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Abstract We propose a simple level set method for the Dirichlet k-partition problem which aims to
partition an open domain into K different subdomains as to minimize the sum of the smallest eigen-
value of the Dirichlet Laplace operator in each subdomain. We first formulate the problem as a nested
minimization problem of a functional of the level set function and the eigenfunction defined in each sub-
domain. As an approximation, we propose to simply replace the eigenfunction by the level set function
so that the nested minimization can then be converted to a single minimization problem. We apply the
standard gradient descent method so that the problem leads to a Hamilton-Jacobi type equation. Various
numerical examples will be given to demonstrate the effectiveness of our proposed method.

Keywords Partial differential equations · Level set method · Numerical methods · Optimal partition ·
Spectral partition.

1 Introduction

The Dirichlet k-partition problem, or the spectral partition problem, aims to partition an open domain
U ⊂ R

d into K different non-overlapping subdomains so to minimize the sum of the first eigenvalue of
the Dirichlet-Laplace operator. Mathematically, we solve the following minimization problem

min
U1,··· ,Uk

K∑
k=1

λ1(Uk)

where U =
⋃K

k=1 Uk with U1, · · · , UK being pairwise disjoint and λ1 is the first eigenvalue of the negative
Laplace operator, −Δ, with the zero Dirichlet boundary condition imposed on the boundary of each
subdomain ∂Uk. This is a very nonlinear shape optimization problem since one has to determine the
shape of some subdomains and then to find the corresponding eigenvalues (λ �= 0) and eigenfunctions
(u �= 0) satisfying the partial differential equation −Δu = λu in Uk with the boundary condition u = 0
on ∂Uk.

This problem is interesting theoretically and is also important in many fields of applied sciences.
Some theoretical studies on the existence of such a partition can be found in references such as [16,18,
17], while a weaker version of the existence statement has also been proved in [11,13]. The regularity of the
partition has been studied in [25]. We refer interested readers to [24,12] for some surveys on the problem.
In terms of applications and motivations of the problem, the partition problem can be found in various
fields of science including those from studying the ground state energy of Bose-Einstein condensates
[4,3], understanding the limiting case behavior of a chemical reaction system [19,20], modeling of the
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self-organized structures formed by soap froths and liquid crystalline micelles [41,38], and biological
segregation phenomena in population dynamics with diffusion and large interaction [15,16].

Numerically, there are different computational algorithms to search for the optimal partition for a
given K. One of the earliest numerical studies has been developed in [22] which has formulated the
problem as a minimization problem of a vector-valued function on U representing both the partition
and the eigenfunction simultaneously. The resulting parabolic system is then discretized and is solved
by the Gauss-Seidel method. A recent improvement of the method can be found in [9,10]. Another
recent improvement has been developed in [39] which has incorporated with the so-called MBO method
[29,30] to improve the overall computational efficiency using ideas from diffusion generated motions. A
different class of numerical procedures has been proposed in [8] which relies on a Schrödinger operator
relaxation. Due to the relaxation of the problem, the work can also investigate the asymptotic behavior
of the partition as K → ∞. A recent development based on the same relaxation has also been proposed
in [7] for a related optimal partition problem which aims to minimize not the sum of the ground state
eigenvalues but the p-norm of eigenvalues of the Dirichlet Laplacian. Another recent numerical procedure
has been proposed in [6] based on a representation using density functions so that the overall algorithm
can be done locally near the neighborhood of the region boundaries. Extended to non-Cartesian spaces,
[23] has developed a finite element procedure to construct the Dirichlet k-partition for two-dimensional
surfaces in three dimensions. In all numerical algorithms we mentioned here, one has to discretize the
partition problem, solve the discretized system, and then try to observe the convergence to the solution
of the continuum problem. A careful study on the convergence of this discretized graph partitioning
problem to the continuum Dirichlet k-partition formulation can be found in [42,34]. A recent approach
developed in [2] can also solve the partition on graphs.

In this work, we propose a level set method [33,36,32] for the Dirichlet k-partitions problem in arbi-
trary Lipschitz domains U . The level set method was originally developed to simulate the evolution of the
interface by solving equations on a fixed Cartesian mesh rather than having an explicit parametrization
of the moving surface. Because of the flexibility in modeling the topological change in the interface evolu-
tion, it has become a very popular tool in fields including multiphase flow simulation, shape optimization,
computational geometry, and computer graphics. In many of the numerical approaches developed, the
boundary of each partition evolves in iterations. Since there is no a priori information on the topology
of these boundaries, surfaces might merge or split depending on the initial guess as they involve to lower
the overall energy of the system. This makes the level set representation perfect for the representation of
the partition because interfaces are represented implicitly. There is no need to worry about the connec-
tivity of the discrete parametrization when there is any topological change in the partition. The level set
method has also been applied to a similar spectral partition problem called bandgap maximization [27].
But it is a different shape optimization problem based on the eigenvalues of the Maxwell operator. We
refer interested readers to the reference thereafter for more details on how the implicit representation
can help in solving these optimal partition problems.

In this paper, we first introduce level set functions φk to implicitly represent the boundary of each
partition and then we formulate the partition problem as a nested minimization problem of a functional
consisting of the level set functions φk and the eigenfunctions uk defined in each subdomain Uk. To
improve the computational efficiency, we propose to relax the problem by approximating the eigenfunction
uk directly using the level set function φk. With this approximation, the nested minimization can be
converted into a minimization problem of the level set functions which can be easily optimized using the
standard gradient descent method. Although such approximation will not lead to the same minimizer
as in the original problem in general, we are going to consider some simple configurations and provide
some intuitions of the approximation. We will also demonstrate that the proposed approximation does
give some reasonable minimizers corresponding to the original problem.

The paper is organized as follows. In Section 2, we will review the methods for computing k-partition
problem proposed by [8,5,22,39]. Our proposed level set method for computing the Dirichlet k-partition
problem will be proposed in Section 3. In Section 4, we will relate our proposed approach to the so-called
variational level set method for multiphase flow simulation in [40] and will give a physical interpretation of
our model. One crucial step in our approach is to approximate the eigenfunction within each subdomain
by the corresponding level set function. We will discuss the error introduced in this step in Section 5.
In Section 7, we give the details of the numerical implementation and present some numerical results. A
conclusion will be given in Section 8.
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2 Background

To express the Dirichlet k-partition problem more explicitly in terms of the first eigenfunction within
each subdomain, we first assume that a subdomain Uk is known and, therefore, the first eigenvalue λ1

can be easily found by solving

λ1(Uk) = min
|u|2

H1
0(Uk)

=1
〈−Δu, u〉H1

0 (Uk) = min
u∈H1

0 (Uk)
‖u‖L2=1

∫
Uk

|∇u|2 dx

where 〈u, v〉H1
0 (Uk) =

∫
Uk

uv dx. This implies that the Dirichlet k-partition problem can be expressed as
a nested minimization problem by

min
U1,··· ,UK

K∑
k=1

λ1(Uk) = min
U1,··· ,UK

K∑
k=1

min
u∈H1

0 (Uk)
‖u‖L2=1

∫
Uk

|∇u|2 dx (1)

with U =
⋃K

k=1 Uk and U1, · · · , UK being pairwise disjoint. To solve this problem, [22] has proposed to
introduce a mapping formulation to represent the eigenfunctions and the partition simultaneously using
a vector-valued function u. In particular, one defines the set of coordinate axes ΣK by

ΣK =
{
u = (u1, · · · , uK) ∈ R

K such that at most one of uj ’s is nonzero
}
.

Then, the Sobolev space associated with the set Σk, denoted by H1
0 (U ;ΣK), is defined by

H1
0 (U,ΣK) :=

{
u = (u1, · · · , uK) : uk ∈ H1

0 (U) for all k,u ∈ ΣK

}
= H1

0 (U) ∩Σk

where H1
0 (U) = W 1,2

0 (U) is the standard Sobolev space with a compact support in U . For any u ∈
H1

0 (U,ΣK), we have u ∈ Σk where at most one of uk(x) is non-zero for any x. This indicates that the
sets Uk = u−1

k (R\{0}) are pairwise disjoint for 1 ≤ k ≤ K. Therefore, each vector-valued function u in
H1

0 (U,ΣK) corresponds to a possible configuration of K disjoint subsets of U .
With this mapping formulation, the Dirichlet k-partition problem is equivalent to the minimization

problem given by

min
u∈H1

0 (U,ΣK)

K∑
k=1

∫
U

|∇uk|2 dx

subject to
∫
U
u2
k dx = 1 for each k = 1, · · · ,K. Numerically, on the other hand, it is more desirable to

relax the constraint u ∈ Σk during the computation. [22] has also proposed to replace the condition
u ∈ H1

0 (U,R
k) by an extra penalty term,

∫
U

∑
i �=j u

2
i (x)u

2
j (x) dx which penalizes the overlapping of the

sets u−1
i (R\{0}) and u−1

j (R\{0}) where i �= j. For any small ε > 0, the new formulation is

min
u∈H1

0 (U,RK)

K∑
k=1

∫
U

|∇uk|2 dx+
1

2ε2

∫
U

∑
i �=j

u2
iu

2
j dx (2)

subject to
∫
U
u2
k dx = 1 for each k = 1, · · · ,K. Standard gradient descent method then finally leads to

the following system of parabolic partial differential equations

∂tuk = Δuk − 1

ε2

⎛
⎝∑

i �=k

u2
i

⎞
⎠uk + λkuk (3)

for each k = 1, · · · ,K. Finally, to determine a steady-state solution of this coupled nonlinear system, [22]
has developed the following three-step splitting scheme consisting of (Step One) a diffusion step, (Step
Two) a reaction step and (Step Three) a normalization step. Starting with some initial condition u0,
the algorithm iteratively updates the solution from u(n) to u(n+1) until it converges.

Step One: A diffusion step. One solves the heat equation ∂tuk = Δuk for a small timestep t ∈ (0, τ ]

and for k = 1, · · · ,K with initial condition uk(x, 0) = u
(n)
k (x). Denote the solution at time τ by

ũk(x) = uk(x, τ).
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Step Two: A reaction step. The second operator in the equation is a reaction operator. One solves

the system of ordinary differential equations given by ∂tuk = − 1
ε2

(∑
i �=k u

2
i

)
uk for t ∈ (0, τ ] and

for k = 1, · · · ,K with the initial condition uk(x, 0) = ũk(x). Denote the solution at time τ to be
ûk(x) = uk(x, τ). This step turns out to be the most challenging stage of the overall algorithm since
it has to deal with a nonlinear system. It does not seem to be easy to determine an efficient numerical
algorithm for the system. In particular, a simple semi-implicit scheme by linearizing the system might
lead to a stiff system that will require a very small timestep in the ODE integrator.
A possible solution as suggested by [22] is to apply the following Gauss-Seidel idea. In particular, when
seeking the solution ûk(x), the functions ûj(x) for 1 ≤ j ≤ k−1 are already known. Therefore, we can
replace the system by ∂tuk = − 1

ε2

(∑
i<k û

2
i +

∑
i>k ũ

2
i

)
uk with the initial condition uk(x, 0) = ũk(x).

The exact solution for this ODE is known and is given by

ûk(x) = uk(x, τ) = uk(x, 0) exp

[
− τ

ε2

(∑
i<k

û2
i +

∑
i>k

ũ2
i

)]
.

Step Three: A normalization step. This normalization step takes care of the last term in the original
nonlinear equation corresponding to the integral constraint

∫
U
u2
k dx = 1. Instead of determining the

Lagrangian multiplier explicitly in each iteration, the method projects the intermediate solution

back to the required space by ûk by rescaling each component of the mapping function u
(n+1)
k (x) =

ûk(x)/|ûk(x)| for t ∈ (0, τ ] and for k = 1, · · · ,K.
Step Four: Check for the convergence. There are various possible strategies to determine if the
algorithm convergence. One approach is to check if the sets Uk converges in the iterations. Since the
nonzero element in u classifies the location into one of the subdomains, one can defines

K∑
k=1

∣∣1{u(n+1)>0} − 1{u(n)>0}
∣∣

where 1Ω is the characteristic function so that 1Ω(x) equals to 1 if x ∈ Ω and 0 otherwise. If this
quantity remains unchanged in the iterations, the partition converges and the algorithm stops.

Step Two has a flavor of the phase-field method [1,14,21] for modeling dynamic interface for mul-
tiphase flow where a similar Lagrange multiplier ε controls the width of the interface. In the limit of ε
approaches to zero, the phase-field model reduces to a sharp interface model as in the level set method.
As ε → 0, the nonlinear ODE system becomes stiffer while the dynamic takes the solution u back to
the constraint set ΣK at a faster pace. Motivated by the idea in the diffusion generated motions or
the so-called MBO scheme [29,30], a recent work [39] has proposed to replace Step Two by a simple
thresholding step

ûk(x) =

{
ũk(x) if ũk(x) = max

1≤j≤K
ũj(x)

0 otherwise.

This step assumes ε → 0 and simply projects the solution u back to the constraint set ΣK . This
thresholding step significantly reduces the amount of computational time since it does not require to
solve any differential equation. Because of overall algorithm is simple, it is computationally very efficient
and cheap which makes 3D computations possible.

To have an overall algorithm involves only explicit operations, [22,39] solve the diffusion equation in
Step One using Fast Fourier Transform (FFT). This, however, works only if the domain is rectangular
and requires the periodic boundary condition on ∂U . For general Lipschitz domains, it is not easy how
to replace the FFT by some simple efficient numerical solvers. Moreover, in all discussions above, one
considers only the periodic boundary condition. It might not be straightforward to extend these methods
to handle the Dirichlet k-partition problem on a bounded domain where a set of partition constraints on
∂U are already imposed. Finally, although [39] has also extended the method to a unit sphere by solving
the diffusion equation using the Spherical Harmonic Transform (SHT), the method has difficulty solving
the Dirichlet k-partition problem on general manifolds.



5

3 Our Proposed Method

In this section, we will give the details of our proposed method for the Dirichlet k-partition problem on
a domain with Lipschitz boundary based on the level set method [33,36,32]. Following [22,39], we start
with the nested minimization problem based on the subdomain Uk and the associating first eigenfunction
uk. Our proposed approach first introduces a level set function φk for each subdomain Uk. In the case
when the level set functions are signed distance functions, we noticed that they give a good approximation
to their associating first eigenfunctions uk’s. Therefore, as an approximation, we propose to replace the
eigenfunction uk by simply the level set function φk. This effectively converts the nested minimization
to a single minimization problem.

3.1 A Level-Set Formulation for the Dirichlet k-partition Problem

(a) (b)

Fig. 1: (Section 3.1) Solutions to the k-partition problem using different initial conditions based on
the formulation (5) and (6). (a) The first column is the initial condition. The second column is the
corresponding steady-state solution. steady-state solution might not give the global minimum. (b) The
correct global minimum gives 120-degree triple junction structures.

Following the previous discussion, we express the smallest eigenvalue λ1 of the negative Laplace
operator, −Δ, in the subdomain Uk with zero Dirichlet boundary as the minimization problem given by

λ1(Uk) = min
u∈H1

0 (Uk)
‖u‖L2(Uk)=1

∫
Uk

|∇u|2 dx = min
u∈H1

0 (Uk)
‖u‖L2(Uk) �=0

∫
Uk

|∇u|2 dx∫
Uk

u2 dx

.

Our first step is to introduce the level set method [33,36,32], and rewrite the formulation using the level
set function. Mathematically, for a given open set Uk ∈ R

d with smooth boundary ∂Uk, we define a
Lipschitz level set function φk satisfying⎧⎨

⎩
φ(x) > 0 for x ∈ Uk

φ(x) = 0 for x ∈ ∂Uk

φ(x) < 0 for x ∈ Ū c
k .

Then we could re-expressed the smallest eigenvalue λ1 by

λ1(φk) = min
u∈H1

0 (Uk)
‖u‖L2(Uk) �=0

∫
|∇u|2H(φk) dx∫
u2H(φk) dx

(4)
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where H(·) is the Heaviside function so that it gives 1 if the argument is positive and 0 otherwise. Similar
to the original formulation, the Dirichlet k-partition problem can be expressed as a nested minimization
problem given by

min
φ1,··· ,φK

K∑
k=1

λ1(φk) = min
φ1,··· ,φK

K∑
k=1

min
u∈H1

0 (Uk)
‖u‖L2(Uk) �=0

∫
|∇u|2H(φk) dx∫
u2H(φk) dx

subjected to the non-overlapping constraint
∑K

k=1 H(φk) = 1 for each x in the domain. Once we have
the optimizer to this minimization problem, the final k-partition can be determined from the level set
functions given by Uk = {x : φk > 0}. This nested minimization problem, unfortunately, is not easy to
be solved. One has to vary both u and φk together to determine an optimizer of the above functional.
One possible approach is to introduce an alternative minimization strategy to perturb each of them in
turn. In particular, we might define a functional

E[u, φ1, · · · , φK ] =

K∑
k=1

⎡
⎢⎢⎣
∫

|∇u|2H(φk) dx∫
u2H(φk) dx

⎤
⎥⎥⎦ =

K∑
k=1

⎡
⎢⎢⎣
∫
Uk

|∇u|2 dx∫
Uk

u2 dx

⎤
⎥⎥⎦

and minimize it over u and φk’s alternatively. Minimizing over u with fixed φk’s, we obtain the Euler-
Lagrange equation

−Δu− u

⎡
⎢⎢⎣
∫
Uk

|∇u|2 dx∫
Uk

u2 dx

⎤
⎥⎥⎦ = 0 inside each Uk . (5)

The solution to this equation is simply the eigenfunctions of the Laplace operator over each region Uk.
In the next iteration, one minimizes each φk’s with a fixed u which gives

−δ(φk)

[
|∇u|2 − u2

(∫
Uk

|∇u|2 dx
)]

= 0

with a Lagrange multiplier μ(x) chosen to enforce the constraint
∑

H(φk) = 1. Then the gradient descent
method with time rescaling would yield

∂φk

∂t
=

[
|∇u|2 − u2

(∫
Uk

|∇u|2 dx
)
+ μ(x)

]
. (6)

We have implemented this alternating minimization approach but we have noticed that the corresponding
steady-state solution of the gradient descent depends heavily on the initial condition and might easily
get stuck at a local minimizer. Figure 1 shows the steady-state solution for solving (5) and (6) with
two different initial conditions. As we can see, none of both solutions agrees with the correct hexago-
nal structure (with 120-degree triple junctions). Intuitively, each of the regions will expand during the
evolution with the rate given by |∇u|2 (as u ≈ 0 around the zero level set of φk) until the vacuum
region is filled up by a certain phase of the partition. Once a vacuum region is eliminated, the motion
will stop immediately and the boundary segments will not further to re-adjust themselves to give the
correct angle configuration. This motivates us to incorporate the diffusion term in equation (5) to the
motion-governing equation (6).

We observed that the level set function φk itself is in H1
0 (Uk) and |φk|L2(Uk) �= 0 when the set Uk is

non-empty. Therefore, we propose to replace the eigenfunction u in the minimization problem directly
by the level set function φ. Indeed, replacing the eigenfunction uk by the corresponding level set function
φk clearly would not lead to the same k-partition. We are not claiming that this approximation will give
the same solution to the original problem. However, as we will demonstrate in Section 5, our approach
will give a reasonable match partition for general cases and will provide the same optimizer under some
simple configuration of the final partition.

If we define a functional λ′
1 : H1(Ω) → R by

λ′
1(φk) :=

∫
Ω

|∇φk|2H(φk) dx∫
Ω

φ2
kH(φk) dx



7

which approximates the smallest eigenvalue λ1(φk) defined in equation (4), the Dirichlet k-partition can
be rewritten as a single minimization problem as

min
φ1,··· ,φK

K∑
k=1

λ′
1(φk) = min

φ1,··· ,φK

K∑
k=1

⎡
⎢⎢⎣
∫

|∇φk|2H(φk) dx∫
φ2
kH(φk) dx

⎤
⎥⎥⎦

subjected to the non-overlapping constraint
∑K

k=1 H(φk) = 1. To replace this constrained optimization
problem by an unconstrained problem, we rewrite the constraint as

1

2

∫ (
K∑

k=1

H(φk)− 1

)2

dx = 0

and incorporate it into the optimization problem as an extra penalty term. This finally leads to

min
φ1,··· ,φK

K∑
k=1

λ′
1(φk) +

μ

2

∫ (
K∑

k=1

H(φk)− 1

)2

dx

for some constant μ > 0 to be determined according to the mesh size. Intuitively, since this term has
to balance the effect from the first term which involves the normed-square of the level set gradient, we
recommend choosing μ = O

(
Δx−2

)
.

3.2 The Gradient of the Functional

To minimize the functional, we compute the Fréchet derivative of the functional with respect to the level
set function φ. We first concentrate on the derivative of the approximated first eigenfunction. To simplify
the notation, we introduce F [φ] =

∫ |∇φ|2H(φ) dx and G[φ] =
∫
φ2H(φ) dx. Since the Fréchet derivative

of F and G with respect to φ are given by δF
δφ = −2H(φ)Δφ − δ(φ)|∇φ|2 and δG

δφ = 2φH(φ) + φ2δ(φ),
we apply the quotient rule and obtain

δλ′
1

δφ
=

1

G[φ]2

[
δF

δφ
G− δG

δφ
F

]
=

1

G[φ]

[
δF

δφ
− δG

δφ
λ′
1

]

= −
[∫

φ2H(φ) dx

]−1 [
2H(φ) (Δφ+ φλ′

1) + δ(φ)
(|∇φ|2 + φ2λ′

1

)]
.

Now, if we have φδ(φ) = 0, we can drop the last term in the expression which leads to

δλ′
1

δφ
= −

[∫
φ2H(φ) dx

]−1 [
2H(φ) (Δφ+ φλ′

1) + δ(φ)|∇φ|2] .
Together with the penalty term for the non-overlapping constraint, we have the following gradient descent
equation for minimizing λ′

1

∂φk

∂t
= γk

[
2H(φk)(Δφk + φkλ

′
1) + δ(φk)|∇φk|2

]− μδ(φk)

[
K∑

k=1

H(φk)− 1

]
.

where γk =
[∫

φ2
kH(φk) dx

]−1
.

Since we are are only interested in the evolution of the zero level set, we follow similar approaches
in the level set community and make the following modifications to simplify the computations. First,
we introduce the regularized Heaviside function Hα(x) and regularized Dirac’s delta function Hα(·),
δα(·) : R → R by

Hα(x) :=

⎧⎪⎨
⎪⎩

0 if x ≤ −α
1

2
+

x

2α
+

1

2π
sin

(πx
α

)
if − α < x < α

1 if x ≥ α

and δα(x) := H ′
α(x). The first term 2Hα(φk) can be approximated by one as 2Hα(0) = 1, and hence we

can replace the coefficient of Δφk by δα(φk)/δα(0). The second term is removed from the equation since
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φk ≈ 0 near the zero level set. If we project the level set function in the evolution so that it is a signed
distance function, we have |∇φk| = 1 and so the third term on the right hand side contains only δ(φk).
Now, we have

∂φk

∂t
= δα(φk)

[
γk

δα(0)
Δφk + γk − μ

(
K∑

k=1

Hα(φk)− 1

)]
(7)

where γk =
[∫

φ2
kHα(φk) dx

]−1
for some small α > 0. Finally, we rescale the time so that the term

δα(φk) is replaced by |∇φk| and it leads to

∂φk

∂t
+ vn|∇φk| = γk

δα(0)
|∇φk|Δφk

with vn = μ
[∑K

k=1 Hα(φk)− 1
]
− γk and γk =

[∫
φ2
kHα(φk) dx

]−1
. The left-hand side of the equation

is now a standard first order nonlinear Hamilton-Jacobi equation as in the typical level set method. It
models the normal motion of the zero level set of φk with the given normal velocity vn. The right hand
side of the equation is a diffusion term. When the level set function is close to a signed distance function,
this term corresponds to the motion by mean curvature so that the zero level set is regularized in the
evolution.

To initialize the evolution, we initialize φk(t = 0) by assigning K random non-overlapping circles.
There are multiple ways to check this condition. One is to use the level set representation by ensuring
that

∑K
k=0 H(φk(x)) ≤ 1 at each point x ∈ U . If the quantity is larger than 1, it means there exists

a point x lies inside of more than one zero level set. This implies that at least two-level set functions
intersect at that point. Another approach is to check explicitly that |x − xk| < rk for at most 1 such k
for k from 1 to K where xk and rk are the center and the radius of the initial disk.

3.3 A Dirichlet k-partition Problem on an Arbitrary Domain

In this section, we generalize the formulation above and discuss a related Dirichlet k-partition problem. In
all the above discussion, we have assumed that the domain U is rectangular where the periodic boundary
condition is imposed on ∂U for simplicity. Instead, we now consider the case when the domain U is
arbitrary and, therefore, in general, we cannot impose the periodic boundary condition on ∂U . Since
it is not straight-forward how to apply the FFT on such domains, typical numerical approaches might
not be easy to solve such a generalized Dirichlet k-partition problem. On the other hand, it is rather
simple in our level set formulation. The only modification is on the penalty term where we impose the
non-overlapping constraint.

Assume that the boundary ∂U is represented by a level set function ψ so that ∂U = ψ−1(0). We can
simply modify the penalty term to

μ

2

∫ [
K∑

k=1

H(φk) +H(ψ)− 1

]2

dx

which leads to the following new normal velocity in the Hamilton-Jacobi equation

vn = μ

[
K∑

k=1

Hα(φk) +Hα(ψ)− 1

]
− γk .

The initial condition for the iteration is similar to the previous case. We only need to check with one
more condition on ψ. The rest follows.

3.4 The Level Set Regularization

In the previous derivation, we have assumed that the level set function φ(x) is a signed distance function
such that |∇φ| = 1 for all intermediate iterations. This property, however, cannot be satisfied automati-
cally in the gradient flow. This implies that φ may develop steep and flat gradients at or near the zero
level set as it evolves, making the computed location of the boundary ∂Uk and further computations
inaccurate. Therefore, we use reinitialization to regularize the level set evolution. To restore the distance
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property for the level set functions, the usual way is to make φ a signed distance function without mov-
ing its zero level set appreciably. This can be done by the so-called reinitialization. There are also many
well-developed numerical methods to efficiently obtain their numerical solutions. We refer all interested
readers to [32] and thereafter for a more detailed discussion. Following the typical level set approach
[32], we reinitialize the level set functions by introducing an artificial time τ and solving the following
reinitialization equation

φτ + sign(φn)(|∇φ| − 1) = 0

with the initial condition φ(τ = 0) being the intermediate state given by φn at the n-th iteration step.
There are standard numerical implementations and packages available for solving this first-order nonlinear
hyperbolic Hamilton-Jacobi equation. For example, one can apply the TVDRK3 [37] in the time direction
and the WENO5 [26] for the spatial derivative. This could give a high order accurate solution to the
τ -direction evolution. The CFL condition for solving this equation is given by Δτ = O(Δx). If only low
order solution is needed, one may simply replace the TVDRK3 by a forward Euler step and the WENO5
by the simple forward/backward differencing. In practice, however, since we are interested in the solution
only near the zero level set, there is no need to obtain a steady-state solution. Instead, we simply solve
the system for several Δτ steps, and the intermediate solution φ is used to replace the original level set
function.

3.5 The Stability Condition

When solving the evolution equation governing the motion of the zero level set using an explicit scheme,
we need to have a stable numerical scheme by constraining the size of the timestep. The equation consists
a diffusion term Δφ with the diffusion coefficient given by γk|∇φk|/δα(0) and also a nonlinear hyperbolic

part |∇φ| with the normal velocity vn = μ
[∑K

k=1 Hα(φk)− 1
]
− γk.

If we take α = Δx, the diffusion coefficient γk|∇φk|/δα(0) is roughly γkΔx. This implies that the
stability condition for the diffusion part is given by Δt ≤ Δx2/(2dΔxmaxk γk) = Δx/(2dmaxk γk),
where d is the dimension. Since both γk and μ are both positive, the magnitude of the convection
coefficient vn is bounded by maxk γ

n
k + μ. This gives the stability condition Δt ≤ Δx/(maxk γk + μ).

Combining these two constraints, we have the time step requirement for Δt by

Δt ≤ min

(
Δx

2dmaxk γk
,

Δx

maxk γk + μ

)
=

Δx

maxk γk +max [(2d− 1)maxk γk, μ]
.

Since the parameter μ is of order O
(
Δx−2

)
as discussed in Section 3.1, the overall stability condition of

the time dependent equation is in general given by Δt = O
(
Δx3

)
.

As we will see in Section 7, the initial state will be set by disjoint circles. These circles will expand
to fill the vacuum region. In general, a larger region yields a smaller γk which makes the above stability
condition less restrictive. Hence, in the numerical experiments, we check the timestep requirement only
in the initial state.

3.6 A Stopping Criterion

Finally, we provide a convergence criterion for the iterations. In this work, we define the following relative
change to measure the convergence of the partition based on the level set function,

E =

K∑
k=1

∑
i,j

∣∣∣φn+1
k,ij − φn

k,ij

∣∣∣1{|φn
k,ij |<Δx}

K∑
k=1

∑
i,j

1{|φn
k,ij |<Δx}

where 1Ω is the characteristic function of the set Ω so that it gives 1 if x ∈ Ω and 0 otherwise. Since the
partition is given by only the location of the zero level set, we can simply consider the change of the level
set function within a small neighborhood of the zero level set. This explains why we have 1{|φn

k,ij |<Δx}.
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4 Relationships to the Variational Level Set Method for Multiphase Flow Simulations

In this section, we are going to compare our method with the variational level set method [40] originally
developed for multiphase flow simulation and to show a physical interpretation of our model. Consider
the following multiphase flow model which tries to capture the motion of a material interface (such as
the solid-liquid, grain, or antiphase boundaries) by associating an energy functional involving the surface
tension (surface area) and the bulk energy (volume of each sub-region). When the initial state is not in
the energy equilibrium, interfaces will evolve to reduce the energy function.

Fig. 2: The setup for a three-phase flow problem as discussed in [40].

Mathematically, an n-phase flow problem can be formulated as follows. Let Ωi for 1 ≤ i ≤ n be a set
of disjoint regions in R

2. The energy functional can be defined as E = E1 + E2 with

E1 =
∑

1≤i<j≤n

fijLength(Γij) and E2 =

n∑
i=1

eiArea(Ωi)

where fij is the coefficient to the surface energy and ei is the coefficient for the bulk energies for region
Ωi. A typical setup for a three-phase flow problem is shown in Figure 2. When the level set method is
used [40], we introduce φi for 1 ≤ i ≤ n to represent Ωi. One can then express the energy functional
using E = E1 + E2 with

E1 =

n∑
i=1

γi

∫
δ(φi)|∇φi| dx and E2 =

n∑
i=1

ei

∫
H(φi) dx

where γi’s are coefficients satisfying fij = γi + γj . Hence, the problem becomes to minimize E subject

to the constraint 1
2

∫
(
∑n

i=1 H(φi)− 1)
2
dx = 0. Introducing a regularization parameter μ > 0 and

replacing the problem with an unconstrained optimization problem, one obtains

E[φ1, · · · , φn, μ] = E1 + E2 +
μ

2

∫ [
n∑

i=1

H(φi)− 1

]2

dx .

The minimizer of this functional can be determined by the gradient descent method. We introduce an
artificial time t and solve the following evolution equation for the steady-state solution

∂φi

∂t
= |∇φi|

[
γi∇ ·

( ∇φi

|∇φi|
)
− ei − μ

(
n∑

i=1

H(φi)− 1

)]
,

with the boundary conditions δ(φi)
|∇φi|

∂φi

∂n = 0 for 1 ≤ i ≤ n. Finally, if we project the level set function so

that it is a signed distance function in the evolution, we have

∂φi

∂t
= δ(φi)

[
γiΔφi − ei − μ

(
n∑

i=1

H(φi)− 1

)]
.

We have observed that this equation has the same form as our evolution equation (7) with

γi ⇐⇒ γk
δα(0)

and ei ⇐⇒ −γk .

Because of this similarity, we can provide a physical understanding of our model. Following the
physical interpretation as in the multiphase flow simulation, our proposed method aims to maximize the
area of each subdomain with the bulk energy coefficient γk, at the same time tries to minimize the arc
length of the boundary with the coefficient γk/δα(0) relating to the surface energy.
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5 Approximating the Eigenfunctions by the Level Set Function

The crucial step of our proposed algorithm is to replace the first eigenfunction within the subdomain Uk

by the associated level set function φk. To motivate the discussion, we first consider the one-dimensional
case and then will provide a slightly more general analysis in the two-dimensional case. We are going
to demonstrate that such approximation will lead to the same partition in the first case, while our
approximation λ′

1 provides a reasonably well estimate to λ1 for some regular partitions.
For the one dimensional case, we first consider an interval U = [0, L] where the first eigenvalue and the

corresponding eigenfunction are given by λ1 = π2/L2 and sin(πx/L), respectively. The signed distance
function representation of the level set function is given by φ = min(x, L−x) while the approximate λ′

1(φ)
over the domain U is given by

∫
U
|∇φ|2H(φ) dx/

∫
U
φ2H(φ) dx = 12/L2 = (12/π2)λ1. Now, considering

the k-partition on the one dimensional case where the whole domain U = [0, 1] and we would like to
segment it into K subintervals. For each subinterval, we have λ1(Uk) = π2/Lk where Lk is the length of
the interval Uk. Therefore, the overall problem to solve is given by

min
U1,··· ,UK

K∑
k=1

λ1(Uk) = π2 min
U1,··· ,UK

K∑
k=1

1

L2
k

.

For the approximated problem, we have

min
U1,··· ,UK

K∑
k=1

λ′
1(φk) = 12 min

U1,··· ,UK

K∑
k=1

1

L2
k

=
12

π2

[
min

U1,··· ,UK

K∑
k=1

λ1(Uk)

]
.

Although the minimum value of the sum of the first eigenvalues over-estimates the actual minimum, we
notice that both minimization problems essentially lead to the same minimizer given by the uniform
partition where Lk = 1/K.

For the two dimensional cases, the corresponding situation is not as clear as the one-dimensional case.
Yet, we would be able to look at some simple configuration and show that the approximated problem
gives a minimum value closes to the original one. We will consider the following three configurations
where the partition itself gives (i) circles, (ii) rectangles, and (iii) some regular M -polygons. For the first
two cases, we can express the solution analytically. For the last case, we numerically compute the first
eigenvalue of the partition.

(a) (b)

Fig. 3: (Section 5) λ1 and λ′
1 and their ratio for different regular M -polygons. (a) The value of λ1 will

converges to 5.7830 as the number of sides increases. (b) The ratio of λ1 and λ′
1, denoted by rM , will

approach to r∞ = j20,1/6 as M increases.

(i) Circle. Consider a domain Ω to be a circle with radius r0 center at the origin. Since
√
λ1r0 equals to

the first root of the zeroth order Bessel’s function of the first kind (denoted by j0,1), the first eigenvalue λ1

of this domain is approximately given by (j0,1/r0)
2
= 5.7830/r20. On the other hand, the signed distance

function representing the domain Ω is given by φ(x, y) = r0 −
√

x2 + y2. This implies that the value of
λ′
1 is given by λ′

1 = 6/r20. Therefore, we notice that λ1 = r∞λ′
1 � 0.9638λ′

1 where r∞ = j20,1/6. Similar to
the previous one dimensional case, our approximation for λ′

1 actually slightly over-estimates the actual
minimizer for λ1 in case if the partition itself is a circle.
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(ii) Rectangle. Assume that the partition gives a rectangular subdomain with the length and the width
given by L1 and L2, respectively. It is well-known that the first eigenvalue is given by

λ1 = π2

(
1

L2
1

+
1

L2
2

)
=

π2

L2
1

(
1 +

1

θ2

)

if L2 = θL1. Without lost of generality, we assume that L2 ≤ L1 so that 0 < θ ≤ 1. On the other hand,
the estimated eigenvalue λ′

1 is given by λ′
1 = 24/[L2

1(2− θ)θ2]. Hence the ratio

λ1

λ′
1

=
π2

24
(θ2 + 1)(2− θ) .

For 0 < θ ≤ 1, the expression on the right hand side is bounded above and below by π2/12 ≈ 0.8224 and
25π2/324 ≈ 0.7615 when θ = 1 and θ = 1/3, respectively.

(iii) Regular M -polygon. Assume the partition gives a regular M -polygon with the vertices lying on the
unit circle, i.e. the vertices of the polygon are given by

{(
cos

2iπ

M
, sin

2iπ

M

)}M−1

i=0

.

In the interior of this polygon, the signed distance representation of the level set function can be expressed
by a piecewise linear function

φ(x, y) = cos
π

M
− x cos

[
(2j + 1)π

M

]
− y sin

[
(2j + 1)π

M

]

where j is the greatest integer less than Mθ/2π and θ is the polar angle of the point (x, y) from the origin.
Based on this piecewise linear representation of the level set function, one can analytically determine
λ′
1. There is, unfortunately, no exact formula for the first eigenfunction within the M -polygon (except

the square and the circle cases as discussed above). Therefore, we can only numerically approximate
the eigenfunction to determine the corresponding first eigenvalue λ1. Figure 3 shows both λ1 and our
estimate λ′

1, as well as the ratio between two quantities (denoted by rM ). For M = 4, i.e. the square
case, the discussion reduces back to the previous case when θ = 1. We have λ1 = r4λ

′
1 ≈ 0.8224λ′

1. We
see that as M gets bigger, the ratio approaches to the limiting case when the partition is a circle giving
λ1 = r∞λ′

1 ≈ 0.9638λ′
1 as shown in case (i) above.

(iv) A mixture of regular polygons. In the case when the optimal configuration consists of a mixture of
regular M -polygons (M ≥ 4), we have

K∑
k=1

λ1(Uk) =

K∑
k=1

[
λ1(Uk)

λ′
1(Uk)

]
λ′
1(Uk) =

K∑
k=1

rM(k)λ
′
1(Uk)

where the constant rM(k) is the ratio of λ1 and λ′
1 in the M(k)-polygonal subdomain Uk. Therefore, how

well our approach approximates the exact minimizer depends on the distribution of rM(k)’s given by

K∑
k=1

λ1(Uk) �
[
1

K

K∑
k=1

rM(k)

][
K∑

k=1

λ′
1(Uk)

]
.

Since rM is bounded below and above by r4 and r∞, respectively, the error we have made in each term
of the sum is bounded by constants r∞ − r4 = j20,1/6− π2/12 � 0.1414.

6 Comparison with Existing Methods

In this section, we compare our proposed method with the approach developed in [8] based on the
Schrödinger relaxation operator and a related approach in [5], and also the diffusion generated motion
approach in [39].
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Interface Representation. Different approaches use a different interface representation for the partition
boundaries. In particular, [8] and [39] are developed based on a labeling representation and a phase-
field type representation. Since our approach uses the level set method, we can obtain a continuous
representation from the interpolation and provide the so-called subcell resolution. More discussion on
this will be demonstrated in Section 7.1.

Irregular Domains. Both our approach and the one in [8] can easily handle different types of domains by
simply introducing an extra level set function Ψ to the penalty term or an extra density function φ0 in
the implementation. Since [39] relies heavily on the FFT or SHT, it might require extra care in designing
an efficient numerical approach in the diffusion stage.

Computational Complexity in Terms of K. For large-K problems, [8] seems to perform better in terms of
computational complexity. While most computational efforts are spent on determining the eigenvectors,
this process can be done in parallel first followed by a normalization step to capture the interaction
between different phases. Together with the grid restriction procedure [5], the overall computational
effort in each iteration is almost independent of K. In particular, [8] is able to obtain a solution for
K as large as 512. For both our approach and the one developed in [39], however, the computational
complexity is linear in K. One possible way to lower the complexity in our approach is to follow the
multiphase level set framework [28] which is able to reduce the number of level set functions from K to
log2 K.

Computational Speed. Like the typical level set method, our PDE based approach seems to be the least
efficient in terms of computational speed. Due to the stability condition in the time evolution, one has
to iterate the algorithm for a large number of times to reach a steady-state solution. In the current
implementation, we simply use the typical full level set implementation. To speed up the computations
and improve the resolutions in the final partition, one can implement the local level set approach [35] or
some adaptive level set method [31]. They can both significantly improve the computational efficiency
of the PDE-based approach. Also, since one evolves a level set function for each partition, we can apply
an operator splitting method and develop a parallelize version for the overall algorithm.

Generalization to Related Partition Problems. The approach in [8] can be easily generalized to solve some
related partition problems related to other eigenvalues of the Laplacian. However, both our method or
[39] will need further exploration.

7 Numerical Examples

In this section, we will test our algorithm on several numerical examples to demonstrate the effectiveness
and the performance of the proposed level set method for the Dirichlet k-partition problem. All results
are obtained on a Linux computer with a 3.40GHz Intel Core i7-4770 and a 16GB RAM. Section 7.1
shows a 1D example. We compare our solutions with other methods as developed in [8] and [39]. In
Section 7.2, we will repeat some of the 2D examples from [39] and compare our solutions with their
method based on the MBO approach. Since these problems have no theoretical solutions, we are not able
to compare quantitatively and demonstrate the convergence of the method but will be able to look at
the solution qualitatively by checking the shape of the partitions. We will also look at the sum of the
first eigenvalue of each partition and will show that we can provide some new configurations leading to
some possible new insight into the problem. In Section 7.3, we will consider some different boundary
conditions and domain U . Finally, we test our approach in 3D in Section 7.4.

7.1 Partitions on an One-dimensional Interval

The first numerical test is a simple 1D example. As proved in Section 5, our level set formulation
is equivalent to the original eigenfunction formulation. Here, we consider the 3-partition problem (i.e.
K = 3) on the [0, 1] intervals with the periodic boundary condition. We have also implemented the
methods in [8] and [39] for comparisons. The mesh size is Δx = 1/512. The exact solution is given by 3
disjoint intervals with a length of 1/3. We start with three disjoint random intervals in [0, 1]. To initialize
the approach in [8], we first generate three random vectors of length 512 and then normalize them so
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(a)

(b)

(c)

Fig. 4: (Section 7.1) The initial condition, the final solution and a zoom-in of the final solution near the
interface using (a) our method, (b) [8] and (c) [39].

Our Method Method in [8] Method in [39]
Iteration (N) 10,000 500 1,000

Time (in seconds) 7.49 4.72 0.12
ε(N) 1.3904× 10−5 7.2091× 10−10 8.8818× 10−16

Length of the partitions {0.3350,0.3331,0.3324} {0.3184,0.3476,0.3340} {0.3398,0.3282,0.3320}
Max error 1.7× 10−3 1.49× 10−2 6.5× 10−3

Table 1: (Section 7.1) The comparison of the 3-partition problem in 1D using our method, [8] and [39].

that the pointwise sum is one at each entry across the three vectors. For the method as described in [39],
we generate 3 random vectors of length 512 then normalize them so that the L2-norm is one for each of
these vectors. For the parameters, we take μ = 104 and Δt = 5 × 10−8 in our method. For the method
of [8], we take C = 106, Δt = 5× 10−2 and α = 1. For the method in [39], we take τ = 0.001.

Figure 4 shows the initial and final conditions in each of these methods. We see that all three
methods give accurate approximations to the correct configuration (3 disjoint intervals with an equal
length of 1/3). However, due to the difference in the interface/boundary representation, there is still a
small difference in accuracy. The method in [8] uses a labeling representation that tries to label those grid
points which lie inside a certain partition. This implies that there is no resolution between grids. Similarly,
the thresholding in [39] also destroys the sub-cell resolution in the interface after the thresholding. In
our representation, however, since the interface of each partition is represented implicitly by the level set
function, one can obtain a continuous representation from the interpolation.

Table 1 shows some statistics on all numerical solutions. In terms of computational time, the proposed
method indeed takes the longest time. The difference in computational efficiency will be more significant,
especially in higher dimensions. This is explained in Section 6. Our method also requires the largest
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number of iterations to reach a steady-state solution. In particular, we define the difference in the
numerical solution between two consecutive iterations in both [8] and our approach to be ε(n) = ‖φ(n) −
φ(n−1)‖∞, and define ε(n) = ‖u(n) − u(n−1)‖∞ to be the corresponding difference in [39]. We note that
the value of ε(N) in our approach is significantly larger than that by the other two methods. This
indicates that our time iteration converges much slower than others. This is mainly because the gradient
descent approach only allows the level set functions to gradually adjust its value in the time evolution.
However, because the signed distance property of the level set function, we are able to provide a better
approximation of the interface locations from interpolation.

7.2 Partitions on a Two-dimensional Flat Torus

Fig. 5: (Section 7.2) Partition at different times for K = 4. (From left to right) The initial condition and
the intermediate solution after 103, 2× 103, 104 and 2× 104 iterations.

(a) (b)

Fig. 6: (Section 7.2) Results for K = 3 with the periodic boundary condition on ∂U . (a) The first row
shows the initial conditions. The second row shows the corresponding steady-state solution. The third
row shows the steady-state with the periodic extension. The sum of λ1’s are given by (from left to right):
197.2 and 189.2565, respectively. The global minimum is bolded. (b) Histogram showing the sum of
λ1’s of the steady-state solution in 100 trials.
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(a) (b)

Fig. 7: (Section 7.2) Results for K = 4 with the periodic boundary condition on ∂U . (a) The first row
shows the initial conditions. The second row shows the corresponding steady-state solution. The third
row shows the steady-state with the periodic extension. The sum of λ1’s are given by (from left to right):
356.4, 300.1 and 309.8, respectively. The global minimum is bolded. (b) Histogram showing the sum of
λ1’s of the steady-state solution in 100 trials.

In this example, we will find out the k-partition (for K ranging from 3 to 10) inside a unit square
U = [0, 1]2 with the periodic boundary, i.e. the so-called flat torus. In the numerical simulations, we use a
mesh size Δx = Δy = 0.01 and the regularization parameter μ = 104 for the non-overlapping constraint.
The initial condition is constructed by assigning K random non-overlapping circles. We have observed
that we have to use a smaller time step Δt as we increase the value of K in the simulations. In particular,
we take Δt = 2 × 10−7 for K less than or equal to 6, Δt = 10−7 for K = 7, 8 and Δt = 5 × 10−8 for
K = 9 and 10. We stop the iteration if the difference E defined in Section 3.6 is less than ε = 10−6, or if
the number of iterations exceeds 106 for K ≤ 6, 2× 106 for K = 7, 8, or 4× 106 for K = 9, 10 (where the
corresponding terminal time is T = 0.2). For the regularization of the level set function, we reinitialize
the level set function by updating the corresponding partial differential equations 20 steps for every 103

steps in the main iterations.

As a simple demonstration of how our approach behaves, we first consider a relatively simple case
where K = 4. Figure 5 shows the evolution of the level set functions at different times. We first initialize
the computation with K (i.e. 4 in this case) disks with a random radius corresponding to K different
partition of the domain. The region outside these disjoint disks is the vacuum region which will be
automatically eliminated by our approach. As we can see from the simulation, such a vacuum region is
almost filled after 2×103 iterations, as shown in the second subfigure. When the iteration converges, the
hexagonal structure obtained in the steady-state matches very well with the those reported in [22,39].

For the rest of this section, we will consider the partition solutions for K = 3 to K = 10 in detail.
We will also provide some comparisons with the solutions obtained by [39].

3-Partition. The case with K = 3 is an interesting one. With the same setting, we repeat the experiment
100 times with different non-overlapping circles as the initial conditions. The results are shown in Figure
6. We notice that there are two possible steady-state solutions as shown in Figure 6(a). Except for the
one commonly reported in previous literature showing on the left-hand side, we discover another periodic
structure as shown on the right-hand side in Figure 6(a). To the best of our understanding, this is a
new configuration that has never been reported elsewhere. More importantly, this structure provides
a smaller value of

∑K
k=1 λ1(Uk) (not of our proposed λ′

1(φk)) which makes us believe that this gives
the global minimum of the k-partition problem. We have shown the histogram of the sum of the first
eigenvalues in Figure 6(b). Among all 100 random initial conditions, we have found that 16 of them have
led to this new minimizer while the other 84 trials felt into the local minimum reported in [39] or other
related papers.
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(a)

(b) (c)

Fig. 8: (Section 7.2) Results for K = 5 with the periodic boundary condition on ∂U . (a) The first row
shows the initial conditions. The second row shows the corresponding steady-state solution. The third
row shows the steady-state with the periodic extension. The sum of λ1’s are given by (from left to right):
526.1, 507.0, 534.0, 502.7 and 508.1, respectively. The global minimum is bolded. (b) Histogram showing
the sum of λ1’s of the steady-state solution in 100 trials. (c) The splitting of a quadruple junction into
2 triple junctions as computed using (top) our method and (bottom) the method in [39].

4-Partition. Figure 7 shows the solutions to the case where K = 4. We have observed that the majority
of the initial conditions will lead to the same minimizer consisting of four hexagonal structures.

5-Partition. The case K = 5 has multiple steady-state solutions as shown in Figure 8(a). If we take a
closer look at the second structure on the left of Figure 8(a), it is similar to the global minimum as
reported in [39]. As shown in Figure 8(c), we have also observed that in some evolutions, a quadruple
junction would split into two triple functions. This splitting was mentioned in [40] and is due to the
instability of quadruple junction to the two triple functions. Unfortunately, such a splitting increases the
sum of the first Laplace-eigenvalue which makes itself not being the global minimum.
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(a)

(b)

Fig. 9: (Section 7.2) Results for K = 6 with the periodic boundary condition on ∂U . (a) The first row
shows the initial conditions. The second row shows the corresponding steady-state solution. The third
row shows the steady-state with the periodic extension. The sum of λ1’s are given by (from left to right):
794.7, 701.3, 785.0, 770.8, 714.9 and 736.4, respectively. The global minimum is bolded. (b) Histogram
showing the sum of λ1’s of the steady-state solution in 100 trials.

6-Partition. For the case K = 6, the optimal packing is back to the hexagonal structure. Different initial
conditions may result in some minor local minimum as shown in Figure 9. However, as shown in Figure
9(b), the chance for falling into an incorrect minimum is relatively small.

A Comparison with [39]. As a comparison to the method proposed by [39], we have plotted some of
our partition results in Figure 10. They match generally well with those as demonstrated in [39]. When
computing the discretized Laplace-eigenvalues numerically, we interpolate the level set function linearly
to calculate the exact boundary. However, method in [39] only provides a classification if a grid point is
in a certain subdomain Uk. It does not have the so-called subcell resolution. We therefore simply treat
the middle of the grid point to be the location of the partition boundary. The result shows that our
method aligns with the method proposed by [39]. Except for K = 3 and K = 5, the global minimum
proposed by our method has the same structure compared with [39].
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(a)

(b)

Fig. 10: (Section 7.2) Comparison of the global minimum in a 2D-torus by our method and the approach
in [39] with K between 3 and 10. (a)Our proposed method (The sums of λ1 are 189.2565, 300.0990,
502.7314, 701.2853. 963.1235, 1195.5875 and 1529.6110) (b) the approach in [39] (The sums of λ1 are
190.6018, 300.6115, 495.5503, 702.6459, 958.6348, 1204.0997, 1540.6496 and 1960.5951) The computa-
tional time for our method is approximately 25, 11, 16, 15, 22, 26, 23 and 34 minutes for K = 3, . . . , 10,
respectively.

7.3 Partitions on a Bounded Domain

As discussed, the level set method developed here in this work can be easily applied to a Dirichlet k-
partition problem on an arbitrary domain. In the following numerical experiments, we consider several
arbitrary domains U ⊂ [−0.5, 0.5]2 and determine the optimal k-partition with Dirichlet boundary
condition on ∂U . The domains we considered are (i) the unit square, (ii) the unit circle, (iii) a five-folded
star-shape domain, (iv) an annulus, (v) a regular triangle and (vi) a 3-Hexagon. The first four domains
are constructed analytically by the level set function ψ of U given by

ψ1(x, y) = max(|x− 0.5|, |y − 0.5|)− 0.5 (Unit Square)

ψ2(x, y) =
√

(x− 0.5)2 + (y − 0.5)2 − 0.5 (Unit Circle)

ψ3(r, θ) = r − 0.1 cos(5θ)− 0.4 (Five-folded Star)
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ψ4(r, θ) = |r − 0.375| − 0.125 (Annulus) .

In the fifth case, the triangular domain is formed by connecting the three vertices
{
cos 2iπ

3 , sin 2iπ
3

}
i=1,2,3

.

In the sixth case, the 3-Hexagon is formed by merging 3 regular hexagons with the length of each side
0.25. For these two domains, the analytical form of the level set functions are not that simple and hence
they are constructed on a point-by-point basis.

We carried out the computations on the mesh with Δx = Δy = 0.01. The regularization parameter is
chosen to be μ = 104. Like the previous computations, the initial condition is constructed by K random
non-overlapping circles inside U . We take Δt = 2× 10−7 for K less than or equal to 6, Δt = 1× 10−7 for
K = 7 and 8, and Δt = 5×10−8 for K = 9 and 10. We reinitialize the level set function φ by 20 steps for
each 100 steps in the main iterations. We stop the evolution if the difference E is less than ε = 10−6, or
if the number of iterations exceeds 106 for K ≤ 6, 2× 106 for K = 7, 8, or 4× 106 for K = 9, 10 (where
the corresponding terminal time is T = 0.2.)

Fig. 11: (Section 7.3) The k-partition problem on a unit square for K = 3, · · · , 10. The sum of λ1’s are
given by 200.9, 317.3, 520.1, 756.8, 1015.1, 1267.2, 1573.0 and 1971.5, respectively. The computational
time is approximately 25, 28, 32, 56, 65, 71, 49 and 85 minutes for K = 3, . . . , 10, respectively.

(a) (b)

Fig. 12: (Section 7.3) (a) The k-partition problem on a unit square for K = 4. Our solution is plotted on
the left and the uniform division is shown on the right. The sum of λ1’s are given by 317.3 and 315.8. (b)
The k-partition problem on a unit square for K = 9. The sum of λ1’s are given by 1573.0 and 1598.9.

A Unit Square. For the square domain with the signed distance function ψ1, the global minimum found
by our method is shown in Figure 11. We notice that the global minimum for K = 3, 5, 6, 8 and 9 are
symmetric vertically or horizontally, while the global minimum for K = 4, 5, 7 and 10 are symmetric in
diagonal. For the cases when K being a squared number, i.e. K = 4 and K = 9, we compare our partition
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result with the uniform division as shown in Figure 12 and notice that the behavior in these two cases
is quite different. For K = 4, the unstable quadruple junctions are split into two triple junctions in our
method. This splitting slightly increases the sum of the eigenvalues from 315.8 to 317.3. Conversely, when
K = 9, we have checked that the 9-partition we obtained has a significantly smaller sum of the eigenvalue
(with a value 1573.0) than the value in the uniform partition (with a value 1598.9). This shows that the
uniform partition might not necessarily be the optimal partition for a square number K.

There are reference solutions for both the 3-partition and the 5-partition where the sum of all three
and five first eigenvalues are given by 199.74 and 521.47, respectively [9,24]. Comparing to our computed
values 200.9 and 520.1, our solutions match reasonably well with these reference solutions.

Fig. 13: (Section 7.3) The k-partition problem on a unit disk for K = 3, · · · , 10. The sum of λ1’s are
given by 242.1, 422.3, 664.4, 922.4, 1204.2, 1557.9, 2000.7 and 2395.4, respectively. The computational
time is approximately 24, 27, 33, 37, 41, 46, 50 and 55 minutes for K = 3, . . . , 10, respectively.

(a) (b)

Fig. 14: (Section 7.3) (a) The k-partition problem on a unit disk for K = 4. Our solution is plotted on
the left and the uniform division is shown on the right. The sum of λ1’s are given by 422.3 and 421.8.
(b) The k-partition problem on a unit disk for K = 5. The sum of λ1’s are given by 664.4 and 663.8.

A Unit Disk. For the circle domain with the signed distance function ψ2, the global minimum we obtained
is shown in Figure 13. For K = 3, the circle is divided into 3 equal 120-degree sectors. For K = 4 and
K = 5, it looks like that the global minimum should be a uniform division of a circle into different
sectors. The instability of quadruple and quintuple junctions causes them to deviate from the uniform
division. Therefore, we compare our solution with the uniform division as shown in Figure 14. The sum
of the eigenvalues in the uniform division is 421.8 and 663.8 for K = 4 and K = 5 respectively. They
are slightly lower than our computed values of 422.3 and 664.4. In fact, [24] has shown that the optimal
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partition for K = 5 is the uniform division. After re-scaling the domain to have a unit area, our computed
sum of the eigenvalues is 664.4× 0.52π ≈ 521.8 which is the same as the computed values in [24]. From
K = 6 to K = 8, one partition is centered at the middle and the others are just uniformly around it.
For K = 9 onward, more partitions will fall into the middle. There is a reference solution in [9] for the
3-partition on a unit disk where the sum of all three first eigenvalues is given by 190.37 . This matches
reasonably well with our computed value 242.1× 0.52π ≈ 190.15 after rescaling.

Fig. 15: (Section 7.3) The k-partition problem of a five-folded Star for K = 3, · · · , 10. The sum of λ1’s are
given by 454.8, 733.7, 936.7, 1267.7, 1770.9, 2191.5, 2626.8 and 3041.4, respectively. The computational
time is approximately 23, 27, 31, 35, 40, 44, 49 and 54 minutes for K = 3, . . . , 10, respectively.

A Five-folded Star-shape Domain. For the five-folded star domain with the signed distance function ψ3,
the global minimum generated by our method is reported in Figure 15. Not surprisingly, the instability
of the quintuple junctions causes the global minimum in K = 5 to deviate from the 5 equal division
of the five-folded star. From K = 6 onward, there is one partition at each wing of the star, and the
other partition will fall into the middle part of the star. Besides, we notice that the thickness of the edge
increases with the value of K. In general, when K increases, the area of each partition will drop. This
will increase the size of γ. Hence, we should have a larger penalty coefficient μ to balance the effect of
the increase of the coefficient in the diffusion and convection term.

An Annulus. For the annulus domain with the signed distance function ψ4, it is constructed by 2 con-
centric circles with radius 0.25 and 0.5. The global minimum we obtained is shown in Figure 16. We
notice that the result is simply a K equal division of the annulus. Similar to the case in a five-folded
star, we can observe an increase in the thickness when K gets larger. If we gradually increase the penalty
coefficient μ, the thickness will be reduced significantly as shown in Figure 17.

A Regular Triangle. For the case of a regular triangle, the global minimum we obtained is shown in
Figure 18. To maintain a thin edge or vacuum region, we have taken μ = 104 when K = 3, 4 and μ = 105

when K ≥ 5. Some interesting examples are the cases where K is a triangle number (i.e. K = 3, 6, 10, . . .).
The optimal partition is aligned rows by rows from the top down to the bottom of the triangle. In each
row, there is exactly one extra partition compared with the previous row. In Figure 19, we compared
our 3-partition solution with a reference solution found in [9]. The sum of the first three eigenvalues in

the reference solution is 185.6, which is comparable to our computed value 552.1× 3
√
3

16 ≈ 179.3 after re-
scaling the domain to have a unit area. This shows that our method provides a reasonable approximation
to the original Dirichlet k-partition problem.
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Fig. 16: (Section 7.3) The k-partition problem in an annulus for K = 3, · · · , 10. The sum of λ1’s for
K = 3, · · · , 10 are given by 506.4, 718.6, 970.6, 1265.8, 1609.9, 2001.2, 2424.8 and 2853.4, respectively.
The computational time is approximately 24, 27, 33, 37, 41, 46, 50 and 55 minutes for K = 3, . . . , 10,
respectively.

Fig. 17: (Section 7.3) The k-partition problem in an annulus forK = 10 for μ = 104, 2×104, 4×104, 8×104.

Fig. 18: (Section 7.3) The k-partition problem in a regular triangle for K = 3, · · · , 10. The sum of λ1’s for
K = 3, · · · , 10 are given by 552.1, 1095.3, 1677.0, 2182.0, 3135.5, 4039.7, 4926.0 and 5760.6, respectively.

A 3-Hexagon For the case of a 3-hexagon, the domain is constructed by merging three regular hexagons
with each side 0.25 in length. The global minimum partition we obtained is shown in Figure 20 for
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(a) (b) (c)

Fig. 19: (Section 7.3) The 3-partition problem on a regular triangle. (a) The initial condition, (b) our
solution and (c) The reference solution from [9]. The sum of λ1’s are (b)179.3 and (c)185.6, respectively
(after re-scaling the domain to have the unit area).

Fig. 20: (Section 7.3) The k-partition problem in a 3-Hexagon for K = 3, · · · , 10. The sum of λ1’s for
K = 3, · · · , 10 are given by 343.1, 680.8, 1125.0, 1536.2, 2044.4, 2547.1, 3074.2 and 3718.2, respectively.

(a) (b) (c)

Fig. 21: (Section 7.3) The 3-partition problem on a 3-Hexagon. (a) The initial condition, (b) our solution
and (c) The reference solution from [9]. The sum of λ1’s are (b)167.1353 and (c)167.3109, respectively
(after re-scaling the domain to have the unit area).

K = 3 to K = 10. A reference solution from [9] for K = 3 simply divides the whole domain back to
three separated hexagons, as shown in Figure 21(c). Using our method, we can also obtain the same
partition as shown in Figure 21(b). The sum of the eigenvalues in our method after re-scaling to unit

area is 343.0955× 9
√
3

32 ≈ 167.1353, which is comparable to their computed values 167.3109.
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7.4 Partitions on a Three-dimensional Domain

Fig. 22: (Section 7.4) The zero level set of φk, k = 1, 2, 3, 4 for the 4-partition problem on a periodic unit
cube with the periodic extension.

(a) (b)

Fig. 23: (Section 7.4) The 4-partition problem on a periodic unit cube. (a) All rhombic dodecahedra
inside the periodic extension of the unit cube. (b) A macroscopic view showing the packing structure
obtained in the 4-partition. The computational time is approximately 588 minutes.
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(a) (b) (c)

Fig. 24: (Section 7.4) The 8-partition problem on a periodic unit cube. (a-b) Two different types of shape
obtained. The first shape has 12 pentagonal faces while the second one has 12 pentagonal faces plus 2
hexagonal faces. (c) The overall packing structure for the 8-partition problem. The computational time
is approximately 1246 minutes.

In this 3D example, we compute the 4-partition and 8-partition inside a unit cube U = [0, 1]3 with the
periodic boundary. The mesh size is Δx = Δy = Δz = 0.01 and the regularization parameter is chosen
to be μ = 105. We iterate 20000 steps with the timestep Δt = 5×10−8. The final partitions are shown in
Figure 22-24. For K = 4, all four partitions are of the same shape under the periodic extended domain
[0, 2]3 given by the so-called rhombic dodecahedra comprising of 12 identical rhombic faces. Figure 23(a)
shows all the complete rhombic dodecahedra under the periodic extension of the unit cube. Figure 23(b)
shows a more complete packing structure. For K = 8, we obtain two different types of shape and they
are shown in Figure 24(a) and (b). Among eight partitions, two regions have the first type of shape,
while the other six regions belong to the second type. The overall packing structure is shown in Figure
24(c). All the above results are comparable with the solution obtained in [8,39].

8 Conclusion

In this paper, we have developed a level set method for the Dirichlet k-partition problem. This pro-
vides a possible alternative to some popular numerical approaches such as [22,8,5,39]. By replacing the
eigenfunction by the signed distance function in the level set formulation, we can reduce the nested
minimization problem to a single minimization problem so that it can be easily solved by the gradient
descent method. Following the idea in the variational level set formulation [40], we have realized that
the resulting dynamics near the zero level set are similar to multiphase flow modeling. Even though
both governing PDEs consist of a diffusion mechanism characterized by the |∇φ| term, the diffusion
coefficient in our method is not predefined before the computation but has to be updated adaptively
according to the level set function. To handle problems of a bounded domain, we can simply introduce
another signed distance function ψ to the domain U . An extra penalty term involving ψ is added to the
evolution equation to restrict the partition to stay inside the domain.

To improve the computational efficiency of the full level set approach, one can implement the PDE-
based local level set method to concentrate the computational effort near the zero level set or can
incorporate with a grid adaptive approach to put more grid points near the boundary of the partition.
One might also develop a level set approach to these optimal partition problems on surfaces. We will
leave these possible improvements and extensions to future investigations.

The datasets generated during the current study are available from the corresponding author on
reasonable request.
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