur complement of G11 as their matrices. Hence,
the cost Cal of assembling the matrix involves the same O(N1,lN2,lNl + N2

2,l)
arithmetic operations. However, evaluation of the right hand side does not require
additional operations. The cost of solving the linear system is again Csl = O(N3

2,l),
and the total cost at each level has the following asymptotical behavior

Cl = Cal + Csl = O
(
N3

2,l +N1,lN2,lNl +N2
2,l

)
' h−3

l . (51)

The overall asymptotical complexity of the MLMC estimator is thus given by

CGFML '
(
|∂D2|3 + |∂D1||∂D2||∂D|

)
ε−2. (52)

Corollary. It is clear from (48), (50) and (52) that any choice of the kernel
function results in the optimal asymptotical complexity of the MLMC estimator.
However, the direct comparison of (47), (49) and (51) reveals that the classical
method requires extra O(N1,lN2,lNl+N2

2,l+N1,lN2,l+Nl) and O(N1,lN2,l+Nl)
operations at each level when compared to the methods with analytical and nu-
merical Green’s kernels respectively. In the next section, we provide the numerical
assessment of the impact of the choice of the Green’s kernel on the performance
of the proposed algorithm.

5 Numerical results

Example 1. In the first example, we test the accuracy of the proposed discretiza-
tion scheme for the fixed deterministic boundary. Consider the problem

−∇2u(x) = 0 for x ∈ D,
u(x) = 0 for x ∈ ∂D1,

u(x) = G1(x, ξ) for x ∈ ∂D2,

where D is the square domain with a single aperture. Figure 4 shows the discretiza-
tion of the boundary for the case of analytical and numerical Green’s kernels. For
BIE with exact kernel, only the boundary ∂D2 of the aperture has to be discretized
while for BIE with approximate kernel, it is necessary to discretize both bound-
aries. G1(x, ξ) is the Green’s function (27) for the square bounded by ∂D1 with the
source located at the center of the aperture. This choice of the boundary condition
on ∂D2 suggests G1(x, ξ) as the analytical solution of the above problem.

Convergence properties of the numerical scheme (16) with the quadrature
nodes in (17) are given in Tables 1 and 2. The reference density of the poten-
tial µ was evaluated with the higher order scheme using the quadrature nodes

in (17’). The apparent rates of convergence are defined as αh =
log(el/el−1)

log(hl/hl−1)
. It is

seen that the errors have the order of convergence α = 2 in all norms as predicted
by analysis. Obviously, the errors in Table 2 have larger values but the difference
is not large and the order is not reduced.
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Fig. 4: Discretization of the boundary in Example 1 for BIE with analytical (left)
and numerical (right) Green’s kernels.

N2 ‖µ− µh‖L∞ rate ‖u− uh‖L∞ rate ‖u− uh‖H1 rate

8 5.074e-1 - 3.323e-2 - 9.462e-2 -

20 7.008e-2 1.87 4.506e-3 2.36 2.992e-2 1.56

68 5.215e-3 2.06 1.820e-4 3.33 2.058e-3 2.64

260 3.533e-4 2.01 4.898e-6 2.34 1.312e-5 3.87

1028 2.258e-5 2.00 3.133e-7 2.00 8.176e-7 2.00

4100 1.428e-6 1.99 1.970e-8 2.00 5.140e-8 2.00

Table 1: Convergence with analytical Green’s kernel.

N1 N2 ‖µ− µh‖L∞ rate ‖u− uh‖L∞ rate ‖u− uh‖H1 rate

48 8 5.071e-1 - 3.323e-2 - 1.048e-1 -

104 20 7.004e-2 1.87 4.507e-3 2.36 3.460e-2 1.53

328 68 5.212e-3 2.07 1.820e-4 3.33 2.462e-3 2.64

1232 260 3.530e-4 2.01 4.901e-6 2.34 1.335e-5 3.98

4848 1028 2.257e-5 2.00 3.135e-7 2.00 8.319e-7 1.99

19336 4100 1.422e-6 1.99 1.971e-8 2.00 5.230e-8 2.00

Table 2: Convergence with numerical Green’s kernel.

Results in Tables 1 and 2 are also presented graphically in Figure 5 which
illustrates the supremum norm of the error along the isocontours of the bound-
ary. Superiority of the analytical Green’s kernel is obvious near the deterministic
boundary ∂D1 but both approaches show good results far from the boundaries.

Figure 6 illustrates the costs Ca of assembling the matrix and Cs of solving
the resulting system. As predicted, the cost Cs is asymptotically dominant for
BIE with analytical Green’s kernel while the cost Ca dominates in the case of
numerical Green’s function. Figure 7 depicts the overall empirical computational
costs of different methods along with the speedup of the proposed schemes over the
standard BIE method with fundamental solution as kernel. It is seen that meth-
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Fig. 5: Isocontours of the aperture (left) and L∞ errors along the isocontours for
BIE with analytical (middle) and numerical (right) Green’s kernels.
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Fig. 6: The costs Ca and Cs of assembling and solving the linear system for the
schemes with analytical Green’s kernel (left), numerical Green’s kernel (middle)
and fundamental solution (right).
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ods with both analytical and numerical Green’s kernels are superior to standard

approach and perform exceptionally well for small ratios of
|∂D2|
|∂D1|

.

Example 2. For the second example, consider the problem

−∇2u(x) = f(x) for x ∈ D,
u(x) = 0 for x ∈ ∂D1,

∂u(x)

∂n
= 0 for x ∈ ∂D2,
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Analytical GF Numerical GF Schur complement
α 1.88 2.02 1.89
β 4.33 4.31 4.42
ρ 1.58 1.97 2.52

Table 3: Empirical rates α of the weak convergence, β of the decay of the variance
and ρ of the growth of the cost for boundary integral equations with different
kernels.

where D and ∂D1 are the same as in Example 1 and ∂D2 is the aperture with the
following parametrization(

x(t, ω), y(t, ω)
)

=
(
xc(ω), yc(ω)

)
+R(t, ω)

(
cos(t), sin(t)

)
, t ∈ [0, 2π).

The radius of the aperture is defined as

R(t, ω) = R(t) + σr

s∑
n=1

(
an(ω) cos(2πnt) + bn(ω) sin(2πnt)

)
with the mean radius R(t) and the random coefficients an(ω) = U(−

√
3,
√

3),
bn(ω) = U(−

√
3,
√

3). Coefficient σr controls intensity of the random perturbation.
Coordinates of the center are also random variables

xc(ω) = xc + σxU(−1, 1),

yc(ω) = yc + σyU(−1, 1),

where (xc, yc) is the mean location of the center and the coefficients σx, σy control
deviation from the mean. For this particular example, we set (xc, yc) = (0.3, 0.4),
σx = σy = 0.05, R = 0.15, σr = 0.01 and s = 10.

The forcing term f(x) is chosen such that the analytical solution in the deter-
ministic domain D1 without the aperture is given by

u1(x) = 100
2∑
i=n

2∑
m=1

sin(nπ/2)2 sin(mπ/2)2

nmπ4(n2 +m2)
sin(nπx) sin(mπy).

Figure 8 illustrates five different realizations of the random geometry and isolines
of the solutions corresponding to two particular realizations.

Consider the functional

F [u] := sup
x∈C

u(x), (53)

where C is the contour parallel to the aperture with the offset d = 0.01. A sin-
gle realization of the geometry and the corresponding contour C is depicted on
Figure 9 along with 200 realizations of the value of the functional.

The observed rates α, β, ρ in Theorem 2 for the proposed numerical scheme
are given in Table 3. It is seen that, due to the second order of convergence of the
spatial approximation, the variance decay is much faster than the growth of the
cost for all types of kernels. Therefore, the theoretical ε-complexity of the MLMC
estimator is proportional to ε−2 and Figure 10 confirms this prediction. One can
also see that the proposed schemes with both analytical and numerical Green’s
kernels perform better than the standard method in section 4.2.4 as expected.
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Fig. 8: Realizations of the random geometry (left) and isolines of the solutions
corresponding to two different realizations.
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6 Conclusion

In this paper, we considered the problem of approximating solutions to elliptic
PDEs in domains comprised of deterministic and random boundaries. We used the
numerical scheme based on boundary integral representation of solutions to such
PDEs and proposed to use Green’s functions as the kernels of the corresponding
potentials. The proposed numerical scheme can be applied to problems in arbi-
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trary domains with random apertures and does not require the explicit knowledge
of analytical Green’s functions which can be considered as a major contribution
of this work. We showed that when a large number of repetitive solutions is re-
quired, as is the case of Monte Carlo simulations, the proposed scheme can lead
to significant reduction of computational complexity compared to standard BIE
techniques.
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Boston (2011)

29. Melnikov, Y.A., Melnikov, M.Y.: Green’s Functions. Construction and Applications.
Berlin, Boston: De Gruyter (2012)

30. Melnikov, Y.A., Reshniak, V.: A semi-analytical approach to Green’s functions for heat
equation in regions of irregular shape. Engineering Analysis with Boundary Elements 46,
108 – 115 (2014). DOI http://dx.doi.org/10.1016/j.enganabound.2014.05.012

31. Mohan, P.S., Nair, P.B., Keane, A.J.: Stochastic projection schemes for deterministic lin-
ear elliptic partial differential equations on random domains. International Journal for
Numerical Methods in Engineering 85(7), 874–895 (2011). DOI 10.1002/nme.3004

32. Neuman, S.P., Orr, S.: Prediction of steady state flow in nonuniform geologic media by
conditional moments: Exact nonlocal formalism, effective conductivities, and weak approx-
imation. Water Resources Research 29(2), 341–364 (1993). DOI 10.1029/92WR02062



Method of Green’s potentials for elliptic PDEs in domains with random apertures 27

33. Neuman, S.P., Tartakovsky, D., Wallstrom, T.C., Winter, C.L.: Correction to prediction of
steady state flow in nonuniform geologic media by conditional moments: Exact nonlocal
formalism, effective conductivities, and weak approximation by shlomo p. neuman and
shlomo orr. Water Resources Research 32(5), 1479–1480 (1996). DOI 10.1029/96WR00489

34. Nouy, A., Clment, A.: eXtended Stochastic Finite Element Method for the numerical sim-
ulation of heterogeneous materials with random material interfaces. International Journal
for Numerical Methods in Engineering 83(10), 1312–1344 (2010). DOI 10.1002/nme.2865

35. Nouy, A., Clment, A., Schoefs, F., Mos, N.: An extended stochastic finite element method
for solving stochastic partial differential equations on random domains. Computer Methods
in Applied Mechanics and Engineering 197(5152), 4663 – 4682 (2008). DOI http://dx.
doi.org/10.1016/j.cma.2008.06.010

36. Nouy, A., Schoefs, F., Mos, N.: X-SFEM, a computational technique based on X-FEM to
deal with random shapes. European Journal of Computational Mechanics 16(2), 277–293
(2007). DOI 10.3166/remn.16.277-293

37. Park, S.W., Intaglietta, M., Tartakovsky, D.M.: Impact of endothelium roughness on blood
flow. Journal of Theoretical Biology 300, 152 – 160 (2012). DOI http://dx.doi.org/10.
1016/j.jtbi.2012.01.017

38. Reshniak, V.: Some further developments in the infinite product representation of el-
ementary functions. Global Journal of Science Frontier Research 13(4) (2013). URL
https://journalofscience.org/index.php/GJSFR/article/view/853

39. Sauter, S.A., Schwab, C.: Boundary element methods, Springer Series in Computational
Mathematics, vol. 39. Springer, Berlin, Heidelberg (2010)

40. Savvas, D., Stefanou, G., Papadrakakis, M., Deodatis, G.: Homogenization of random
heterogeneous media with inclusions of arbitrary shape modeled by XFEM. Computational
Mechanics 54 (2014). DOI 10.1007/s00466-014-1053-x

41. Sloan, I.H.: Qualocation. Journal of Computational and Applied Mathematics 125(12),
461 – 478 (2000). DOI http://dx.doi.org/10.1016/S0377-0427(00)00485-4

42. Sloan, I.H., Burn, B.: An unconventional quadrature method for logarithmic-kernel integral
equations on closed curves. J. Integral Equations Applications 4(1), 117–151 (1992). DOI
10.1216/jiea/1181075670

43. Steinbach, O.: Numerical approximation methods for elliptic boundary value problems:
finite and boundary elements. Springer Science & Business Media (2007)

44. Symm, G.T.: Integral equation methods in potential theory. II. Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences 275(1360), 33–46
(1963). DOI 10.1098/rspa.1963.0153

45. Tartakovsky, D.M., Xiu, D.: Stochastic analysis of transport in tubes with rough walls.
Journal of Computational Physics 217(1), 248 – 259 (2006). DOI http://dx.doi.org/10.
1016/j.jcp.2006.02.029

46. Tottenham, H.: Basic principles. In: Finite Element Techniques in Structural Mechanics.
Southampton Univ. Press, Southampton (1970)

47. Tsong, T.T.: Atom-Probe Field Ion Microscopy: Field Ion Emission, and Surfaces and
Interfaces at Atomic Resolution. Cambridge University Press (2005)

48. Xiu, D., Tartakovsky, D.M.: Numerical methods for differential equations in random
domains. SIAM Journal on Scientific Computing 28(3), 1167–1185 (2006). DOI
10.1137/040613160

49. Yan, Y., Sloan, I.: On integral equations of the first kind with logarithmic kernels. J.
Integral Equations Applications 1(4), 549–580 (1988). DOI 10.1216/JIE-1988-1-4-549

50. Zayernouri, M., Park, S.W., Tartakovsky, D.M., Karniadakis, G.E.: Stochastic smoothed
profile method for modeling random roughness in flow problems. Computer Methods in
Applied Mechanics and Engineering 263, 99 – 112 (2013). DOI http://dx.doi.org/10.
1016/j.cma.2013.05.007

51. Zhu, Z., White, J., Demir, A.: A stochastic integral equation method for modeling the
rough surface effect on interconnect capacitance. In: Proceedings of the 2004 IEEE/ACM
International conference on Computer-aided design, pp. 887–891. IEEE Computer Society
(2004)

https://journalofscience.org/index.php/GJSFR/article/view/853

	1 Introduction
	2 Problem setting
	3 Discretization scheme
	4 Complexity analysis
	5 Numerical results
	6 Conclusion

