Skip to main content
Log in

A Conservative Semi-Lagrangian Finite Volume Method for Convection–Diffusion Problems on Unstructured Grids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A conservative semi-Lagrangian finite volume method is presented for the numerical solution of convection–diffusion problems on unstructured grids. The new method consists of combining the modified method of characteristics with a cell-centered finite volume discretization in a fractional-step manner where the convection part and the diffusion part are treated separately. The implementation of the proposed semi-Lagrangian finite volume method differs from its Eulerian counterpart in the fact that the present method is applied at each time step along the characteristic curves rather than in the time direction. To ensure conservation of mass at each time step, we adopt the adjusted advection techniques for unstructured triangular grids. The focus is on constructing efficient solvers with large stability regions and fully conservative to solve convection-dominated flow problems. We verify the performance of our semi-Lagrangian finite volume method for a class of advection–diffusion equations with known analytical solutions. We also present numerical results for a transport problem in the Mediterranean sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Allievi, A., Bermejo, R.: A generalized particle search-locate algorithm for arbitrary grids. J. Comput. Phys. 132, 157–166 (1992)

    Article  MathSciNet  Google Scholar 

  2. Babak, O., Deutsch, C.: Statistical approach to inverse distance interpolation. Stoch. Environ. Res. Risk Assess. 23(5), 543–553 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bajaj, C., Ihm, I., Warren, J.: Higher-order interpolation and least-squares approximation using implicit algebraic surfaces. ACM Trans. Graph. 12(4), 327–347 (1993)

    Article  Google Scholar 

  4. Benkhaldoun, F., Elmahi, I., Seaid, M.: Well-balanced finite volume schemes for pollutant transport by shallow water equations on unstructured meshes. J. Comput. Phys. 226(1), 180–203 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bochev, P., Moe, S., Peterson, K., Ridzal, D.: A conservative, optimization-based semi-Lagrangian spectral element method for passive tracer transport. In: Coupled Problems 2015-Proceedings of the 6th International Conference on Coupled Problems in Science and Engineering, pp. 23–34 (2015)

  6. Cai, X., Guo, W., Qiu, J.M.: A high order conservative semi-Lagrangian discontinuous Galerkin method for two-dimensional transport simulations. J. Sci. Comput. 73(2–3), 514–542 (2017)

    Article  MathSciNet  Google Scholar 

  7. Cai, X., Qiu, J., Qiu, J.-M.: A conservative semi-Lagrangian HWENO method for the Vlasov equation. J. Comput. Phys. 323, 95–114 (2016)

    Article  MathSciNet  Google Scholar 

  8. Cameron, A.: A systematic method to enforce conservativity on semi-Lagrangian schemes. Int. J. Numer. Methods Fluids 88(10–11), 463–478 (2018)

    Article  MathSciNet  Google Scholar 

  9. Douglas, J., Huang, C., Pereira, F.: The modified method of characteristics with adjusted advection. Numer. Math. 83, 353–369 (1999)

    Article  MathSciNet  Google Scholar 

  10. Douglas, J., Russell, T.F.: Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite elements or finite differences. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MathSciNet  Google Scholar 

  11. El-Amrani, M., Seaid, M.: Eulerian–Lagrangian time-stepping methods for convection-dominated problems. Int. J. Comput. Math. 85(3–4), 421–439 (2008)

    Article  MathSciNet  Google Scholar 

  12. El-Amrani, M., Seaid, M.: An \(\rm L^2\)-projection for the Galerkin-characteristic solution of incompressible flows. SIAM J. Sci. Comput. 33(6), 3110–3131 (2011)

    Article  MathSciNet  Google Scholar 

  13. Fatone, L., Funaro, D., Manzini, G.: Arbitrary-order time-accurate semi-Lagrangian spectral approximations of the Vlasov–Poisson system. J. Comput. Phys. 384, 349–375 (2019)

    Article  MathSciNet  Google Scholar 

  14. Hólm, E.V.: A fully two-dimensional, non-oscillatory advection scheme for momentum and scalar transport equations. Mon. Weather Rev. 123, 536–552 (1995)

    Article  Google Scholar 

  15. Keller, W., Borkowski, A.: Thin plate spline interpolation. J. Geod. 93, 1–19 (2019)

    Article  Google Scholar 

  16. Krishnamachari, S.V., Hayes, L.J., Russell, T.F.: A finite element alternating-direction method combined with a modified method of characteristics for convection-diffusion problems. SIAM J. Numer. Anal. 26(6), 1462–1473 (1989)

    Article  MathSciNet  Google Scholar 

  17. Lauritzen, P., Taylor, M., Overfelt, J., Ullrich, P., Nair, R., Goldhaber, S., Kelly, R.: CAM-SE-CSLAM: consistent coupling of a conservative semi-Lagrangian finite-volume method with spectral element dynamics. Mon. Weather Rev. 145(3), 833–855 (2017)

    Article  Google Scholar 

  18. Le Lourd, P.: Oil Pollution in the Mediterranean Sea, vol. 6. Royal Swedish Academy of Sciences, Stockholm (1977)

    Google Scholar 

  19. Lu, G., Wong, D.: An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 34(9), 1044–1055 (2008)

    Article  Google Scholar 

  20. Ma, Z., Zhang, Y., Zhou, Z.: An improved semi-Lagrangian time splitting spectral method for the semi-classical Schrödinger equation with vector potentials using NUFFT. Appl. Numer. Math. 111, 144–159 (2017)

    Article  MathSciNet  Google Scholar 

  21. Malagó, A., Bouraoui, F., Grizzetti, B., De Roo, A.: Modelling nutrient fluxes into the Mediterranean sea. J. Hydrol. Reg. Stud. 22, 100592 (2019)

    Article  Google Scholar 

  22. Mueller, A.: Continuously Deforming Finite Element Methods for Transport Problems. Ph.D. Dissertation, University of Texas at Austin (1984)

  23. Nair, R., C\({\hat{o}}\)té, J., Staniforth, A.: Monotonic cascade interpolation for Galerkin-characteristics advection. Q. J. R. Meteorol. Soc. 125, 197–212 (1999)

  24. Petrovskaya, N.: The accuracy of least-squares approximation on highly stretched meshes. Int. J. Comput. Methods 5(03), 449–462 (2008)

    Article  MathSciNet  Google Scholar 

  25. Powell, M.: The uniform convergence of thin plate spline interpolation in two dimensions. Numer. Math. 68(1), 107–128 (1994)

    Article  MathSciNet  Google Scholar 

  26. Pudykiewicz, J., Staniforth, A.: Some properties and comparative performance of the semi-Lagrangian method of robert in the solution of advection-diffusion equation. Atmos. Ocean 22, 283–308 (1984)

    Article  Google Scholar 

  27. Robert, A.: A stable numerical integration scheme for the primitive meteorological equations. Atmos. Ocean 19, 35–46 (1981)

    Article  Google Scholar 

  28. Robinson, A., Leslie, W., Theocharis, A., Lascaratos, A.: Mediterranean sea circulation. Ocean Curr. 1, 19 (2001)

    Google Scholar 

  29. Seaid, M.: Semi-Lagrangian integration schemes for viscous incompressible flows. Comput. Methods Appl. Math. 4, 392–409 (2002)

    Article  MathSciNet  Google Scholar 

  30. Staniforth, A., C\({\hat{o}}\)té, J.: Semi-Lagrangian integration schemes for the atmospheric models: a review. Mon. Weather Rev. 119, 2206–2223 (1991)

  31. Temperton, C., Staniforth, A.: An efficient two-time-level Galerkin-characteristics semi-implicit integration scheme. Q. J. R. Meteorol. Soc. 113, 1025–1039 (1987)

    Article  Google Scholar 

  32. Yabe, T., Tanaka, R., Nakamura, T., Xiao, F.: An exactly conservative semi-Lagrangian scheme (CIP-CSL) in one dimension. Mon. Weather Rev. 129(2), 332–344 (2001)

    Article  Google Scholar 

  33. Zhang, Z.: Conservative finite-difference methods on general grids. SIAM Rev. 39(2), 367–369 (1997)

    Google Scholar 

Download references

Acknowledgements

Financial support provided by the Project CSIC under the contract M MTM2017-89423-P is gratefully acknowledged. The authors would like to thank anonymous referees for giving very helpful comments and suggestions that have greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilham Asmouh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asmouh, I., El-Amrani, M., Seaid, M. et al. A Conservative Semi-Lagrangian Finite Volume Method for Convection–Diffusion Problems on Unstructured Grids. J Sci Comput 85, 11 (2020). https://doi.org/10.1007/s10915-020-01316-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01316-8

Keywords

Navigation