Skip to main content
Log in

Compact Schemes for Multiscale Flows with Cell-Centered Finite Difference Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

High-order compact interpolation schemes appropriate for multiscale flows are studied within a cell-centered finite difference method (CCFDM) framework where the robustness of high-order schemes on curvilinear grids can be greatly enhanced due to the satisfaction of geometric conservation law. Two types of compact interpolations are mainly developed in this paper for shock-free flows and shock-embedded flows respectively. The present compact schemes are verified to be superior over the explicit counterparts with same orders in terms of the spectral characteristics. Regarding the shock-free flows, low-dissipation low-dispersion properties are achieved by the spectral optimization. Three optimized compact schemes (Opt4, Opt6 and Opt8) are further validated to be attractive for shock-free problems by carrying out benchmarks from computational aeroacoustics workshops and two typical turbulence cases: Tayler–Green vortex and decaying isotropic turbulence. Regarding high-speed flows in the presence of shock waves, the shock-capturing capability is realized by extending the weighting technique to the compact interpolations. The criteria to choose optimally compact nonlinear sub-stencils on a most general compact global stencil are presented. Interestingly, the explicit WENO-type schemes can be reverted within the proposed compact framework. Three nonlinear compact schemes (UI5, CI6 and CI8) on two practical stencils are analyzed and further compared with their explicit counterparts by a series of numerical experiments. The compact ones are superior to explicit ones in resolving rich flow structures as well as discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Ekaterinaris, J.A.: High-order accurate, low numerical diffusion methods for aerodynamics. Prog. Aerosp. Sci. 41, 192–300 (2005). https://doi.org/10.1016/j.paerosci.2005.03.003

    Article  Google Scholar 

  2. Wang, Z.J.: High-order methods for the Euler and Navier–Stokes equations on unstructured grids. Prog. Aerosp. Sci. 43, 1–41 (2007). https://doi.org/10.1016/j.paerosci.2007.05.001

    Article  Google Scholar 

  3. Deng, X., Mao, M., Tu, G., Zhang, H., Zhang, Y.: High-order and high accurate CFD methods and their applications for complex grid problems. Commun. Comput. Phys. 11, 1081–1102 (2012). https://doi.org/10.4208/cicp.100510.150511s

    Article  MathSciNet  MATH  Google Scholar 

  4. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992). https://doi.org/10.1016/0021-9991(92)90324-R

    Article  MathSciNet  MATH  Google Scholar 

  5. Visbal, M.R., Gaitonde, D.V.: Very high-order spatially implicit schemes for computational acoustics on curvilinear meshes. J. Comput. Acoust. 09, 1259–1286 (2001). https://doi.org/10.1142/S0218396X01000541

    Article  MathSciNet  MATH  Google Scholar 

  6. Kim, J.W., Lee, D.J.: Optimized compact finite difference schemes with maximum resolution. AIAA J. 34, 887–893 (1996). https://doi.org/10.2514/3.13164

    Article  MATH  Google Scholar 

  7. Kim, J.W.: Optimised boundary compact finite difference schemes for computational aeroacoustics. J. Comput. Phys. 225, 995–1019 (2007). https://doi.org/10.1016/j.jcp.2007.01.008

    Article  MathSciNet  MATH  Google Scholar 

  8. Nagarajan, S., Lele, S.K., Ferziger, J.H.: A robust high-order compact method for large eddy simulation. J. Comput. Phys. (2003). https://doi.org/10.1016/S0021-9991(03)00322-X

    Article  MathSciNet  MATH  Google Scholar 

  9. Fu, D., Ma, Y.: A high order accurate difference scheme for complex flow fields. J. Comput. Phys. 134, 1–15 (1997). https://doi.org/10.1006/jcph.1996.5492

    Article  MathSciNet  MATH  Google Scholar 

  10. Fan, P.: The standard upwind compact difference schemes for incompressible flow simulations. J. Comput. Phys. 322, 74–112 (2016). https://doi.org/10.1016/j.jcp.2016.06.030

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhong, X.: High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition. J. Comput. Phys. 144, 662–709 (1998). https://doi.org/10.1006/jcph.1998.6010

    Article  MathSciNet  MATH  Google Scholar 

  12. Bhumkar, Y.G., Sheu, T.W.H., Sengupta, T.K.: A dispersion relation preserving optimized upwind compact difference scheme for high accuracy flow simulations. J. Comput. Phys. 278, 378–399 (2014). https://doi.org/10.1016/j.jcp.2014.08.040

    Article  MathSciNet  MATH  Google Scholar 

  13. Sicot, F.: High order schemes on non-uniform structured meshes in a finite-volume formulation. Master Dissertation, Chalmers University of Technology (2006)

  14. Broeckhoven, T., Smirnov, S., Ramboer, J., Lacor, C.: Finite volume formulation of compact upwind and central schemes with artificial selective damping. J. Sci. Comput. 21, 341–367 (2004). https://doi.org/10.1007/s10915-004-1321-6

    Article  MathSciNet  MATH  Google Scholar 

  15. Lacor, C., Smirnov, S., Baelmans, M.: A finite volume formulation of compact central schemes on arbitrary structured grids. J. Comput. Phys. 198, 535–566 (2004). https://doi.org/10.1016/j.jcp.2004.01.025

    Article  MATH  Google Scholar 

  16. Johnsen, E., Larsson, J., Bhagatwala, A.V., Cabot, W.H., Moin, P., Olson, B.J., Rawat, P.S., Shankar, S.K., Sjögreen, B., Yee, H.C., Zhong, X., Lele, S.K.: Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J. Comput. Phys. 229, 1213–1237 (2010). https://doi.org/10.1016/j.jcp.2009.10.028

    Article  MathSciNet  MATH  Google Scholar 

  17. Pirozzoli, S.: Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43, 163–194 (2011). https://doi.org/10.1146/annurev-fluid-122109-160718

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996). https://doi.org/10.1006/jcph.1996.0130

    Article  MathSciNet  MATH  Google Scholar 

  19. Adams, N.A., Shariff, K.: A high-resolution hybrid compact-ENO scheme for shock–turbulence interaction problems. J. Comput. Phys. 127, 27–51 (1996). https://doi.org/10.1006/jcph.1996.0156

    Article  MathSciNet  MATH  Google Scholar 

  20. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock–turbulence interaction. J. Comput. Phys. 178, 81–117 (2002). https://doi.org/10.1006/jcph.2002.7021

    Article  MathSciNet  MATH  Google Scholar 

  21. Ren, Y.-X., Liu, M., Zhang, H.: A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192, 365–386 (2003). https://doi.org/10.1016/j.jcp.2003.07.006

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghosh, D., Baeder, J.D.: Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws. SIAM J. Sci. Comput. 34, A1678–A1706 (2012). https://doi.org/10.1137/110857659

    Article  MathSciNet  MATH  Google Scholar 

  23. Ghosh, D., Baeder, J.D.: Weighted non-linear compact schemes for the direct numerical simulation of compressible, turbulent flows. J. Sci. Comput. 61, 61–89 (2014). https://doi.org/10.1007/s10915-014-9818-0

    Article  MathSciNet  MATH  Google Scholar 

  24. Ghosh, D., Medida, S., Baeder, J.D.: Application of compact-reconstruction weighted essentially nonoscillatory schemes to compressible aerodynamic flows. AIAA J. 52, 1858–1870 (2014). https://doi.org/10.2514/1.J052654

    Article  Google Scholar 

  25. Ghosh, D., Constantinescu, E.M., Brown, J.: Efficient implementation of nonlinear compact schemes on massively parallel platforms. SIAM J. Sci. Comput. 37, C354–C383 (2015). https://doi.org/10.1137/140989261

    Article  MathSciNet  MATH  Google Scholar 

  26. Thomas, P.D., Lombard, C.K.: Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17, 1030–1037 (1979). https://doi.org/10.2514/3.61273

    Article  MathSciNet  MATH  Google Scholar 

  27. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009). https://doi.org/10.1137/070679065

    Article  MathSciNet  MATH  Google Scholar 

  28. Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693–723 (2007). https://doi.org/10.1016/j.jcp.2006.06.043

    Article  MathSciNet  MATH  Google Scholar 

  29. Deng, X., Zhang, H.: Developing high-order weighted compact nonlinear schemes. J. Comput. Phys. 165, 22–44 (2000). https://doi.org/10.1006/jcph.2000.6594

    Article  MathSciNet  MATH  Google Scholar 

  30. Deng, X., Mao, M., Tu, G., Liu, H., Zhang, H.: Geometric conservation law and applications to high-order finite difference schemes with stationary grids. J. Comput. Phys. 230, 1100–1115 (2011). https://doi.org/10.1016/j.jcp.2010.10.028

    Article  MathSciNet  MATH  Google Scholar 

  31. Abe, Y., Nonomura, T., Iizuka, N., Fujii, K.: Geometric interpretations and spatial symmetry property of metrics in the conservative form for high-order finite-difference schemes on moving and deforming grids. J. Comput. Phys. 260, 163–203 (2014). https://doi.org/10.1016/j.jcp.2013.12.019

    Article  MathSciNet  MATH  Google Scholar 

  32. Nonomura, T., Iizuka, N., Fujii, K.: Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids. Comput. Fluids 39, 197–214 (2010). https://doi.org/10.1016/j.compfluid.2009.08.005

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhu, Y., Sun, Z., Ren, Y., Hu, Y., Zhang, S.: A numerical strategy for freestream preservation of the high order weighted essentially non-oscillatory schemes on stationary curvilinear grids. J. Sci. Comput. 72, 1021–1048 (2017). https://doi.org/10.1007/s10915-017-0387-x

    Article  MathSciNet  MATH  Google Scholar 

  34. Liao, F., Ye, Z., Zhang, L.: Extending geometric conservation law to cell-centered finite difference methods on stationary grids. J. Comput. Phys. 284, 419–433 (2015). https://doi.org/10.1016/j.jcp.2014.12.040

    Article  MathSciNet  MATH  Google Scholar 

  35. Liao, F., Ye, Z.: Extending geometric conservation law to cell-centered finite difference methods on moving and deforming grids. J. Comput. Phys. 303, 212–221 (2015). https://doi.org/10.1016/j.jcp.2015.09.032

    Article  MathSciNet  MATH  Google Scholar 

  36. Liao, F., He, G.: High-order adapter schemes for cell-centered finite difference method. J. Comput. Phys. 403, 109090 (2020). https://doi.org/10.1016/j.jcp.2019.109090

    Article  MathSciNet  Google Scholar 

  37. Deng, X., Mao, M., Tu, G., Zhang, Y., Zhang, H.: Extending weighted compact nonlinear schemes to complex grids with characteristic-based interface conditions. AIAA J. 48, 2840–2851 (2010). https://doi.org/10.2514/1.J050285

    Article  Google Scholar 

  38. Nonomura, T., Fujii, K.: Effects of difference scheme type in high-order weighted compact nonlinear schemes. J. Comput. Phys. 228, 3533–3539 (2009). https://doi.org/10.1016/j.jcp.2009.02.018

    Article  MATH  Google Scholar 

  39. Deng, X., Jiang, Y., Mao, M., Liu, H., Li, S., Tu, G.: A family of hybrid cell-edge and cell-node dissipative compact schemes satisfying geometric conservation law. Comput. Fluids 116, 29–45 (2015). https://doi.org/10.1016/j.compfluid.2015.04.015

    Article  MathSciNet  MATH  Google Scholar 

  40. Yan, Z.-G., Liu, H., Ma, Y., Mao, M., Deng, X.: Further improvement of weighted compact nonlinear scheme using compact nonlinear interpolation. Comput. Fluids 156, 135–145 (2017). https://doi.org/10.1016/j.compfluid.2017.06.028

    Article  MathSciNet  MATH  Google Scholar 

  41. Subramaniam, A., Wong, M.L., Lele, S.K.: A high-order weighted compact high resolution scheme with boundary closures for compressible turbulent flows with shocks. J. Comput. Phys. 397, 108822 (2019). https://doi.org/10.1016/j.jcp.2019.07.021

    Article  MathSciNet  Google Scholar 

  42. Jin, Y., Liao, F., Cai, J.: Optimized low-dissipation and low-dispersion schemes for compressible flows. J. Comput. Phys. 371, 820–849 (2018). https://doi.org/10.1016/j.jcp.2018.05.049

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu, X., Zhang, S., Zhang, H., Shu, C.-W.: A new class of central compact schemes with spectral-like resolution I: Linear schemes. J. Comput. Phys. 248, 235–256 (2013). https://doi.org/10.1016/j.jcp.2013.04.014

    Article  MathSciNet  MATH  Google Scholar 

  44. Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. (1993). https://doi.org/10.1006/jcph.1993.1142

    Article  MathSciNet  MATH  Google Scholar 

  45. Martín, M.P., Taylor, E.M., Wu, M., Weirs, V.G.: A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys. 220, 270–289 (2006). https://doi.org/10.1016/j.jcp.2006.05.009

    Article  MATH  Google Scholar 

  46. Zhanxin, L., Qibai, H., Li, H., Jixuan, Y.: Optimized compact filtering schemes for computational aeroacoustics. Int. J. Numer. Methods Fluids 60, 827–845 (2009). https://doi.org/10.1002/fld.1914

    Article  MathSciNet  MATH  Google Scholar 

  47. Mullenix, N., Gaitonde, D.: A bandwidth and order optimized WENO interpolation scheme for compressible turbulent flows. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, Reston, Virigina (2011)

  48. Sun, Z., Luo, L., Ren, Y., Zhang, S.: A sixth order hybrid finite difference scheme based on the minimized dispersion and controllable dissipation technique. J. Comput. Phys. 270, 238–254 (2014). https://doi.org/10.1016/j.jcp.2014.03.052

    Article  MathSciNet  MATH  Google Scholar 

  49. Weirs, V., Candler, G., Weirs, V., Candler, G.: Optimization of weighted ENO schemes for DNS of compressible turbulence. In: 13th Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, Reston, Virigina (1997)

  50. Ahn, M.-H., Lee, D.J.: Supersonic jet noise prediction using optimized compact scheme with modified monotonicity preserving limiter. In: 2018 AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, Reston, Virginia (2018)

  51. Ha, C.-T., Lee, J.H.: A modified monotonicity-preserving high-order scheme with application to computation of multi-phase flows. Comput. Fluids 197, 104345 (2020). https://doi.org/10.1016/j.compfluid.2019.104345

    Article  MathSciNet  MATH  Google Scholar 

  52. Sumi, T., Kurotaki, T.: A new central compact finite difference formula for improving robustness in weighted compact nonlinear schemes. Comput. Fluids 123, 162–182 (2015). https://doi.org/10.1016/j.compfluid.2015.09.012

    Article  MathSciNet  MATH  Google Scholar 

  53. Pirozzoli, S.: On the spectral properties of shock-capturing schemes. J. Comput. Phys. 219, 489–497 (2006). https://doi.org/10.1016/j.jcp.2006.07.009

    Article  MATH  Google Scholar 

  54. Blazek, J.: Computational Fluid Dynamics: Principles and Applications. Elsevier, Amsterdam (2015)

    MATH  Google Scholar 

  55. Hardin, J.C., Ristorcelli, J.R., Tam, C.K.W.: ICASE/LaRC workshop on benchmark problems in computational aeroacoustics (CAA). NASA-CP-3300 (1995)

  56. Bodony, D.J.: Analysis of sponge zones for computational fluid mechanics. J. Comput. Phys. 212, 681–702 (2006). https://doi.org/10.1016/j.jcp.2005.07.014

    Article  MathSciNet  MATH  Google Scholar 

  57. Kim, J.W., Lee, D.J.: Fourth computational aeroacoustics (CAA) workshop on benchmark problems. NASA-CP-2004-212954 (2000)

  58. Brachet, M.E., Meiron, D.I., Orszag, S.A., Nickel, B.G., Morf, R.H., Frisch, U.: Small-scale structure of the Taylor–Green vortex. J. Fluid Mech. 30, 411–452 (1983). https://doi.org/10.1017/S0022112083001159

    Article  MATH  Google Scholar 

  59. Samtaney, R., Pullin, D.I., Kosović, B.: Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13, 1415–1430 (2001). https://doi.org/10.1063/1.1355682

    Article  MATH  Google Scholar 

  60. Rogallo, R.S.: Numerical experiments in homogeneous turbulence. NASA-TM-81315 (1981)

  61. Shi, J., Zhang, Y.-T., Shu, C.-W.: Resolution of high order WENO schemes for complicated flow structures. J. Comput. Phys. 186, 690–696 (2003). https://doi.org/10.1016/S0021-9991(03)00094-9

    Article  MathSciNet  MATH  Google Scholar 

  62. Inoue, O., Hattori, Y.: Sound generation by shock–vortex interactions. J. Fluid Mech. 380, 81–116 (1999). https://doi.org/10.1017/S0022112098003565

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is financially supported by 111 Project of China (No. B17037), the National Natural Science Foundation of China (No. 91952203). We also thank the reviewers for their valuable comments which have substantially improved the quality of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Compact Interpolations

See Tables 11, 12, 13, 14 and 15.

Table 11 Tridiagonal (K = 1) compact central schemes
Table 12 Pentadiagonal (K = 2) compact central schemes
Table 13 Tridiagonal (K = 1) compact upwind schemes
Table 14 Pentadiagonal (K = 2) compact upwind schemes
Table 15 Heptadiagonal (K = 3) compact upwind schemes

Appendix B: Proof of Eq. (23)

Applying Taylor series analysis on Eq. (20) to achieve (2K + 2L)th-order accuracy, the following (2K + 2L) constraints are required:

$$ \begin{aligned} & \underbrace {{ 0^{q} }}_{C} + \underbrace {{\sum\limits_{n = 1}^{K} {n^{q} \left( {\beta_{n} { + }({ - 1})^{q} \beta_{{{ - }n}} } \right)} }}_{A \cdot X} = \underbrace {{\sum\limits_{m = 1}^{L + 1} {\left( {\frac{2m - 1}{ 2}} \right)^{q} \left( {c_{m} { + }({ - 1})^{q} c_{1 - m} } \right)} }}_{B \cdot Y},\\ & \quad q = 0, 1, 2 ,\ldots , 2\left( {K + L} \right) - 1, \end{aligned} $$
(49)

where the column vectors C, X, Y and matrices A, B are

Using block multiplication of matrices, Eq. (49) is written in the following form:

$$ \underbrace {{C_{1} }}_{(K + L) \times 1} + \underbrace {{A_{11} }}_{(K + L) \times K} \, \underbrace {{X_{1} }}_{K \times 1} = \underbrace {{B_{11} }}_{(K + L) \times (L + 1)} \, \underbrace {{Y_{1} }}_{(L + 1) \times 1}. $$
(50)
$$ \underbrace {{C_{2} }}_{(K + L) \times 1} + \underbrace {{A_{22} }}_{(K + L) \times K} \, \underbrace {{X_{2} }}_{K \times 1} = \underbrace {{B_{22} }}_{(K + L) \times (L + 1)} \, \underbrace {{Y_{2} }}_{(L + 1) \times 1}. $$
(51)

There are (K + L) equations but (K + L + 1) unknowns in each equation of Eqs. (50) and (51), which means both Eqs. (50) and (51) are underdetermined. In Eq. (50), the first unknown element in \( X_{1} \) is \( \beta_{1} { + }\beta_{ - 1} \). Assuming \( \beta_{1} { + }\beta_{ - 1} = \eta \), all the entries in \( X_{1} \) and \( Y_{1} \) are dependent variables of \( \eta \). Similarly, in Eq. (51), the first unknown element in \( X_{2} \) is \( \beta_{1} - \beta_{ - 1} \). Assuming \( \beta_{1} - \beta_{ - 1} = \xi \), the other entries in \( X_{2} \) and \( Y_{2} \) are dependent variables of \( \xi \). These yield:

$$ \left\{ {\begin{array}{*{20}l} {c_{1 - m} + c_{m} = c_{m}^{ + } \left( \eta \right),} \hfill & {m = 1, \ldots L + 1,} \hfill \\ {\beta_{ - n} { + }\beta_{n} = \beta_{n}^{ + } \left( \eta \right),} \hfill & {n = 1, \ldots K.} \hfill \\ \end{array} } \right. $$
(52)
$$ \left\{ {\begin{array}{*{20}l} {c_{m} - c_{1 - m} = c_{m}^{ - } \left( \xi \right),} \hfill & {m = 1, \ldots L + 1,} \hfill \\ {\beta_{n} - \beta_{ - n} = \beta_{n}^{ - } \left( \xi \right),} \hfill & {n = 1, \ldots K.} \hfill \\ \end{array} } \right. $$
(53)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Liao, F. & Cai, J. Compact Schemes for Multiscale Flows with Cell-Centered Finite Difference Method. J Sci Comput 85, 17 (2020). https://doi.org/10.1007/s10915-020-01314-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01314-w

Keywords

Navigation