Skip to main content
Log in

A Parallel Iterative Finite Element Method for the Linear Elliptic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

By combining the two-grid discretization with the partition of unity method, a parallel iterative finite element method for the linear elliptic equations is proposed and investigated. Since the construction of the partition of unity is based on the coarse mesh triangulation, the computational domain of each subproblem can be divided automatically and the number of subproblems can be arbitrarily huge as the coarse mesh parameter H tends to zero. That means our method can be easily implemented in high performance supercomputers or cluster of workstations. Theoretical results based on a priori error estimation of the scheme are obtained, which indicate that our method can reach the optimal convergence orders within a few two-grid iterations. Numerical results are reported to assess the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Babus̆ka, I., Melenk, J.: The partition of unity method. Int. J. Numer. Math. Eng. 40(1997), 727–758 (1997)

    Article  MathSciNet  Google Scholar 

  3. Bacuta, C., Chen, J., Huang, Y., et al.: Partition of unity method on nonmatching grids for the Stokes problem. J. Numer. Math. 13, 157–169 (2005)

    Article  MathSciNet  Google Scholar 

  4. Chan, T., Mathew, T.: Domain decomposition algorithms. Acta Numerica 3, 61–143 (1994)

    Article  MathSciNet  Google Scholar 

  5. Du, G., Zuo, L.: A parallel partition of unity method for the nonstationary Navier–Stokes equations. Int. J. Numer. Method H 27, 1675–1686 (2017)

    Article  Google Scholar 

  6. Du, G., Zuo, L.: Local and parallel finite element method for the mixed Navier–Stokes/Darcy model with Beavers–Joseph interface conditions. Acta Math. Sci. 37, 1331–1347 (2017)

    Article  MathSciNet  Google Scholar 

  7. Du, G., Zuo, L.: Local and parallel finite element post-processing scheme for the Stokes problem. Comput. Math. Appl. 73, 129–140 (2017)

    Article  MathSciNet  Google Scholar 

  8. Du, G., Zuo, L.: A parallel partition of unity scheme based on two-grid discretizations for the Navier–Stokes Problem. J. Sci. Comput. 75, 1445–1462 (2018)

    Article  MathSciNet  Google Scholar 

  9. Du, G., Zuo, L.: A two-grid parallel partition of unity finite element scheme. Numer. Algorithms 80, 429–445 (2019)

    Article  MathSciNet  Google Scholar 

  10. He, Y., Mei, L., Shang, Y., Cui, J.: Newton iterative parallel finite element algorithm for the steady Navier–Stokes equations. J. Sci. Comput. 44, 92–106 (2010)

    Article  MathSciNet  Google Scholar 

  11. He, Y., Xu, J., Zhou, A.: Local and parallel finite element algorithms for the Navier–Stokes problem. J. Comput. Math. 24, 227–238 (2006)

    MathSciNet  MATH  Google Scholar 

  12. He, Y., Xu, J., Zhou, A., Li, J.: Local and parallel finite element algorithms for the Stokes problem. Numer. Math. 109, 415–434 (2008)

    Article  MathSciNet  Google Scholar 

  13. Holst, M.: Adaptive numerical treatment of elliptic systems on manifolds. Adv. Comput. Math. 15, 139–191 (2001)

    Article  MathSciNet  Google Scholar 

  14. Hou, Y., Li, K.: Tangent space correction method for the Galerkin approximation based on two-grid finite element. Appl. Math. Comput. 175, 413–429 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Hou, Y., Li, K.: Post-processing Fourier Galerkin method for the Navier–Stokes equations. SIAM J. Numer. Anal. 47, 1909–1922 (2009)

    Article  MathSciNet  Google Scholar 

  16. Hou, Y., Du, G.: An expandable local and parallel two-grid finite element scheme. Comput. Math. Appl. 71, 2541–2556 (2016)

    Article  MathSciNet  Google Scholar 

  17. Larson, M.G., Malqvist, A.: Adaptive variational multi-scale methods based on a posteriori error estimation: energy norm estimates for elliptic problems. Comput. Methods Appl. Mech. Eng. 196, 2313–2324 (2007)

    Article  Google Scholar 

  18. Larson, M.G., Malqvist, A.: An adaptive variational multi-scale method for convection-diffusion problems. Commun. Numer. Methods Eng. 25, 65–79 (2009)

    Article  Google Scholar 

  19. Liu, Q., Hou, Y.: Local and parallel finite element algorithms for the time-dependent convection diffusion equations. Appl. Math. Mech. Engl. Ed. 30, 787–794 (2009)

    Article  MathSciNet  Google Scholar 

  20. Li, K., Hou, Y.: An AIM and one-step Newton method for the Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 190, 6141–6155 (2001)

    Article  MathSciNet  Google Scholar 

  21. Liu, Q., Hou, Y.: A post-processing mixed finite element method for Navier–Stokes equations. Int. J. Comput. Fluid. Dyn. 23, 461–475 (2009)

    Article  MathSciNet  Google Scholar 

  22. Melenk, J., Babus̆ka, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139, 289–314 (1996)

    Article  MathSciNet  Google Scholar 

  23. Shang, Y.: A parallel finite element algorithm for simulation of the generalized Stokes problem. Bull. Korean. Math. Soc. 53, 853–874 (2016)

    Article  MathSciNet  Google Scholar 

  24. Shang, Y., He, Y.: Parallel iterative finite element algorithms based on full domain partition for the stationary Navier–Stokes equations. Appl. Numer. Math. 60, 719–737 (2010)

    Article  MathSciNet  Google Scholar 

  25. Shang, Y., Wang, K.: Local and parallel finite element algorithms based on two-grid discretizations for the transient Stokes equations. Numer. Algorithms 54, 195–218 (2010)

    Article  MathSciNet  Google Scholar 

  26. Song, L., Hou, Y., Zheng, H.: Adaptive local postprocessing finite element method for the Navier–Stokes equations. J. Sci. Comput. 55, 255–267 (2013)

    Article  MathSciNet  Google Scholar 

  27. Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69, 881–909 (2000)

    Article  MathSciNet  Google Scholar 

  28. Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems. Adv. Comput. Math. 14, 293–327 (2001)

    Article  MathSciNet  Google Scholar 

  29. Zheng, H., Song, L., Hou, Y., Zhang, Y.: The partition of unity parallel finite element algorithm. Adv. Comput. Math. 41, 937–951 (2014)

    Article  MathSciNet  Google Scholar 

  30. Zheng, H., Yu, J., Shi, F.: Local and parallel finite element method based on the partition of unity for incompressible flow. J. Sci. Comput. 65, 512–532 (2015)

    Article  MathSciNet  Google Scholar 

  31. Zuo, L., Du, G.: A parallel two-grid linearized method for the coupled Navier–Stokes–Darcy problem. Numer. Algorithms 77, 151–165 (2018)

    Article  MathSciNet  Google Scholar 

  32. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhi Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Subsidized by NSFC (Grant No. 11701343) and partially supported by NSFC (Grant No. 11801332),

Subsidized by the Provincial Natural Science Foundation of Shandong (Grant No. ZR2017BA027)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, G., Zuo, L. A Parallel Iterative Finite Element Method for the Linear Elliptic Equations. J Sci Comput 85, 35 (2020). https://doi.org/10.1007/s10915-020-01348-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01348-0

Keywords

Mathematics Subject Classification

Navigation