Skip to main content
Log in

A Modified Fifth Order Finite Difference Hermite WENO Scheme for Hyperbolic Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop a modified fifth order accuracy finite difference Hermite WENO (HWENO) scheme for solving hyperbolic conservation laws. The main idea is that we first modify the derivatives of the solution by Hermite WENO interpolations, then we discretize the original and derivative equations in the spatial directions by the same approximation polynomials. Comparing with the original finite difference HWENO scheme of Liu and Qiu (J Sci Comput 63:548–572, 2015), one of the advantages is that the modified HWENO scheme is more robust than the original one since we do not need to use the additional positivity-preserving flux limiter methodology, and larger CFL number can be applied. Another advantage is that higher order numerical accuracy than the original scheme can be achieved for two-dimensional problems under the condition of using the same approximation stencil and information. Furthermore, the modified scheme preserves the nice property of compactness shared by HWENO schemes, i.e., only immediate neighbor information is needed in the reconstruction, and it has smaller numerical errors and higher resolution than the classical fifth order finite difference WENO scheme of Jiang and Shu (J Comput Phys 126:202–228, 1996). Various benchmark numerical tests of both one-dimensional and two-dimensional problems are presented to illustrate the numerical accuracy, high resolution and robustness of the proposed novel HWENO scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cai, X., Zhang, X., Qiu, J.: Positivity-preserving high order finite volume HWENO schemes for compressible Euler equations. J. Sci. Comput. 68, 464–483 (2016)

    Article  MathSciNet  Google Scholar 

  2. Cai, X., Zhu, J., Qiu, J.: Hermite WENO schemes with strong stability preserving multi-step temporal discretization methods for conservation laws. J. Comput. Math. 35, 19–40 (2017)

    Article  MathSciNet  Google Scholar 

  3. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    Article  MathSciNet  Google Scholar 

  4. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  5. Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227, 8209–8253 (2008)

    Article  MathSciNet  Google Scholar 

  6. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MathSciNet  Google Scholar 

  7. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–323 (1987)

    Article  MathSciNet  Google Scholar 

  8. Harten, A., Osher, S.: Uniformly high-order accurate non-oscillatory schemes I. SIAM J. Numer. Anal. 24, 279–309 (1987)

    Article  MathSciNet  Google Scholar 

  9. Hu, X.Y., Adams, N.A., Shu, C.-W.: Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. J. Comput. Phys. 242, 169–180 (2013)

    Article  MathSciNet  Google Scholar 

  10. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    Article  MathSciNet  Google Scholar 

  11. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  12. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. Math. Model. Numer. Anal. 33, 547–571 (1999)

    Article  MathSciNet  Google Scholar 

  13. Li, G., Qiu, J.: Hybrid weighted essentially non-oscillatory schemes with different indicators. J. Comput. Phys. 229, 8105–8129 (2010)

    Article  MathSciNet  Google Scholar 

  14. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  Google Scholar 

  15. Liu, H., Qiu, J.: Finite difference Hermite WENO schemes for conservation laws. J. Sci. Comput. 63, 548–572 (2015)

    Article  MathSciNet  Google Scholar 

  16. Liu, H., Qiu, J.: Finite difference Hermite WENO schemes for conservation laws, II: an alternative approach. J. Sci. Comput. 66, 598–624 (2016)

    Article  MathSciNet  Google Scholar 

  17. Luo, D., Huang, W., Qiu, J.: A hybrid LDG-HWENO scheme for KdV-type equations. J. Comput. Phys. 313, 754–774 (2016)

    Article  MathSciNet  Google Scholar 

  18. Ma, Z., Wu, S.P.: HWENO schemes based on compact difference for hyperbolic conservation laws. J. Sci. Comput. 76, 1301–1325 (2018)

    Article  MathSciNet  Google Scholar 

  19. Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case. J. Comput. Phys. 193, 115–135 (2004)

    Article  MathSciNet  Google Scholar 

  20. Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method II: two dimensional case. Comput. Fluid. 34, 642–663 (2005)

    Article  MathSciNet  Google Scholar 

  21. Shi, J., Hu, C., Shu, C.-W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175, 108–127 (2002)

    Article  Google Scholar 

  22. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009)

    Article  MathSciNet  Google Scholar 

  23. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  24. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes, II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  Google Scholar 

  25. Tao, Z., Li, F., Qiu, J.: High-order central Hermite WENO schemes on staggered meshes for hyperbolic conservation laws. J. Comput. Phys. 281, 148–176 (2015)

    Article  MathSciNet  Google Scholar 

  26. Tao, Z., Li, F., Qiu, J.: High-order central Hermite WENO schemes: dimension-by-dimension moment-based reconstructions. J. Comput. Phys. 318, 222–251 (2016)

    Article  MathSciNet  Google Scholar 

  27. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  Google Scholar 

  28. Zahran, Y.H., Abdalla, A.H.: Seventh order Hermite WENO scheme for hyperbolic conservation laws. Comput. Fluid. 131, 66–80 (2016)

    Article  MathSciNet  Google Scholar 

  29. Zhang, Y.-T., Shu, C.-W.: Third order WENO scheme on three dimensional tetrahedral meshes. Commun. Comput. Phys. 5, 836–848 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, Y.-T., Shi, J., Shu, C.-W., Zhou, Y.: Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers. Phys. Rev. E 68, 046709 (2003)

    Article  MathSciNet  Google Scholar 

  31. Zhao, Z., Chen, Y., Qiu, J.: A hybrid Hermite WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 405, 109175 (2020)

    Article  MathSciNet  Google Scholar 

  32. Zhao, Z., Qiu, J.: A Hermite WENO scheme with artificial linear weights for hyperbolic conservation laws. J. Comput. Phys. 417, 109583 (2020)

    Article  MathSciNet  Google Scholar 

  33. Zheng, F., Qiu, J.: Directly solving the Hamilton-Jacobi equations by Hermite WENO schemes. J. Comput. Phys. 307, 423–445 (2016)

    Article  MathSciNet  Google Scholar 

  34. Zhu, J., Qiu, J.: A class of fourth order finite volume Hermite weighted essentially non-oscillatory schemes. Sci. China Ser. A Math. 51, 1549–1560 (2008)

    Article  MathSciNet  Google Scholar 

  35. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxian Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Z. Zhao and J. Qiu were supported partly by Science Challenge Project (China), No. TZ 2016002 and National Natural Science Foundation-Joint Fund (China) Grant U1630247. Y.-T. Zhang was partially supported by NSF Grant DMS-1620108 (USA). This work was carried out while Z. Zhao was visiting the Department of Applied and Computational Mathematics and Statistics, the University of Notre Dame under the support by the China Scholarship Council (CSC: 201906310075).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Zhang, YT. & Qiu, J. A Modified Fifth Order Finite Difference Hermite WENO Scheme for Hyperbolic Conservation Laws. J Sci Comput 85, 29 (2020). https://doi.org/10.1007/s10915-020-01347-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01347-1

Keywords

Mathematics Subject Classification

Navigation