Skip to main content
Log in

On Chebyshev–Davidson Method for Symmetric Generalized Eigenvalue Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

As we know, polynomial filtering technique is efficient for accelerating convergence of standard eigenvalue problems, which, however, has not appeared for solving generalized eigenvalue problems. In this paper, by integrating the effectiveness and robustness of the Chebyshev polynomial filters, we propose the Chebyshev–Davidson method for computing some extreme eigenvalues and corresponding eigenvectors of generalized matrix pencils. In this method, both matrix factorizations and solving systems of linear equations are all avoided. Convergence analysis indicates that the Chebyshev–Davidson method achieves quadratic convergence locally in an ideal situation. Furthermore, numerical experiments are carried out to demonstrate the convergence properties and to show great superiority and robustness over some state-of-the art iteration methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

Notes

  1. Matlab Code available at http://www.math.uu.nl/people/sleijpen/.

  2. Matlab Code available at http://www-math.cudenver.edu/~aknyazev/software/CG/toward/lobpcg.m.

References

  1. Anderson, C.R.: A Rayleigh–Chebyshev procedure for finding the smallest eigenvalues and associated eigenvectors of large sparse Hermitian matrices. J. Comput. Phys. 229, 7477–7487 (2010)

    Article  MathSciNet  Google Scholar 

  2. Banerjee, A.S., Lin, L., Hu, W., Yang, C., Pask, J.E.: Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations. J. Chem. Phys. 15, 154101 (2016)

    Article  Google Scholar 

  3. Bekas, C., Kokiopoulou, E., Saad, Y.: Computation of large invariant subspaces using polynomial filtered Lanczos iterations with applications in density functional theory. SIAM J. Matrix Anal. Appl. 30, 397–418 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bradbury, W.W., Fletcher, R.: New iterative methods for solution of the eigenproblem. Numer. Math. 9, 259–267 (1996)

    Article  MathSciNet  Google Scholar 

  5. Calvetti, D., Reichel, L., Sorensen, D.C.: An implicitly restarted Lanczos method for large symmetric eigenvalue problems. Electron. Trans. Numer. Anal. 2, 1–21 (1994)

    MathSciNet  MATH  Google Scholar 

  6. Davidson, E.R.: The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17, 87–94 (1975)

    Article  MathSciNet  Google Scholar 

  7. Fang, H.R., Saad, Y.: A filtered Lanczos procedure for extreme and interior eigenvalue problems. SIAM J. Sci. Comput. 34, A2220–A2246 (2012)

    Article  MathSciNet  Google Scholar 

  8. Fokkema, D.R., Sleijpen, G.L.G., van der Vorst, H.A.: Jacobi–Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20, 94–125 (1998)

    Article  MathSciNet  Google Scholar 

  9. Golub, G.H., Ye, Q.: An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems. SIAM J. Sci. Copmut. 24, 312–334 (2002)

    Article  MathSciNet  Google Scholar 

  10. Guttel, S., Polizzi, E., Tang, P.T.P., Viaud, G.: Zolotarev quadrature rules and load balancing for the FEAST eigensolver. SIAM J. Sci. Copmut. 37, A2100–A2122 (2015)

    Article  MathSciNet  Google Scholar 

  11. Hestenes, M.R., Karush, W.: A method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrix. J. Res. Nat. Bur. Stand. 47, 45–61 (1951)

    Article  MathSciNet  Google Scholar 

  12. Ikegami, T., Sakurai, T., Nagashima, U.: A filter diagonalization for generalized eigenvalue problems based on the Sakurai–Sugiura projection method. J. Comput. Appl. Math. 233, 1927–1936 (2010)

    Article  MathSciNet  Google Scholar 

  13. Imakura, A., Du, L., Sakurai, T.: Error bounds of Rayleigh–Ritz type contour integral-based eigensolver for solving generalized eigenvalue problems. Numer. Algorithms 71, 103–120 (2016)

    Article  MathSciNet  Google Scholar 

  14. Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23, 517–541 (2001)

    Article  MathSciNet  Google Scholar 

  15. Li, R.-P., Xi, Y.-Z., Vecharynski, E., Yang, C., Saad, Y.: A thick-restart Lanczos algorithm with polynomial filtering for Hermitian eigenvalue problems. SIAM J. Sci. Comput. 38, A2512–A2534 (2016)

    Article  MathSciNet  Google Scholar 

  16. Li, Y.-Z., Yang, H.-Z.: Spectrum slicing for sparse Hermitian definite matrices based on Zolotarev’s functions. arxiv:1701.08935

  17. Miao, C.-Q.: Filtered Krylov-like sequence method for symmetric eigenvalue problems. Numer. Algorithms 82, 791–807 (2019)

    Article  MathSciNet  Google Scholar 

  18. Morgan, R.B.: Generalizations of Davidson’s method for computing eigenvalues of large nonsymmetric matrices. J. Comput. Phys. 101, 287–291 (1992)

    Article  MathSciNet  Google Scholar 

  19. Morgan, R.B., Scott, D.S.: Generalizations of Davidson’s method for computing eigenvalues of sparse symmetric matrices. SIAM J. Sci. Stat. Comput. 7, 817–825 (1986)

    Article  MathSciNet  Google Scholar 

  20. Morgan, R.B., Scott, D.S.: Preconditioning the Lanczos algorithm for sparse symmetric eigenvalue problems. SIAM J. Sci. Comput. 14, 585–593 (1993)

    Article  MathSciNet  Google Scholar 

  21. Nakatsukasa, Y., Freund, R.W.: Computing fundamental matrix decompositions accurately via the matrix sign function in two iterations: the power of Zolotarev’s functions. SIAM Rev. 58, 461–493 (2016)

    Article  MathSciNet  Google Scholar 

  22. Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  23. Saad, Y.: Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems. Math. Comput. 42, 567–588 (1984)

    Article  MathSciNet  Google Scholar 

  24. Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd edn. SIAM, Philadelphia (2011)

    Book  Google Scholar 

  25. Sadkane, M.: A block Arnoldi–Chebyshev method for computing the leading eigenpairs of large sparse unsymmetric matrices. Numer. Math. 64, 181–193 (1993)

    Article  MathSciNet  Google Scholar 

  26. Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems using numerical integration. J. Comput. Appl. Math. 159, 119–128 (2003)

    Article  MathSciNet  Google Scholar 

  27. Sleijpen, G.L.G., Booten, A.G.L., Fokkema, D.R., van der Vorst, H.A.: Jacobi–Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT Numer. Math. 36, 595–633 (1996)

    Article  MathSciNet  Google Scholar 

  28. Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 401–425 (1996)

    Article  MathSciNet  Google Scholar 

  29. Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992)

    Article  MathSciNet  Google Scholar 

  30. Tang, P.T.P., Polizzi, E.: FEAST as a subspace iteration eigensolver accelerated by approximate spectral projection. SIAM J. Matrix Anal. Appl. 35, 354–390 (2014)

    Article  MathSciNet  Google Scholar 

  31. Vecharynski, E., Yang, C., Pask, J.E.: A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix. J. Comput. Phys. 290, 73–89 (2015)

    Article  MathSciNet  Google Scholar 

  32. Xi, Y.-Z., Saad, Y.: Computing partial spectra with least-squares rational filters. SIAM J. Sci. Comput. 38, A3020–A3045 (2016)

    Article  MathSciNet  Google Scholar 

  33. Zhou, Y.-K.: A block Chebyshev–Davidson method with inner-outer restart for large eigenvalue problems. J. Comput. Phys. 229, 9188–9200 (2010)

    Article  MathSciNet  Google Scholar 

  34. Zhou, Y.-K., Saad, Y.: A Chebyshev–Davidson algorithm for large symmetric eigenproblems. SIAM J. Matrix Anal. Appl. 29, 954–971 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is very much indebted to the referees for their constructive comments and valuable suggestions, which greatly improved the original manuscript of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cun-Qiang Miao.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by The National Natural Science Foundation of China (No. 11901361), P. R. China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, CQ. On Chebyshev–Davidson Method for Symmetric Generalized Eigenvalue Problems. J Sci Comput 85, 53 (2020). https://doi.org/10.1007/s10915-020-01360-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01360-4

Keywords

Mathematics Subject Classification

Navigation