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A POSITIVITY PRESERVING ITERATIVE METHOD FOR FINDING

THE GROUND STATES OF SATURABLE NONLINEAR

SCHRÖDINGER EQUATIONS

CHING-SUNG LIU

Abstract. In this paper, we propose an iterative method to compute the positive ground
states of saturable nonlinear Schrödinger equations. A discretization of the saturable nonlinear
Schrödinger equation leads to a nonlinear algebraic eigenvalue problem (NAEP). For any initial
positive vector, we prove that this method converges globally with a locally quadratic convergence
rate to a positive solution of NAEP. During the iteration process, the method requires the selection of
a positive parameter θk in the kth iteration, and generates a positive vector sequence approximating
the eigenvector of NAEP and a scalar sequence approximating the corresponding eigenvalue. We
also present a halving procedure to determine the parameters θk, starting with θk = 1 for each
iteration, such that the scalar sequence is strictly monotonic increasing. This method can thus be
used to illustrate the existence of positive ground states of saturable nonlinear Schrödinger equations.
Numerical experiments are provided to support the theoretical results.

Key words. Schrödinger equations, Saturable nonlinearity, Ground states, M -matrix, quadratic
convergence,positivity preserving
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1. Introduction. The nonlinear Schrödinger (NLS) equation [14] is a nonlinear
variation of the Schrödinger equation and is a general model in nonlinear science and
mathematics. Such an equation can be expressed as follows:

i
∂φ

∂z
+△φ+ Γf(|φ|2)φ = 0 for some constant Γ ∈ R, (1.1)

where φ = φ(x, z) : R2 × R+ → C, the function f denotes the nonlinearity and i is
the imaginary unit. A NLS equation is called a saturable NLS equation [3, 9] if the
nonlinear function f(s) = 1− 1/(a+ s2), that is,

i
∂φ

∂z
= −△φ+ Γ

(
1−

1

a(x) + |φ|2

)
φ, for Γ > 0, (1.2)

where a(x) > 0 is a bounded function. A saturable NLS equation is of interest in
several applications [5, 7, 8, 10, 11, 12], and has been extensively studied in the past
thirty years. In many application areas, one is interested in finding the ground state
vector of equation (1.2). The ground state of equation (1.2) is defined as the minimizer
of the energy function, which is determined by the following constrained optimization
problem [3, 9]:

m(Γ, I) = inf{H(u) | u ∈ H1(R2),

∫

R2

u2 = 1}, (1.3)

where

H(u) =

∫

R2

|∇u|2 + Γ

[
u2 − ln

(
1 +

u2

a(x)

)]
dx.

Therefore, the associated Euler-Lagrange equation of (1.3) is as follows:

−∆u+ Γ

(
1−

1

a(x) + u2

)
u = λu, (1.4)
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where a(x) > 0,
∫∞
−∞ u2(x)dx = 1, (λ, u) is the eigenpair. In general, the eigenfunction

u(x) describes the probability distribution of finding a particle in a particular region
in space. Therefore, the existence of positive solutions u(x) [9] and the problem of
computing these solutions has attracted much attention in recent years. Here we
consider the finite-difference discretization of the nonlinear eigenvalue problem (1.4)
with Dirichlet boundary conditions, and the discretization gives a nonlinear algebraic
eigenvalue problem (NAEP)

Au+ Γdiag

(
e−

e

a+ u[2]

)
u = λu, uTu = 1, (1.5)

where a > 0,Γ > 0, u = [u1, u2, . . . , un]
T ∈ Rn, u[2] = [u2

1, u
2
2, . . . , u

2
n]

T , A is an
irreducible nonsingular M -matrix and e = [1, . . . , 1]T . We aim to provide a structure-
preserving algorithm with fast convergence rate for computing positive eigenvectors
u∗ and eigenvalues λ∗of NAEP (1.5) and giving a detailed convergence analysis.

In many applications, the positivity structure of the approximate solutions is
important; if the approximations lose positivity structure, then they may be mean-
ingless and unexplained. Therefore, in this paper, we propose a positivity preserving
iteration for nonlinear algebraic eigenvalue problems (1.5) by combining the idea of
Newton’s method with the idea of the Noda iteration [13], called the Newton-Noda
iteration (NNI). NNI is a Newton iterative method with a new type of full Newton
steps, it has the advantage that no line-searches are needed, and naturally preserves
the strict positivity of the target eigenvector u∗ in its approximations at all iterations.
We also present a halving procedure to determine the parameters θk, starting with
θk = 1 for each iteration, such that the sequence approximating target eigenvalue λ∗
is strictly monotonic increasing and bounded, and thus its global convergence is guar-
anteed. Another advantage of NNI is that it converges quadratically and computes
the desired eigenpair correctly for any positive initial vector.

The rest of this paper is organized as follows. In Section 2, we present a Newton-
Noda iteration. In Section 3, we prove some basic properties for Newton-Noda iter-
ation. Section 4 addresses the global convergence and the local convergence rate of
NNI. In Section 5, we provide numerical examples to verify the theoretical results and
the performance of NNI. Some concluding remarks are given in the last section.

Throughout this paper, we use the bold face letters to denote a vector and use
the 2-norm for vectors and matrices. The superscript T denotes the transpose of a
vector or matrix, and we use v(i) to represent the ith element of a vector v. v[m]

denotes element-by-element powers, i.e., v[m] = [vm1 , vm2 , . . . , vmn ]T . A real matrix
A = [Aij ] ∈ Rn×k is called nonnegative (positive) if Aij ≥ 0 (Aij > 0). For real
matrices A and B of the same size, we write A ≥ B (A > B) if A−B is nonnegative
(positive). A real square matrix A is called a Z-matrix if all its off-diagonal elements
are nonpositive. A matrix A is called a M-matrix if it is a Z-matrix with A−1 ≥ 0.
A matrix A is called reducible [2, 6] if there exists a nonempty proper index subset
S ⊂ {1, 2, . . . , n} such that

Aij = 0, ∀ i ∈ S, ∀ j /∈ S.

If A is not reducible, then we call A irreducible. For a pair of positive vectors v and
w, define

max
(w
v

)
= max

i

(
w(i)

v(i)

)
, min

(w
v

)
= min

i

(
w(i)

v(i)

)
.
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2. The Newton-Noda iteration. In this section, we will present a Newton-
Noda iteration (NNI) for computing a positive eigenvector u∗ of NAEP (1.5), and then
we prove some basic properties of NNI in Section 3, which will be used to establish
its convergence theory in Section 4.

First, NAEP (1.5) can be simplified as follows:

A(u)u = λu,

where

A(u) = A+ Γdiag

(
e−

e

a+ u[2]

)

and diag (∗) returns a square diagonal matrix with the elements of vector ∗ on the main
diagonal. We define two vector-valued functions r : Rn+1

+ → R
n and F : Rn+1

+ → R
n+1

as follows:

r(u,λ) = A(u)u − λu, F(u, λ) =

[
−r(u,λ)

1
2

(
1− uTu

)
]
. (2.1)

The Fréchet derivative of F is given by

F ′(u, λ) =

[
J(u) −u
−uT 0

]
, (2.2)

where

J(u) = A+ (Γ− λ)I − Γdiag

(
a− u[2]

(a + u[2])[2]

)
.

Next, we consider using Newton’s method to solve the equation F(u,λ) = 0.

Given an approximation (uk, λ̂k), Newton’s method produces the next approximation

(uk+1, λ̂k+1) as follows:

[
J(uk) −uk

−uT
k 0

] [
∆k

δk

]
= −

[
r(uk, λ̂k)

1
2

(
uT
k uk − 1

)
]
, (2.3)

uk+1 = uk +∆k, (2.4)

λ̂k+1 = λ̂k + δk. (2.5)

From the first equation of (2.3), we have

J(uk)(∆k + uk) = J(uk)∆k + J(uk)uk

= δkuk − r(uk, λ̂k) + J(uk)uk

= δkuk − (A(uk)− λ̂kI)uk

+ (A(uk)− λ̂kI)uk + 2Γdiag

(
u
[2]
k

(a+ u
[2]
k )[2]

)
uk

= δkuk + 2Γdiag

(
u
[2]
k

(a+ u
[2]
k )[2]

)
uk.
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Hence,

uk+1 = J(uk)
−1

(
δkuk + 2Γdiag

(
u
[2]
k

(a+ u
[2]
k )[2]

)
uk

)
. (2.6)

Since uk is going to approximate the positive eigenvector of NAEP, we will also
require uk > 0. However, we cannot guarantee uk+1 > 0 in (2.6) unless we have

δk > 0, J(uk)
−1 ≥ 0.

What is needed here is that J(uk) is a nonsingular M-matrix. For uk > 0, we suggests
taking

λk = min

(
A(uk)uk

uk

)
, (2.7)

which is precisely the idea of the Noda iteration [13]. This implies that the Z-matrix
A(uk) − λkI is such that (A(uk) − λkI)uk ≥ 0. Thus A(uk) − λkI is a nonsingular
M -matrix when (uk, λk) is not an eigenpair, and is a singularM -matrix when (uk, λk)
is an eigenpair. Since

J(uk)− (A(uk)− λkI) = 2Γdiag

(
u
[2]
k

(a+ u
[2]
k )[2]

)
, (2.8)

we have J(uk)uk > 0. Thus J(uk) is a nonsingular M -matrix. Based on (2.3), (2.4)
and (2.7), we can present NNI as Algorithm 2.1.

Algorithm 2.1 Newton-Noda iteration (NNI)

1. Given u0 > 0 with ‖u0‖ = 1, λ0 = min
(

A(u0)u0

u0

)
and tol > 0.

2. for k = 0, 1, 2, . . .

3. Solve the linear system F ′(uk, λk)

[
∆k

δk

]
= −F (uk, λk).

4. Choose a scalar θk > 0.
5. Compute the vector wk+1 = uk + θk∆k.
6. Normalize the vector uk+1 = wk+1/‖wk+1‖.

7. Compute λk+1 = min
(

A(uk+1)uk+1

uk+1

)
.

8. until convergence: ‖A(uk)− λkuk‖ <tol.

In what follows, we will prove the positivity of uk and give a strategy for choosing
θk. These results will show that Algorithm 2.1 is a positivity preserving algorithm.

2.1. Positivity of uk. Suppose that {uk, λk} is generated by Algorithm 2.1.
We now prove that the parameter θk ∈ (0, 1] in Algorithm 2.1 naturally preserves the
strict positivity of uk at all iterations.

For any vector u > 0, from (2.2), it follows that

F ′(u, λ) =

[
I 0

−uT (J(u))−1 1

] [
J(u) −u
0 −uT (J(u))−1u

]
(2.9)
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is nonsingular and

(F ′(u, λ))−1 =

[
(J(u))−1 − (J(u))−1

uu
T (J(u))−1

uT (J(u))−1u
− (J(u))−1

u

uT (J(u))−1u

− u
T (J(u))−1

uT (J(u))−1u
− 1

uT (J(u))−1u

]
. (2.10)

Lemma 2.1. Given a,Γ > 0. Suppose that λk ∈ R and uk > 0 with ‖uk‖ = 1
such that r(uk, λk) > 0. Then

1

2
(1 + uT

k uk)− ΓuT
k (J(uk))

−1diag

(
2u

[2]
k

(a+ u
[2]
k )[2]

)
uk > 0. (2.11)

Moreover, the equality holds if and only if r(uk, λk) = 0.

Proof. Since A(uk)uk − λkuk > 0, J(uk) = (A(uk)− λkI) + Γdiag

(
2u

[2]
k

(a+u
[2]
k

)[2]

)

is nonsingular M -matrix. Then we have

Γ(J(uk))
−1diag

(
2u

[2]
k

(a+ u
[2]
k )[2]

)
uk =

(
I − (J(uk))

−1(A(uk)− λkI)
)
uk.

Hence,

1

2
(1 + uT

k uk)− ΓuT
k (J(uk))

−1diag

(
2u

[2]
k

(a+ u
[2]
k )[2]

)
uk

=
1

2
(1 + uT

k uk)− uT
k uk + uT

k (J(uk))
−1(A(uk)uk − λkuk)

=
1

2
(1− uT

k uk) + uT
k (J(uk))

−1r(uk, λk).

Since ‖uk‖ = 1 and r(uk, λk) > 0, (2.11) holds by using uT
k (J(uk))

−1 > 0. It is easily
seen that the equality of (2.11) holds if and only if r(uk, λk) = 0.

Theorem 2.2. Given a,Γ > 0. Assume {uk, λk} is generated by Algorithm 2.1.
If θk ∈ (0, 1], then uk > 0 for all k.

Proof. Since u0 > 0, by mathematical induction, it suffices to show that if uk > 0
then uk+1 > 0. Suppose that uk > 0, it follows from the step 3 of Algorithm 2.1 that

F ′(uk, λk)

[
uk +∆k

δk

]
= −

[
A(uk)uk − λkuk

1
2

(
1− uT

k uk

)
]
+

[
J(uk)uk

−uT
k uk

]

=


 Γdiag

(
2u

[2]
k

(a+u
[2]
k

)[2]

)
uk

− 1
2

(
1 + uT

k uk

)


 .
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By (2.10), we have

uk +∆k =Γ

(
I −

(J(uk))
−1uku

T
k

uT
k (J(uk))−1uk

)
(J(uk))

−1diag

(
2u

[2]
k

(a+ u
[2]
k )[2]

)
uk

+
1 + uT

k uk

2uT
k (J(uk))−1uk

(J(uk))
−1uk

=Γ(J(uk))
−1diag

(
2u

[2]
k

(a + u
[2]
k )[2]

)
uk

+

1
2 (1 + uT

k uk)− ΓuT
k (J(uk))

−1diag

(
2u

[2]
k

(a+u
[2]
k

)[2]

)
uk

uT
k (J(uk))−1uk

(J(uk))
−1uk.

(2.12)

Since Γ > 0, uk > 0, J(uk) is a nonsingular M -matrix and uT
k (J(uk))

−1uk > 0, it
follows from Lemma 2.1 that uk + ∆k > 0. Therefore, wk+1 = uk + θk∆k > 0 if
0 < θk ≤ 1, and hence, uk+1 = wk+1/‖wk+1‖ > 0.

Remark 1.

(i) uT
k∆k = 0: From (2.12), it is easily seen that uT

k∆k = 1
2 (1− uT

k uk) = 0.
(ii) δk > 0: From the step 3 of Algorithm 2.1 and using (2.10), we have

δk =
1

uT
k (J(uk))−1uk

uT
k (J(uk))

−1r(uk, λk) +
1
2 (1− uT

k uk)

uT
k (J(uk))−1uk

=
1

uT
k (J(uk))−1uk

uT
k (J(uk))

−1r(uk, λk) > 0.

Lemma 2.3. If δk, ∆k and uk are generated by Algorithm 2.1, then the following
statements are equivalent:

(i) δk = 0; (ii) r(uk, λk) = 0; (iii) ∆k = 0.

Proof. From the step 3 of Algorithm 2.1, we have

F ′(uk, λk)

[
∆k

δk

]
= −

[
r(uk, λk)

0

]
.

(i)⇒(ii): From (ii) of Remark 1, we get δk = 0 if and only if r(uk, λk) = 0.
(ii)⇒(iii): Since r(uk, λk) = 0 and F ′(uk, λk) is a nonsingular matrix, we have

∆k = 0 and δk = 0.
(iii) ⇒ (i): If ∆k = 0, then

F ′(uk, λk)

[
0
δk

]
= −

[
r(uk, λk)

0

]
,

and it follows

−δkuk = −r(uk, λk) = − (A(uk)uk − λkuk) ,

which implies

A(uk)uk = (λk + δk)uk.
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Then

λk + δk = min

(
A(uk)uk

uk

)
= λk,

which means δk = 0.

2.2. The strategy for choosing θk. In this section, we would like to choose
θk ∈ (0, 1] such that the sequence {λk} is strictly increasing and bounded above.

Lemma 2.4. Given a unit vector uk > 0 and θk ∈ (0, 1], then

λk+1 = λk +min

(
hk(θk)

uk+1

)
, (2.13)

where hk(θk) = r(uk+1, λk). Moreover, hk(θk) can be also expressed in the form

hk(θk) =
1− θk
‖wk+1‖

r(uk, λk) +
θkδk
‖wk+1‖

uk +R(θk∆k) (2.14)

where ‖R(θk∆k)‖ ≤M‖θk∆k‖
2.

Proof. By Theorem 2.2, we know that uk > 0 for all k.

λk+1 − λk = min

(
A(uk+1)uk+1

uk+1

)
− λk = min

(
hk(θk)

uk+1

)
,

where hk(θk) = r(uk+1, λk). By Taylors theorem, we have

r(uk+1, λk) = r(uk, λk) + J(uk)(uk+1 − uk) +Ek

= r(uk, λk) + J(uk)(
uk + θk∆k

‖wk+1‖
− uk) +Ek

= r(uk, λk) +

(
1

‖wk+1‖
− 1

)
J(uk)uk +

θk
‖wk+1‖

J(uk)∆k +Ek

= r(uk, λk) +

(
1

‖wk+1‖
− 1

)[
r(uk, λk) + 2Γdiag

(
u
[2]
k

(a+ u
[2]
k )[2]

)
uk

]

+
θk

‖wk+1‖
[δkuk − r(uk, λk)] +Ek

=
1− θk
‖wk+1‖

r(uk, λk) +
θkδkuk

‖wk+1‖
+

1− ‖wk+1‖

‖wk+1‖

[
2Γu

[3]
k

(a+ u
[2]
k )[2]

]
+Ek,(2.15)

where ‖Ek‖ ≤M1‖uk+1 − uk‖
2.

Since uT
k ∆k = 0 from Remark 1, we have ‖wk+1‖ =

√
1 + ‖θk∆k‖2. Hence, the

third term in the right-hand side of (2.15) is bounded by

‖
1− ‖wk+1‖

‖wk+1‖

[
2Γu

[3]
k

(a+ u
[2]
k )[2]

]
‖ ≤ ‖

1−
√
1 + ‖θk∆k‖2√

1 + ‖θk∆k‖2
‖‖

2Γu
[3]
k

a[2] + 2au
[2]
k + u

[4]
k

‖

≤
Γ

2min (a)
‖θk∆k‖

2, (2.16)
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and the upper bound of ‖Ek‖ can be re-estimated as follows:

‖Ek‖ ≤M1‖uk+1 − uk‖
2

= M1‖

(
1

‖wk+1‖
− 1

)
uk +

θk
‖wk+1‖

∆k‖
2

≤M1‖

(
1

‖wk+1‖
− 1

)
uk‖

2 +
M1

‖wk+1‖
‖θk∆k‖

2

≤

(
M1

2
+M1

)
‖θk∆k‖

2. (2.17)

From the above relation (2.15)-(2.17), we have

hk(θk) =
1− θk
‖wk+1‖

r(uk, λk) +
θkδk
‖wk+1‖

uk +R(θk∆k),

where

R(θk∆k) =
1− ‖wk+1‖

‖wk+1‖

[
2Γu

[3]
k

(a+ u
[2]
k )[2]

]
+Ek

with ‖R(θk∆k)‖ ≤M‖θk∆k‖
2 and M = Γ

2min(a) +
M1

2 +M1.

We next show that λk is strictly increasing and bounded above for suitable θk,
unless uk is an eigenvector of NAEP for some k, in which case NNI terminates with
λk.

Theorem 2.5. Suppose A be an irreducible M-matrix and η > 0 be a fixed
constant. Given a unit vector uk > 0, suppose uk 6= u∗ and θk in Algorithm 2.1
satisfies

θk =

{
1 if hk(1) ≥

δkuk

(1+η)‖wk+1‖ ;

ηk otherwise,
(2.18)

where for each k with hk(1) <
δkuk

(1+η)‖wk+1‖ ,

ηk =
ηδk min (uk)

(1 + η)M‖wk+1‖ ‖∆k‖
2 .

Then 0 < ηk < 1 whenever it is defined, and

λk < λk+1 < ‖A‖+ (1 + n)Γ. (2.19)

Proof. By Lemma 2.4, we have

λk+1 = λk +min

(
hk(θk)

uk+1

)
.

We need to prove hk(θk) > 0.
From (2.14) and ‖R(θk∆k)‖ ≤M‖θk∆k‖

2, we have

hk(θ) =
θδkuk

(1 + η)‖wk+1‖
+

θηδkuk

(1 + η)‖wk+1‖
+

1− θ

‖wk+1‖
r(uk, λk) +R(θ∆k)

>
θδkuk

(1 + η)‖wk+1‖
+

θηδkuk

(1 + η)‖wk+1‖
−Mθ2 ‖∆k‖

2
e. (2.20)
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If ηk ≥ 1, then

ηδk min (uk) ≥ (1 + η)M‖wk+1‖ ‖∆k‖
2
,

and it follows

ηδkuk

(1 + η)‖wk+1‖
≥M ‖∆k‖

2
e.

Thus

hk(1) =
δkuk

(1 + η)‖wk+1‖
+

ηδkuk

(1 + η)‖wk+1‖
+R(∆k)

>
δkuk

(1 + η)‖wk+1‖
+

ηδkuk

(1 + η)‖wk+1‖
−M ‖∆k‖

2
e > 0. (2.21)

If ηk < 1, we have

θk = ηk =
ηδk min (uk)

(1 + η)M‖wk+1‖ ‖∆k‖
2 , (2.22)

which ensures the inequality

θkηδkuk

(1 + η)‖wk+1‖
≥ θ2kM ‖∆k‖

2
e. (2.23)

Substituting (2.23) into (2.20), we obtain

hk(θk) =
θkδkuk

(1 + η)‖wk+1‖
+

θkηδkuk

(1 + η)‖wk+1‖
+

1− θk
‖wk+1‖

r(uk, λk) +R(θk∆k)

≥
θkδkuk

(1 + η)‖wk+1‖
+

θkηδkuk

(1 + η)
−Mθ2k ‖∆k‖

2
e

≥
θkδkuk

(1 + η)‖wk+1‖
> 0. (2.24)

Therefore,

λk+1 = λk +min

(
hk(θk)

uk+1

)
> λk.

Next, we prove that the sequence {λk} is bounded above. Suppose that {λk} is
unbounded. This implies that λk ≥ N > 0 for k large enough. Since A(uk)uk ≥ λkuk,
we then have

λk ≤ |u
T
k A(uk)uk|

≤ |uT
k Auk|+ Γ

∣∣∣∣∣

n∑

i=1

(1−
1

a(i) + u2
k(i)

)u2
k(i)

∣∣∣∣∣
≤ ‖A‖+ Γ(1 + n) <∞,

which is a contradiction.
From (2.18), we know that the inequality hk(1) ≥

δkuk

(1+η)‖wk+1‖ depends on the

parameter η. Therefore, if η large enough, then we can choose θk = 1 for which
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hk(1) > 0 holds. By Theorem 2.5, we can indeed choose θk ∈ (0, 1] in NNI such
that the sequence {λk} is strictly increasing. However, in practice, it is difficult to
determine ηk. Therefore, we can determine θk by repeated halving technique. More
precisely, for each k, we can take θk = 1 first and check whether hk(1) > 0 holds. If
not, then we update θk using θk ← θk/2 and check again until we get θk for which
hk(1) > 0 holds. This process of repeatedly halving will be referred to as the halving
procedure. As long as θk is bounded below by a positive constant, which will be
mentioned in the next section.

3. Some basic properties of Newton-Noda iteration . In this section, we
prove a number of basic properties of NNI, which will be used to establish its conver-
gence theory in Section 4.

Lemma 3.1. Let A be an irreducible M-matrix. Assume that the sequence
{λk,uk,wk} is generated by Algorithm 2.1. For any subsequence

{
ukj

}
⊆ {uk} ,

we have the following results:
(i) If ukj

→ v as j →∞, then v > 0.
(ii) min(uk) ≥ m for some positive constant m.
(iii) ‖wk‖ ≤

1
m .

Proof. (i). If limj→∞ ukj
= v, then v ≥ 0. Let S be the set of all indices i such

that limj→∞ u
(i)
kj

= v(i) = 0. Since
∥∥ukj

∥∥ = 1, S is a proper subset of {1, 2, . . . , n}.
Suppose S is nonempty. Then by the definition of λk,

λkj
= min

(
A(ukj

)ukj

ukj

)
≤

(
A(ukj

)ukj

)(i)

u
(i)
kj

<∞ for all i = 1, 2, . . . , n.

Since limj→∞ u
(i)
kj

= 0 for i ∈ S, it holds that limj→∞
(
A(ukj

)ukj

)(i)
= (A(v)v)

(i)
=

0 for i ∈ S. Thus, A(v)i,j = 0 for all i ∈ S and for all j /∈ S, which contradicts the
irreducibility of A(v). Therefore, S is empty and thus v > 0.

(ii). Suppose min(uk) is not bounded below by a positive constant. Then there
exists a subsequence {kj} such that limj→∞ min(ukj

) = 0. Since ‖ukj
‖ = 1, we may

assume that limj→∞ ukj
= v exists. Then limj→∞ min(ukj

) = min(v) = 0. This is a
contradiction since v > 0 by (i). Therefore, min(uk) is bounded below by a positive
constant. That is min(uk) ≥ m for some positive constant m.

(iii). From Remark 1, we have uT
k wk+1 = 1 and then

‖wk+1‖ =
uT
kwk+1

cos∠(uk,uk+1)
=

1

cos∠(uk,uk+1)
.

Since uk > 0 and uk+1 > 0 with ‖uk‖ = ‖uk+1‖ = 1, we have

cos∠(uk,uk+1) = uT
k uk+1 ≥ ‖uk+1‖1min(uk) > ‖uk+1‖min(uk) = min(uk),

where ‖ · ‖1 is the vector 1-norm. Form (ii),

‖wk+1‖ =
1

cos∠(uk,uk+1)
≤

1

min(uk)
≤

1

m
<∞. (3.1)

Lemma 3.2. Assume that the sequence {∆k, δk, θk} is generated by Algorithm 2.1.
We have the following results:

(i) There exists a constant β > 0 such that β‖∆k‖ ≤ δk.
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(ii) θk = 1 if ‖∆k‖ ≤
ηβ

(1+η)M where (η,M) is as in Theorem 2.5.

(iii) θk ≥ ξ for some positive constant ξ.
Proof. (i). From the step 3 of Algorithm 2.1, we have

‖∆k‖ ≤ ‖J(uk)
−1 (δkuk − r(uk, λk)) ‖

≤ δk‖J(u)
−1
k uk‖+ ‖J(uk)

−1r(uk, λk)‖. (3.2)

Since ‖J(u)−1u‖ a continuous function achieves its extreme values in a compact set,
it follows

max
0<m≤min(u)≤1,‖u‖=1

(
‖J(u)−1u‖

)
<∞.

Therefore, ‖J(u)−1u‖ ≤M2 for some constant M2.
On the other hand, from (ii) of Remark 1, we have

(
uT
k (J(uk))

−1uk

)
δk = uT

k (J(uk))
−1r(uk, λk).

Since uk > 0 and J(uk)
−1r(uk, λk) > 0, by using the same proving technique of (iii)

of Lemma 3.1, we have

cos∠(uk,
J(uk)

−1r(uk, λk)

‖J(uk)−1r(uk, λk)‖
) > min(uk) ≥ m,

which implies

‖J(uk)
−1r(uk, λk)‖ = uT

k J(uk)
−1r(uk, λk) sec∠(uk,

J(uk)
−1r(uk, λk)

‖J(uk)−1r(uk, λk)‖
)

=
(
uT
k J(uk)

−1uk

)
δk sec∠(uk,

J(uk)
−1r(uk, λk)

‖J(uk)−1r(uk, λk)‖
)

≤
δk
m
‖J(u)−1

k uk‖ ≤
M2

m
δk.

From (3.2) and the above inequality,

‖∆k‖ ≤ δk‖J(u)
−1
k uk‖+ ‖J(uk)

−1r(uk, λk)‖

≤

(
M2 +

M2

m

)
δk :=

1

β
δk.

(ii). If ‖∆k‖ ≤
ηβ

(1+η)M , then

ηk =
ηδk min (uk)

(1 + η)M‖wk+1‖ ‖∆k‖
2

=
ηδk min (uk)

(1 + η)M‖wk+1‖

δk
‖∆k‖

1

‖∆k‖

≥
ηβm

(1 + η)M‖wk+1‖

1

‖∆k‖
≥ 1.

From the proof of Theorem 2.5, θk = 1 when ηk ≥ 1.
(iii). From (2.18), we recall that

θk =

{
1 if hk(1) ≥

δkuk

(1+η)‖wk+1‖ ;

ηk otherwise,
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where ηk = ηδk min(uk)

(1+η)M‖wk+1‖‖∆k‖2 . Suppose θk is not bounded below by ξ > 0. Since uk

is bounded, we can find a subsequence {kj} such that

lim
j→∞

θkj
= 0, lim

j→∞
ukj

= v > 0.

Note that v > 0 by Lemma 3.1.

From (2.9), F ′(ukj
, λkj

) is a nonsingular matrix, and the vector
[
∆T

kj
, δkj

]T
sat-

isfies
[

∆kj

δkj

]
= −F ′(ukj

, λkj
)−1

[
A(ukj

)ukj
− λkj

ukj

0

]
.

Since the sequence {λk} is monotonically increasing and bounded above, we have
limk→∞ λk = α. Therefore,

lim
j→∞

[
∆kj

δkj

]
= lim

j→∞
−F ′(ukj

, λkj
)−1

[
r(ukj

, λkj
)

0

]

= −F ′(v, α)−1

[
r(v, α)

0

]
<∞,

which means
∥∥∆kj

∥∥ is bounded. If ηk is defined only on a finite subset of {kj}, then
θkj

= 1 except for a finite number of j values, contradicting limj→∞ θkj
= 0. If ηk is

defined on an infinite subset {kji} of {kj}, then

0 = lim
i→∞

ηkji
= lim

i→∞

ηδkji
min

(
ukji

)

(1 + η)M‖wkji
+1‖

∥∥∆kji

∥∥2

≥ lim
i→∞

ηδkji
m

(1 + η)Mm
∥∥∆kji

∥∥2

= lim
i→∞

ηδkji

(1 + η)M
∥∥∆kji

∥∥
1

‖∆kji
‖

≥ lim
i→∞

ηβ

(1 + η)M

1

‖∆kji
‖
.

It follows that limi→∞ ‖∆kji
‖ =∞. This is contradictory to ‖∆kj

‖ <∞.

4. Convergence analysis. In this section, we prove that the convergence of
NNI is global and quadratic, assuming that uk 6= u∗ for each k.

4.1. Global convergence of NNI. Theorem 2.5 shows that the sequence {λk}
is strictly increasing and bounded above by a constant and hence converges. We now
show that the limit of λk is precisely the eigenvalue λ∗ of NAEP (1.5).

Theorem 4.1. Let A be an irreducible M-matrix and the sequence {λk} is gen-
erated by Algorithm 2.1. If a,Γ > 0, then the NAEP (1.5) has a positive eigenvecor.

Proof. From (2.13), (2.24) and Lemma 3.2, we have

λk+1 − λk = min

(
hk(θk)

uk+1

)
≥ min

(
θkδkuk

(1 + η)‖wk+1‖uk+1

)

≥ min

(
ξδkuk

(1 + η)wk+1

)
. (4.1)
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From (iii) of Lemma 3.1, we have ‖wk+1‖ ≤
1
m < ∞. It follows from (4.1) that

limk→∞ δk min(uk) = 0. From (ii) of Lemma 3.1, min(uk) is bounded below by a
positive constant, and thus limk→∞ δk = 0.

Let v be any limit point of {uk}, with limj→∞ ukj
= v > 0. From Lemma 2.3,

we then have limj→∞ δkj
= 0 if and only if limj→∞

(
A(ukj

)ukj
− λkj

ukj

)
= 0,

which means A(v)v = λv. Therefore, v is a positive eigenvector of NAEP and

λ = min
(

A(v)v
v

)
is the corresponding eigenvalue, i.e., u∗ = v and λ∗ = λ.

The above theorem guarantees the global convergence of NNI and also proves the
existence of positive eigenvectors of NAEP.

4.2. Quadratic convergence of NNI. In the previous section, we discussed
the global convergence of NNI. In the following section, we will establish a convergence
rate analysis by exploiting a connection between NNI and Newtons method. So we
start with the following result about Newton’s method.

Lemma 4.2. Suppose that (uk, λk) form Algorithm 2.1 is sufficiently close to an

eigenpair (u∗, λ∗) with u∗ > 0 and ‖u∗‖ = 1. Let
{
ûk, λ̂k

}
be obtained by Newton’s

method from (uk, λk), i.e.,

ûk = uk +∆k, λ̂k = λk + δk,

where ∆k and δk as in Algorithm 2.1. Then there is a constant β such that for all
(uk, λk) sufficiently close to (u∗, λ∗))

∥∥∥∥
[

ûk+1

λ̂k+1

]
−

[
u∗
λ∗

]∥∥∥∥ ≤ c

∥∥∥∥
[

uk

λk

]
−

[
u∗
λ∗

]∥∥∥∥
2

, (4.2)

Proof. We already know that F ′ (uk, λk) is nonsingular. It is also clear that
F ′ (u, λ) satisfies a Lipschitz condition at (u∗, λ∗) since its Fréchet derivative is con-
tinuous in a neighborhood of (u∗, λ∗). The inequality (4.2) is then a basic result of
Newton’s method.

Lemma 4.3. Let (u∗, λ∗) be an eigenpair with u∗ > 0 and ‖u∗‖ = 1. Let
{uk, λk} be generated by NNI. Then there are constants c2 > 0 such that |λk − λ∗| ≤
c2‖uk − u∗‖ for all uk sufficiently close to u∗.

Proof. Since

|λk − λ∗| = min

(
A(uk)uk

uk
−
A(u∗)u∗

u∗

)
≤

∥∥∥∥
A(uk)uk

uk
−
A(u∗)u∗

u∗

∥∥∥∥ .

Since the Fréchet derivative of A(u)u
u

is continuous in a neighborhood of (u∗, λ∗), we
have |λk − λ∗| ≤ c2‖uk − u∗‖ for all (uk, λk) sufficiently close to (u∗, λ∗).

We now prove the local quadratic convergence of Algorithm 2.1.
Theorem 4.4. Assume {uk, λk} be generated by NNI. Suppose that (uk0 , λk0)

is sufficiently close to an eigenpair (u∗, λ∗) with u∗ > 0 and ‖u∗‖ = 1. Then λk

converges to λ∗ quadratically and uk converges to u∗ quadratically.
Proof. For some δ ∈ (0,minu∗), there are positive constants c1, c2 and c3 such

that

∥∥∥∥
[

ûk+1

λ̂k+1

]
−

[
u∗
λ∗

]∥∥∥∥ ≤ c

∥∥∥∥
[

uk

λk

]
−

[
u∗
λ∗

]∥∥∥∥
2

(4.3)
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whenever

∥∥∥∥
[

uk

λk

]
−

[
u∗
λ∗

]∥∥∥∥ < δ,

|λk − λ∗| ≤ c2‖uk − u∗‖ (4.4)

whenever ‖uk − u∗‖ < δ, and

∥∥∥F (ûk+1, λ̂k+1)− F (u∗, λ∗)
∥∥∥ ≤ c3

∥∥∥∥
[

ûk+1

λ̂k+1

]
−

[
x∗
λ∗

]∥∥∥∥ (4.5)

whenever

∥∥∥∥
[

ûk+1

λ̂k+1

]
−

[
u∗
λ∗

]∥∥∥∥ < δ. Note that uk > 0 is guaranteed. Now for all

ǫ > 0 sufficiently small,assume that

∥∥∥∥
[

uk

λk

]
−

[
u∗
λ∗

]∥∥∥∥ < ǫ for k = k0. By (4.3) and

(4.4) we have (with ǫ ≤ δ)

‖ûk+1 − u∗‖ ≤ c(1 + c2)
2‖uk − x∗‖

2 ≤ c(1 + c2)
2ǫ2.

By (4.5) and (4.3) we have (with ǫ ≤ δ, cǫ2 ≤ δ)
∣∣∣∣
1

2

(
1− ûT

k+1ûk+1

)∣∣∣∣ ≤ c3c(1 + c2)
2‖uk − u∗‖

2 ≤ c3c(1 + c2)
2ǫ2.

Then ‖ûk+1‖ ≥
1
2 (with c3c(1 + c2)

2ǫ2 < 3
8 ). Now

|‖ûk+1‖ − 1| ≤
1

|‖ûk+1‖+ 1|
2c3c(1 + c2)

2‖uk − u∗‖
2 ≤

4

3
c3c(1 + c2)

2‖uk − u∗‖
2.

Then

‖uk+1 − x∗‖ = ‖uk+1 − ûk+1 + ûk+1 − u∗‖

≤ ‖uk+1 − ûk+1‖+ ‖ûk+1 − u∗‖

= ‖ (uk+1 − ‖ûk+1‖uk+1) ‖+ ‖ûk+1 − u∗‖

= |‖ûk+1‖ − 1|+ ‖ûk+1 − u∗‖

≤

(
1 +

4

3
c3

)
c(1 + c2)

2‖uk − u∗‖
2.

For ǫ with (1 + 4
3c3)c(1 + c2)

2ǫ ≤ 1
1+c2

, we have ‖uk+1 − u∗‖ < 1
1+c2

ǫ and thus

|λk+1 − λ∗| ≤ c2‖uk+1 − u∗‖ <
c2

1+c2
ǫ. Therefore,

∥∥∥∥
[

uk+1

λk+1

]
−

[
u∗
λ∗

]∥∥∥∥ = ‖uk+1 −

u∗‖ + |λk+1 − λ∗| < ǫ. We can then repeat the above process to get ‖uk+1 − u∗‖ ≤
d‖uk − u∗‖2 for all k ≥ k0 and d =

(
1 + 4

3c3
)
c(1 + c2)

2. Thus uk converges to u∗
quadratically and then λk converges to λ∗ quadratically by (4.4).

5. Numerical experiments. In this section, we present some numerical re-
sults to support our theory for NNI and illustrate its effectiveness. All numerical
tests were performed on 4.2GHz quad-core Intel Core i7 with 32 GB memory using
Matlab R2018b with machine precision ε = 2.22×10−16 under the macOS High Sierra.
Throughout the experiments, the initial vector is u0 = 1√

n
[1, . . . , 1]T ∈ Rn. In the

experiments, the stopping criterion for NNI is the relative residual

‖A(uk)− λkuk‖

(‖A(uk)‖1‖A(uk)‖∞)1/2
≤ 10−12,
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where we use the cheaply computable (‖A(uk)‖1‖A(uk)‖∞)1/2 to estimate the 2-norm
‖A(uk)‖, which is more reasonable than the individual ‖A(uk)‖1 or ‖A(uk)‖∞ with
‖ · ‖∞ the infinity norm of a matrix.

Example 1. Consider the finite-difference discretization of the nonlinear eigen-
value problem (1.4) with Dirichlet boundary conditions on [0, 1]× [0, 1], i.e.,

Au+ Γdiag

(
e−

e

a+ u[2]

)
u = λu,

where A ∈ Rn×n is a negative 2D Laplacian matrix with Dirichlet boundary condi-
tions.

For Example 1, Figure 5.1 depicts how the relative residual evolves versus the
number of iterations for NNI. It shows that NNI uses 8 iterations to achieve the
required accuracy, clearly indicating its quadratic convergence. Figure 5.2 shows
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Fig. 5.1. The relative residual versus the number of iterations for n = 100, Γ = 10 and 1 > a > 0.

that the magnitude of parameter Γ affects the total number of iterations to achieve
convergence. As we see, NNI requires more iterations to achieve convergence for lager
parameter Γ.

Table 5.1 reports the results obtained by NNI. In the table, n specifies the

dimension, a is a parameter to adjust the diagonal elements of diag
(
e− e

a+u[2]

)
.

“a ≥ 1”denotes that each element of a is larger than 1, “1 > a > 0”denotes that each
element of a is between 0 and 1, “a > 0”denotes that each element of a is larger than
0. “Iter”denotes the number of iterations to achieve convergence, “Residual”denotes
the relative residual when NNI is terminated. From the table, we see that the number
of iterations for NNI is at most 23, clearly indicating its rapid convergence. For this
example, hk(θk) > 0 holds with θk = 1 for each iteration of NNI and the halving pro-
cedure is not used. These results indicate that our theory of NNI can be conservative.

6. Conclusion. In this paper, we are concerned with the nonlinear algebraic
eigenvalue problem (NAEP) generated by the discretization of the saturable nonlinear
Schrödinger equation. Based on the idea of Noda’s iteration and Newton’s method, we
have proposed an effective method for computing the positive eigenvectors of NAEP,
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Fig. 5.2. The magnitude of Γ versus the total number of iterations for n = 2500 and a ≥ 1.

Table 5.1

Numerical results for NNI

Parameters NNI
n a Iter Residual

2500 a ≥ 1 6 2.52e-16
10000 a ≥ 1 6 2.38e-16
40000 a ≥ 1 6 2.79e-16
2500 1 > a > 0 13 2.15e-16
10000 1 > a > 0 16 2.25e-16
40000 1 > a > 0 23 2.50e-16
2500 a > 0 13 1.98e-16
10000 a > 0 15 1.34e-15
40000 a > 0 21 7.04e-16

called Newton–Noda iteration. It involves the selection of a positive parameter θk in
the kth iteration. We have presented a halving procedure to determine the parameters
θk, starting with θk = 1 for each iteration, such that the sequence approximating
target eigenvalue λ∗ is strictly monotonic increasing and bounded, and thus its global
convergence is guaranteed for any initial positive unit vector. Additionally, another
advantage of the presented method is its local convergence speed. We have shown that
the parameter θk is chosen eventually equal to 1 and locally quadratic convergence is
achieved. The numerical experiments have indicated that the halving procedure will
often return θk = 1 (i.e., no halving is actually used) for each k, and near convergence
the halving procedure will always return θk = 1. These results confirm our theory
and demonstrate that our theoretical results can be realistic and pronounced.

This iterative method has several nice features: Structure Preserving–It maintains
positivity in its computation of positive ground state vectors, and its convergence is
global and quadratic. Easy-to-implement –The structure of the new algorithm is
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still very simple, although its convergence analysis is rather involved for nonlinear
algebraic eigenvalue problems. On the other hand, it gives an alternative approach
to approximate the solution of the nonlinear Schrdinger equation by constructing a
sequence. This is precisely the way we use to prove the existence of solutions of the
discrete nonlinear Schrödinger equation.
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