Skip to main content
Log in

Nonuniform Alikhanov Linearized Galerkin Finite Element Methods for Nonlinear Time-Fractional Parabolic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The solutions of the nonlinear time fractional parabolic problems usually undergo dramatic changes at the beginning. In order to overcome the initial singularity, the temporal discretization is done by using the Alikhanov schemes on the nonuniform meshes. And the spatial discretization is achieved by using the finite element methods. The optimal error estimates of the fully discrete schemes hold without certain time-step restrictions dependent on the spatial mesh sizes. Such unconditionally optimal convergent results are proved by taking the global behavior of the analytical solutions into account. Numerical results are presented to confirm the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195(4–5), 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  2. Alquran, M., Khaled, K.A., Sardar, T., Chattopadhyay, J.: Revisited Fishers equation in a new outlook: a fractional derivative approach. Phys. A. 438, 81–93 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Vabishchevich, P.N., Samarskij, A.A., Matus, P.P.: Second-order accurate finite-difference schemes on nonuniform grids. Comput. Math. Math. Phys. 38(3), 413–424 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, D., Sun, W., Wu, C.: A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions. Numer. Math. Theor. Methods Appl. (2021). https://doi.org/10.4208/nmtma.OA-2020-0129

    Article  Google Scholar 

  7. Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction–subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tang, T., Yuan, H., Zhou, T.: Hermite spectral collocation methods for fractional PDEs in unbounded domains. Commun. Comput. Phys. 24(4), 1143–1168 (2018)

    Article  MathSciNet  Google Scholar 

  9. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36(1), A40–A62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gunarathna, W.A., Nasir, H.M., Daundasekera, W.B.: An explicit form for higher order approximations of fractional derivatives. Appl. Numer. Math. 143, 51–60 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75(254), 673–696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, D., Liao, H., Wang, J., Sun, W., Zhang, J.: Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun. Comput. Phys. 24(1), 86–103 (2018)

    Article  MathSciNet  Google Scholar 

  14. Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56, 1–23 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38, A3070–A3093 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM. J. Sci. Comput. 39, A3129–A3152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meng, X., Stynes, M.: Convergence analysis of the Adini element on a Shishkin mesh for a singularly perturbed fourth-order problem in two dimensions. Adv. Comput. Math. 45(2), 1105–1128 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, Y., Zhang, M., Li, H., Li, J.: High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation. Comput. Math. Appl. 73(6), 1298–1314 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liao, H., Mclean, W., Zhang, J.: A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liao, H., Yan, Y., Zhang, J.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comp. 88, 2135–2155 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Luo, H., Li, B., Xie, X.: Convergence analysis of a Petrov-Galerkin method for fractional wave problems with nonsmooth data. J. Sci. Comput. 80, 957–992 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, L., Li, D.: Exact solutions and numerical study of time fractional Burgers’ equations. Appl. Math. Lett. 100, 106011 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, H., Stynes, M.: Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 79(1), 624–647 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhou, B., Li, D.: Newton linearized methods for semilinear parabolic equations. Numer. Math. Theor. Methods Appl. 13, 928–945 (2020)

    Article  MathSciNet  Google Scholar 

  30. Li, D., Wu, C., Zhang, Z.: Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction. J. Sci. Comput. 80, 403–419 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, D., Wang, J., Zhang, J.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM. J. Sci. Comput. 39, A3067–A3088 (2017)

    MATH  Google Scholar 

  32. Maskari, M.A., Karaa, S.: Numerical approximation of semilinear subdiffusion equations with nonsmooth intial data. SIAM J. Numer. Anal. 57, 1524–1544 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jin, B., Lazarov, R., Zhou, Z.: Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview. Comput. Methods Appl. Mech. Eng. 346, 332–358 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liao, H., Mclean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction-sudiffusion problem (2019). https://arxiv.org/pdf/1803.09873.pdf

  35. Thome, V.: Galerkin finite element methods for parabolic problems. J. Comput. Math. Appl. 17(2), 186–187 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by NSFC (Grant Nos. 11771162, 11971010).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Chen, X. & Li, D. Nonuniform Alikhanov Linearized Galerkin Finite Element Methods for Nonlinear Time-Fractional Parabolic Equations. J Sci Comput 85, 39 (2020). https://doi.org/10.1007/s10915-020-01350-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01350-6

Keywords

Navigation