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Abstract

We propose a new analysis of convergence for a kth order (k ≥ 1) finite element

method, which is applied on Bakhvalov-type meshes to a singularly perturbed

two-point boundary value problem. A novel interpolant is introduced, which has

a simple structure and is easy to generalize. By means of this interpolant, we

prove an optimal order of uniform convergence with respect to the perturbation

parameter. Numerical experiments illustrate these theoretical results.

Keywords: Singular perturbation, Convection–diffusion equation, Finite

element method, Bakhvalov mesh, Uniform convergence

1. Introduction

We consider the two-point boundary value problem

Lu := −εu′′ − b(x)u′ + c(x)u = f(x) in Ω := (0, 1), u(0) = u(1) = 0, (1)

where ε is a positive parameter, b, c and f are sufficiently smooth functions

such that b(x) ≥ β > 1 on Ω̄ and

c(x) +
1

2
b′(x) ≥ γ > 0 on Ω̄ (2)
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with some constants β and γ. The condition (2) ensures that the boundary

value problem has a unique solution. In the cases of interest the diffusion pa-

rameter ε can be arbitrarily small and satisfies 0 < ε≪ 1. Thus this problem is

singuarly perturbed and its solution typically features a boundary layer of width

O(ε ln(1/ε)) at x = 0 (see [12]).

Solutions to singularly perturbed problems are characterized by the pres-

ence of boundary or interior layers, where solutions change rapidly. Numerical

solutions of these problems are of significant mathematical interest. Classical

numerical methods are often inappropriate, because in practice it is very unlikely

that layers are fully resolved by common meshes. Hence specialised numerical

methods are designed to compute accurate approximate solutions in an efficient

way. For example, standard numerical methods on layer-adapted meshes, which

are fine in layer regions and standard outside, are commonly used; see [12, 9]

and many references therein. On these meshes, classical numerical methods are

uniformly convergent with respect to the singular perturbation parameter; see

[7]. Among them, there are two kinds of popular grids: Bakhvalov-type meshes

(B-meshes) and Shishkin-type meshes (S-meshes); see [7].

The accuracy of finite difference methods on these locally refined meshes

has been extensively studied and sharp error estimations have been derived (see

[9, 5, 7]). For instance, in [7] the author presented convergence rates of O(N−1)

and O(N−1 lnN) for a first-order upwind difference scheme on Bakhvalov grid

[1] and Shishkin grid [14], respectively, where N is the number of mesh intervals

in each coordinate direction. Usually, the performance of B-meshes is superior to

that of S-meshes. This advantage is more and more obvious when higher-order

schemes are used. Besides, the width of the mesh subdomain used to resolve

the layer is O(ε ln(1/ε)) for B-meshes and O(ε lnN) for S-meshes. The former

is independent of the mesh parameter N and this property will be important

under certain circumstances.

For finite element methods, the development of numerical theories on B-

meshes is completely different from one on S-meshes. On standard Shishkin

meshes Stynes and O’Riordan [15] derived a sharp uniform convergence in the
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energy norm for finite element method. Henceforward numerous articles deal

with uniform convergence of finite element methods on S-meshes; see e.g. [12,

11, 18, 19, 8, 16, 13] and the references therein. However, it is still open for the

optimal uniform convergence of finite element methods on B-meshes ( see [11,

Question 4.1] for more details).

This dilemma arises from the fact that the standard Lagrange interpolant

does not work for uniform convergence of finite element methods on B-meshes.

More specifically, the Lagrange interpolant cannot provide enough stability in L2

norm on a special mesh interval, which lies in the fine part and is adjacent to the

coarse part of B-meshes. In [10] and [2] a quasi-interpolant is used and provides

enough stability for the optimal uniform convergence. Unfortunately, in both

articles the analysis is limited to one dimension and linear finite element. It is

hard to extend the analysis to higher dimensions or higher-order finite elements

for singularly perturbed problems.

In this contribution we will study the optimal uniform convergence of a

kth order (k ≥ 1) finite element method on Bakhvalov-type meshes. A novel

interpolant is constructed by redefining the standard Lagrange interpolant to

the solution. This interpolant has a simple structure and it can also be applied

to higher-dimensional problems in a straightforward way. By means of this novel

function, we prove the optimal order of uniform convergence in a standard way.

The rest of the paper is organized as follows. In Section 2 we describe our

regularity on the solution u to (1), introduce two Bakhvalov-type meshes and

define the finite element method. Some preliminary results for the subsequent

analysis are also derived in this section. In Section 3 we construct and analyze an

interpolant Πu for the uniform convergence on B-meshes. In Section 4 uniform

convergence is obtained by means of the interpolant Πu and careful derivations

of the convective term in the bilinear form. In Section 5, numerical results

illustrate our theoretical bounds.

We use the standard Sobolev spacesWm,p(D), Hm(D) =Wm,2(D), Hm
0 (D)

for nonnegative integers m and 1 ≤ p ≤ ∞. Here D is any measurable subset of

Ω. We denote by | · |Wm,p(D) and ‖ · ‖Wm,p(D) the semi-norms and the norms in
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Wm,p(D), respectively. On Hm(D), | · |m,D and ‖ · ‖m,D are the usual Sobolev

semi-norm and norm. Denote by ‖ · ‖Lp(D) the norms in the Lebesgue spaces

Lp(D). We use the notation (·, ·)D and ‖ · ‖D for the L2(D)-inner product and

the L2(D)-norm, respectively. When D = Ω we drop the subscript D from

the notation for simplicity. Throughout the article, all constants C and Ci are

independent of ε and the mesh parameter N ; unsubscripted constants C are

generic and may take different values in different formulas while subscripted

constants Ci are fixed.

2. Regularity, Bakhvalov mesh and finite element method

2.1. Regularity of the solution

Information about higher-order derivatives of the solution u of (1) are usually

needed by uniform convergence of finite element methods. Such estimations

appeared in [12, Lemma 1.9] and are reproduced in the following lemma.

Lemma 1. Let k be some positive integer. Assume that (2) holds true and

b, c, f are sufficiently smooth. The solution u of (1) can be decomposed into

u = S + E, (3)

where the smooth part S and the layer part E satisfy LS = f and LE = 0,

respectively. Furthermore, one has

|S(l)(x)| ≤ C, |E(l)(x)| ≤ Cε−l exp
(

−
x

ε

)

for 0 ≤ l ≤ k + 1. (4)

Note k depends on the regularity of the coefficients, in particular (4) holds

for any q ∈ N if b, c, f ∈ C∞[0, 1].

2.2. Bakhvalov mesh

Bakhvalov mesh first appeared in [1] and is constructed according to layer

functions like E in Lemma 1. Its mesh generating function is piecewise and

belongs to C1. Its breakpoint, which separates the mesh generating function,
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must be solved by a nonlinear equation and usually is not explicitly known (

see [12, Part I §2.4.1]).

In this article, we focus on two Bakhvalov-type meshes introduced in [10]

and [5, 6]. Their breakpoints are known already, and both mesh generating

functions do not belong to C1 any longer. In [10] the Bakhvalov mesh is defined

by

x = ψ(t) =







− σε ln(1− 2(1− ε)t) for t ∈ [0, 1/2],

1− d(1 − t) for t ∈ (1/2, 1],
(5)

where σ ≥ k + 1 with some positive integer k and d is used to ensure the

continuity of ψ(t) at t = 1/2. The mesh generating function in [5, 6] is defined

by

x = ϕ(t) =







− σε ln(1− 2t) for t ∈ [0, ϑ],

1− d1(1 − t) for t ∈ (ϑ, 1],
(6)

where σ ≥ k+1, ϑ = 1/2−C1ε with some positive constant C1 independent of ε

and N , d1 is chosen so that ϕ(t) is continuous at t = ϑ. The original Bakhvalov

mesh can be recovered from (6) by setting ϑ = 1/2− C(ε)ε, where

0 < C2 ≤ C(ε) ≤ C3. (7)

For technical reasons, we assume C1 ≤ 1/(εN) and therefore 1/2−N−1 ≤ ϑ <

1/2. We also assume that ε ≤ N−1 in our analysis, as is generally the case in

practice. If ε > N−1, one sets ψ(t) = ϕ(t) = t, which generate uniform meshes.

Assume that N/2 is a positive integer and define the mesh points xi =

ψ(i/N) or xi = ϕ(i/N) for i = 0, 1, . . . , N . For both Bakhvalov meshes one

usually has xN/2 ≤ 1/2. Denote an arbitrary subinterval [xi, xi+1] by Ii, its

length by hi = xi+1 − xi and a generic subinterval by I.

2.3. The finite element method

The weak form of problem (1) is to find u ∈ H1
0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω), (8)

5



where a(u, v) := ε(u′, v′)−(bu′, v)+(cu, v). Note that the variational formulation

(8) has a unique solution by means of the Lax-Milgram lemma.

Define the C0 finite element space on the Bakhvalov meshes

V N = {w ∈ C(Ω̄) : w(0) = w(1) = 0, w|Ii ∈ Pk(Ii) for i = 0, . . . , N − 1}.

The finite element method for (8) reads as

a(uN , vN ) = (f, vN ) ∀vN ∈ V N . (9)

The natural norm associated with a(·, ·) is defined by

‖v‖ε :=
{

ε|v|21 + ‖v‖2
}1/2

∀v ∈ H1(Ω).

Using (2), it is easy to see that one has the coercivity

a(vN , vN ) ≥ α‖vN‖2ε for all vN ∈ V N (10)

with α = min{1, γ}. It follows that uN is well defined by (9) (see [3] and

references therein).

2.4. Preliminary results of Bakhvalov meshes

In this subsection, we present some important properties of the Bakhvalov

meshes and the layer function E, which are necessary for our uniform conver-

gence.

We present some properties about the step sizes of Bakhavlov meshes as

follows.

Lemma 2. For Bakhvalov mesh (5), one has

h0 ≤ h1 ≤ . . . ≤ hN/2−2, (11)

1

4
σε ≤ hN/2−2 ≤ σε, (12)

1

2
σε ≤ hN/2−1 ≤ 2σN−1, (13)

N−1 ≤ hi ≤ 2N−1 N/2 ≤ i ≤ N − 1. (14)

On Bakhvalov mesh (6), bounds analogous to (11)–(14) also hold.
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Proof. We just consider Bakhvalov mesh (5) and the other mesh can be similarly

analyzed. Recalling that xN/2 ≤ 1/2 and the Bakhvalov mesh separates [xN/2, 1]

into N/2 uniform subintervals, one obtains (14). For 0 ≤ i ≤ N/2− 1, one has

hi = xi+1 − xi =

∫ (i+1)/N

i/N

σε
2(1− ε)

1− 2(1− ε)t
dt

and

σε
2(1− ε)

1− 2(1− ε)iN−1
N−1 ≤ hi ≤ σε

2(1− ε)

1− 2(1− ε)(i+ 1)N−1
N−1. (15)

From (15), we can prove (11), (12) and (13) easily.

We collect some bounds of the layer function E and the function e−x/ε on

the Bakhvalov meshes in the following lemma.

Lemma 3. On Bakhvalov meshes (5) and (6), one has

|E(xN/2−1)| ≤ CN−σ, |E(xN/2)| ≤ Cεσ, (16)

‖E‖IN/2−1
+ ε‖E′‖IN/2−1

≤ Cε1/2N−σ, (17)

‖E′‖[xN/2,xN ] ≤ Cεσ−1/2. (18)

For 0 ≤ i ≤ N/2− 2 and 0 ≤ µ ≤ σ, we have

hµi max
xi≤x≤xi+1

e−x/ε = hµi e
−xi/ε ≤ CεµN−µ. (19)

Proof. We just consider Bakhvalov mesh (5) and the mesh (6) can be similarly

analyzed.

Recalling ε ≤ N−1, we prove (16), (17) and (18) directly from (4).

Let 0 ≤ i ≤ N/2− 2. From (5) one has

−σε ln(1− 2(1− ε)i/N) = xi ≤ x ≤ xi+1 = −σε ln(1− 2(1− ε)(i+ 1)/N),

and for x ∈ [xi, xi+1]

(1− 2(1− ε)(i+ 1)/N)σ ≤ e−x/ε ≤ e−xi/ε = (1− 2(1− ε)i/N)σ. (20)
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From (15) and (20), we have

hµi max
xi≤x≤xi+1

e−x/ε ≤ C∗
1 ε

µN−µ(1− 2(1− ε)i/N)σ(1 − 2(1− ε)(i + 1)/N)−µ

≤C∗
1 ε

µN−µ(1 − 2(1− ε)i/N)σ−µ

(

1− 2(1− ε)i/N

1− 2(1− ε)(i+ 1)/N

)µ

≤C∗
1C

∗
2C

∗
3 ε

µN−µ,

where C∗
1 = (2σ(1− ε))µ ≤ (2σ)µ and for 0 ≤ i ≤ N/2− 2

C∗
2 = (1− 2(1− ε)i/N)σ−µ ≤ 1, C∗

3 =

(

1− 2(1− ε)i/N

1− 2(1− ε)(i+ 1)/N

)µ

≤ 2µ.

Thus (19) is proved.

3. Interpolation operator and interpolation errors

Now a new interpolation operator is introduced, which is used for our uni-

form convergence. Set xi+j/k := xi + (j/k)hi for i = 0, 1, . . . , N − 1 and

j = 1, . . . , k − 1. For any v ∈ C0(Ω̄) its Lagrange interpolant vI ∈ V N on

each Bakhvalov mesh is defined by

vI =
N
∑

i=0

v(xi)θi(x) +
N−1
∑

i=0

k−1
∑

j=1

v(xi+j/k)θi+j/k(x),

where θi(x), θi+j/k(x) is the piecewise kth order Lagrange basis function satis-

fying the well-known delta properties associated with the nodes xi and xi+j/k ,

respectively. For the solution u to (1), recall (3) in Lemma 1 and define the

interpolant Πu by

Πu = SI + πE, (21)

where SI is the Lagrange interpolant to S and

(πE)(x) =

N
∑

i=0,i6=N/2−1

E(xi)θi(x) +

N−1
∑

i=0,i6=N/2−1

k−1
∑

j=1

v(xi+j/k)θi+j/k(x). (22)

Define

(PE)(x) = E(xN/2−1)θN/2−1(x) +

k−1
∑

j=1

E(xN/2−1+j/k)θN/2−1+j/k(x), (23)
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and clearly we have

(πE)(x) = EI − (PE)(x), Πu = uI − (PE)(x), (24)

πE|[x0,xN/2−2]∪[xN/2,xN ] = EI |[x0,xN/2−2]∪[xN/2,xN ], (25)

Πu ∈ V N .

Interpolation theories in Sobolev spaces [4, Theorem 3.1.4] tell us that

‖v − vI‖W l,q(Ii) ≤ Ch
k+1−l+1/q−1/p
i |v|Wk+1,p(Ii), (26)

for all v ∈ W k+1,p(I), where i = 0, 1, . . . , N − 1, l = 0, 1 and 1 ≤ p, q ≤ ∞.

Lemma 4. On Bakhvalov meshes (5) and (6), one has

‖E − EI‖L∞(Ω) + ‖S − SI‖L∞(Ω) + ‖u− uI‖L∞(Ω) ≤ CN−(k+1), (27)

‖E − EI‖+ ‖S − SI‖+ ‖u− uI‖ ≤ CN−(k+1), (28)

‖EI‖IN/2−1
≤ Ch

1/2
N/2−1N

−σ, ‖EI‖[xN/2,xN ] ≤ Cεσ, (29)

‖E − EI‖ε + ‖u− uI‖ε ≤ CN−k, (30)

‖(PE)(x)‖ε ≤ CN−σ, (31)

where (PE)(x) is defined in (23).

Proof. We just consider Bakhvalov mesh (5) and mesh (6) can be similarly

analyzed.

From (26) and (4), for 0 ≤ i ≤ N/2− 2 one has

‖E − EI‖L∞(Ii) ≤ Chk+1
i |E|Wk+1,∞(Ii)

≤Cε−(k+1)hk+1
i e−xi/ε ≤ CN−(k+1),

(32)

where we have used (19) with µ = k+1 and σ ≥ k+1. For N/2−1 ≤ i ≤ N−1

we have

‖E − EI‖L∞(Ii) ≤ ‖E‖L∞(Ii) + ‖EI‖L∞(Ii) ≤ Ce−xi/ε ≤ CN−σ. (33)

Collecting (32), (33) and noting σ ≥ k+1, we prove ‖E−EI‖L∞(Ω) ≤ CN−(k+1).

Lemma 2, (26) and (4) yield ‖S − SI‖L∞(Ω) ≤ CN−(k+1). From (3) we prove

(27). The bound (28) can be easily obtained from (27) and Hölder inequalities.
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From (4) and direct calculations one can easily prove (29).

Now we are ready to analyze ‖E−EI‖ε. First we decompose ε‖(E−EI)′‖2

into the following two parts

ε‖(E − EI)′‖2 =ε

N/2−2
∑

i=0

‖(E − EI)′‖2Ii + ε‖(E − EI)′‖2[xN/2−1,xN ]

=:S1 + S2.

(34)

From (26), (4), (19) with µ = (2k + 1)/2 and σ ≥ k + 1, we have

S1 ≤ Cε

N/2−2
∑

i=0

h2ki |E|2k+1,Ii ≤ Cε

N/2−2
∑

i=0

h2ki

∫ xi+1

xi

ε−2(k+1)e−2x/εdx

≤Cε

N/2−2
∑

i=0

h2ki ε−2(k+1)e−2xi/εhi ≤ Cε

N/2−2
∑

i=0

ε−2(k+1)
(

h
(2k+1)/2
i e−xi/ε

)2

≤Cε

N/2−2
∑

i=0

ε−2(k+1)ε2k+1N−(2k+1) ≤ CN−2k.

(35)

From a triangle inequality, (13), (14), (17), (18), inverse inequality [4, Theorem

3.2.6] and (29), one has

S2 ≤Cε
(

‖E′‖2[xN/2−1,xN ] + ‖(EI)′‖2[xN/2−1,xN/2]
+ ‖(EI)′‖2[xN/2,xN ]

)

≤Cε(ε−1N−2σ + h−2
N/2−1‖E

I‖2[xN/2,xN ] +N2‖EI‖2[xN/2,xN ])

≤CN−2σ + Cε2σ+1N2.

(36)

Substituting (35), (36) into (34) and recalling ε ≤ N−1 and σ ≥ k+1, we obtain

ε‖(E − EI)′‖2 ≤ CN−2k

and prove ‖E − EI‖ε ≤ CN−k from (28). From (26) and Lemma 2, one can

easily prove ‖S − SI‖ε ≤ C(ε1/2N−(k−1/2) +N−(k+1/2)). A triangle inequality

yields ‖u− uI‖ε ≤ CN−k. Thus (30) is proved.

Now we consider (31). Direct calculations yield

‖(PE)(x)‖ε ≤|E(xN/2−1)|‖θN/2−1(x)‖ε +
k−1
∑

j=1

|E(xN/2−1+j/k)|‖θN/2−1+j/k(x)‖ε

≤CN−σ
k−1
∑

j=0

‖θN/2−1+j/k(x)‖ε ≤ CN−σ,

where we have used (23), (16), (12) and (13).
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4. Uniform convergence

Introduce χ := Πu − uN . From (10), the Galerkin orthogonality, (3), (21),

(24) and integration by parts for

∫ 1

0

b(πE − E)′χdx, one has

α‖χ‖2ε ≤ a(χ, χ) = a(Πu− u, χ)

=ε

∫ 1

0

(uI − u)′χ′dx− ε

∫ 1

0

(PE)′χ′dx

+

∫ 1

0

b(πE − E)χ′dx−

∫ 1

0

b(SI − S)′χdx

+

∫ 1

0

b′(πE − E)χdx +

∫ 1

0

c(uI − u)χdx−

∫ 1

0

c(PE)χdx

=: I + II + III + IV + V+VI + VII.

(37)

In the following we will analyze the terms in the right-hand side of (37). Hölder

inequalities yield

(I + VI) + (II + VII) ≤ C‖u− uI‖ε‖χ‖ε + C‖ωE‖ε‖χ‖ε ≤ CN−k‖χ‖ε, (38)

where (30) and (31) have been used. From (26) and (4), one has ‖(SI − S)′‖ ≤

CN−k and ‖πE−E‖ ≤ CN−(k+1) from (28) and (31). Consequently we obtain

IV + V ≤ C(‖(SI − S)′‖+ ‖πE − E‖)‖χ‖ ≤ CN−k‖χ‖. (39)

We put the arguments for III in the following lemma.

Lemma 5. Let the mesh {xi} be either the Bakhvalov mesh (5) or the Bakhvalov

mesh (6). Let πE be defined in (22). Then one has

|III| =

∣

∣

∣

∣

∫ 1

0

b(πE − E)χ′dx

∣

∣

∣

∣

≤ CN−k‖χ‖ε. (40)

Proof. According to (25), the term (b(πE−E), χ′) is separated into three parts

as follows:
∫ 1

0

b(πE − E)χ′dx =

∫ xN/2−2

x0

b(EI − E)χ′dx

+

∫ xN/2

xN/2−2

b(πE − E)χ′dx+

∫ xN

xN/2

b(EI − E)χ′dx

=:I1 + I2 + I3.

(41)
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From Hölder inequalities, (26), (19) with µ = k+1 and σ ≥ k+1, we obtain

|I1| ≤ C

N/2−3
∑

i=0

∫ xi+1

xi

|EI − E||χ′|dx

≤C

N/2−3
∑

i=0

‖EI − E‖L∞(Ii)‖χ
′‖L1(Ii)

≤C

N/2−3
∑

i=0

hk+1
i ε−(k+1)e−xi/ε · h

1/2
i ‖χ′‖Ii ≤ Cε1/2

N/2−3
∑

i=0

N−(k+1)‖χ′‖Ii

≤Cε1/2





N/2−3
∑

i=0

N−2(k+1)





1/2 



N/2−3
∑

i=0

‖χ′‖2Ii





1/2

≤CN−(k+1/2)‖χ‖ε,

(42)

where (11) and (12) have been used.

From Hölder inequalities and inverse inequalities, one has

|I3| ≤ C‖EI − E‖[xN/2,xN ]‖χ
′‖[xN/2,xN ]

≤CN−(k+1) ·N‖χ‖[xN/2,xN ] ≤ CN−k‖χ‖,
(43)

where (28) has been used.

Now we analyze the term I2. Note πE = EI − E(xN/2−1)θN/2−1(x) on

[xN/2−2, xN/2−1] and one has

∣

∣

∣

∣

∣

∫ xN/2−1

xN/2−2

b(πE − E)χ′dx

∣

∣

∣

∣

∣

≤C

∫ xN/2−1

xN/2−2

|EI − E| |χ′|dx+ C|E(xN/2−1)|

∫ xN/2−1

xN/2−2

|θN/2−1χ
′|dx

≤C
(

‖EI − E‖L∞(IN/2−2) + |E(xN/2−1)|
)

‖χ′‖L1(IN/2−2)

≤C(hk+1
N/2−2ε

−(k+1)e−xN/2−2/ε +N−σ) · h
1/2
N/2−2‖χ

′‖IN/2−2

≤C(N−(k+1) +N−σ)‖χ‖ε,IN/2−2

(44)

where (22), Hölder inequalities, (26), (19) with µ = k + 1 and σ ≥ k + 1, (12)

have been used. On [xN/2−1, xN/2], we have πE = E(xN/2)θN/2(x) from (22)
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and
∣

∣

∣

∣

∣

∫ xN/2

xN/2−1

b(πE − E)χ′dx

∣

∣

∣

∣

∣

≤C|E(xN/2)|

∫ xN/2

xN/2−1

|θN/2(x)| |χ
′|dx+ C

∫ xN/2

xN/2−1

|E| |χ′|dx

≤C
(

εσ‖θN/2‖IN/2−1
+ C‖E‖IN/2−1

)

‖χ′‖IN/2−1

≤C
(

εσh
1/2
N/2−1 + ε1/2N−σ

)

‖χ′‖IN/2−1

≤C(εσ−1/2N−1/2 +N−σ)‖χ‖ε,IN/2−1
,

(45)

where Hölder inequalities, (16), (17) and (13) have been used. From (44) and

(45) we prove

|I2| ≤ CN−(k+1)‖χ‖ε, (46)

where ε ≤ N−1 and σ ≥ k+1 have been used. Substituting (42), (43) and (46)

into (41), we are done.

Now we are in a position to present the main result.

Theorem 1. Let the mesh {xi} be either Bakhvalov mesh (5) or Bakhvalov mesh

(6) with σ ≥ k + 1. Let u and uN be the solutions of (1) and (9), respectively.

Then one has

‖u− uN‖ε ≤CN
−k. (47)

Proof. Substituting (38), (39) and (40) into (37), we obtain ‖Πu − uN‖ε ≤

CN−k. From (24) and (31) we have ‖uI − uN‖ε ≤ ‖Πu − uN‖ε + ‖(PE)‖ε ≤

CN−k. From a triangle inequality and (30), one has

‖u− uN‖ε ≤ ‖u− uI‖ε + ‖uI − uN‖ε ≤ CN−k.

Thus we are done.

Remark 1. For the original Bakhvalov mesh [1], Theorem 1 also holds true

because of the property (7). The analysis is similar to one on the mesh (6).
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5. Numerical experiments

We now present the results of some numerical experiments in order to illus-

trate the conclusions of Theorem 1, and to check if they are sharp. All calcu-

lations were carried out by using Intel Visual FORTRAN 11 and the discrete

problems were solved by the LU factorization.

The following boundary value problem is considered

−εu′′ − (3− x)u′ + u =f(x) in Ω = (0, 1),

u(0) = u(1) =0,
(48)

where the right-hand side f is chosen such that

u(x) = (1− x)(1 − e−2x/ε) = 1− x− e−2x/ε + xe−2x/ε. (49)

is the exact solution. The solution (49) exhibits typical boundary layer behavior.

For our numerical experiments we consider ε = 10−4, 10−5, · · · , 10−9, k =

1, 2, 3, 4 and N = 8, 16, · · · . For both Bakhvalov meshes (5) and (6) we take

σ = k + 1. Set C1 = 5(k + 1)/4 in (6).

We estimate the uniform errors for a fixed N by taking the maximum error

over a wide range of ε, namely

eN := max
ε=10−4,10−5,...,10−9

‖u− uN‖ε.

Rates of convergence rNe are computed by means of the formula

rNe = log2(e
N/e2N).

The numerical results are presented in Tables 1 and 2. The errors eN and

the convergence rates rNe are in accordance with Theorem 1 and illustrate its

sharpness. Moreover, in Tables 1 and 2 we can observe that Bakhvalov mesh

(5) gives almost the same performance as Bakhvalov mesh (6).
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