
ACCELERATION OF PRIMAL-DUAL METHODS BY
PRECONDITIONING AND SIMPLE SUBPROBLEM PROCEDURES∗

YANLI LIU† , YUNBEI XU‡ , AND WOTAO YIN†

Abstract. Primal-Dual Hybrid Gradient (PDHG) and Alternating Direction Method of Multipli-
ers (ADMM) are two widely-used first-order optimization methods. They reduce a difficult problem
to simple subproblems, so they are easy to implement and have many applications. As first-order
methods, however, they are sensitive to problem conditions and can struggle to reach the desired
accuracy. To improve their performance, researchers have proposed techniques such as diagonal
preconditioning and inexact subproblems. This paper realizes additional speedup about one order of
magnitude.

Specifically, we choose non-diagonal preconditioners that are much more effective than diagonal
ones. Because of this, we lose closed-form solutions to some subproblems, but we found simple
procedures to replace them such as a few proximal-gradient iterations or a few epochs of proximal
block-coordinate descent, which are in closed forms. We show global convergence while fixing the
number of those steps in every outer iteration. Therefore, our method is reliable and straightforward.

Our method opens the choices of preconditioners and maintains both low per-iteration cost and
global convergence. Consequently, on several typical applications of primal-dual first-order methods,
we obtain 4–95× speedup over the existing state-of-the-art.

Key words. Primal-Dual Hybrid Gradient, Alternating Direction Method of Multipliers,
preconditioning, fixed number of inner iterations, structured subproblem

AMS subject classifications. 49M29, 65K10, 65Y20, 90C25

1. Introduction. In this paper, we consider the following optimization problem:

minimize
x∈Rn

f(x) + g(Ax),(1.1)

together with its dual problem:

minimize
z∈Rm

f∗(−AT z) + g∗(z),(1.2)

where f : Rn → R∪{+∞} and g : Rm → R∪{+∞} are closed proper convex, and
A ∈ Rm×n is a matrix, f∗ and g∗ are the convex conjugates of f and g, respectively.

Formulations (1.1) or (1.2) are abstractions of many application problems, which
include image restoration [43], magnetic resonance imaging [39], network optimization
[16], computer vision [33], and earth mover’s distance [25].

To solve (1.1), one can apply primal-Dual algorithms such as Primal-Dual Hybrid
Gradient (PDHG) and Alternating Direction Method of Multipliers (ADMM). However,
as first-order algorithms, PDHG and ADMM suffer from slow (tail) convergence
especially on poorly conditioned problems, when they may take thousands of iterations
and still struggle reaching just four digits of accuracy. While they have many other
advantages such as being easy to implement and friendly to parallelization, having
their performance very sensitive to problem conditions is their main disadvantage.
To improve the performance of PDHG and ADMM, researchers have tried using
preconditioners, but for reasons we discuss below, only diagonal preconditioners so

∗Submitted to the editors XXX 2018.
Funding: The work of Y. Liu and W. Yin is supported in part by NSF DMS-1720237 and ONR

N000141712162.
†Department of Mathematics, University of California, Los Angeles, CA (yanli@math.ucla.edu,

wotaoyin@math.ucla.edu).
‡Graduate School of Business, Columbia University, New York, NY (yunbei.xu@gsb.columbia.edu).

1

ar
X

iv
:1

81
1.

08
93

7v
3

 [
m

at
h.

O
C

]
 8

 S
ep

 2
01

9

mailto:yanli@math.ucla.edu
mailto:wotaoyin@math.ucla.edu
mailto:yunbei.xu@gsb.columbia.edu

2 Y. LIU, Y. XU, AND W. YIN

far. Depending on the application and how one applies splitting, PDHG and ADMM
may or may not have subproblems with closed-form solutions. When they do not,
researchers have studied approximate subproblem solutions to reduce the total running
time. In the next subsection, we review the relevant works of preconditioning and
inexact subproblems.

1.1. Background. Many problems to which we apply PDHG have separable
functions f or g, or both, so the resulting PDHG subproblems often (though not
always) have closed-form solutions. When subproblems are simple, we care mainly
about the convergence rate of PDHG, which depends on the problem conditioning.
To accelerate PDHG, diagonal preconditioning [32] was proposed since its diagonal
structure maintains closed-form solutions for the subproblems and, therefore, reduces
iteration complexity without making each iteration more difficult. In comparison,
non-diagonal preconditioners are much more effective at reducing iteration complexity,
but their off-diagonal entries couple different components in the subproblems, causing
the lost of closed-form solutions of subproblems. So, it may appear we cannot have
both fewer iterations and simple subproblems at the same time.

When a PDHG subproblem has no closed-form solution, one often uses an iterative
algorithm to approximately solve it. We call it Inexact PDHG. Under certain conditions,
Inexact PDHG still converges to the exact solution. Specifically, [34] uses three different
types of conditions to skillfully control the errors of the subproblems; all those errors
need to be summable over all the iterations and thereby requiring the error to diminish
asymptotically. In an interesting method from [5, 6], one subproblem computes a
proximal operator of a convex quadratic function, which can include a preconditioner
and still has a closed-form solution involving matrix inversion. This proximal operator
is successively applied n times in each iteration, for n ≥ 1.

ADMM has different subproblems. One of it subproblems minimizes the sum
of f(x) and a squared term involving Ax. Only when A has special structures does
the subproblem have closed-form solutions. Inexact ADMM refers to the ADMM
with at least one of its subproblems inexactly solved. An absolute error criterion was
introduced in [12], where the subproblem errors are controlled by a summable (thus
diminishing) sequence of error tolerances. To simplify the choice of the sequences,
a relative error criterion was adopted in several later works, where the subproblem
errors are controlled by a single parameter multiplying certain quantities that one can
compute during the iterations. In [29], the parameters need to be square summable.
In [24], the parameters are constants when both objective functions are Lipschitz
differentiable. In [14, 13], two possible outcomes of the algorithm are described: (i)
infinite outer loops and finite inner loops, and (ii) finite outer loops and the last inner
loop is infinite, both guaranteeing convergence to a solution. On the other hand, it is
unclear how to compare them. Since there is no bound on the number of inner loops
in case (i), one may recognize it as case (ii) and stop the algorithm before it converges.

There are works that apply certain kinds of preconditioning to accelerate ADMM.
Paper [18] uses diagonal preconditioning and observes improved performance. After
that, non-diagonal preconditioning is analyzed [5, 6], which presents effective precon-
ditioners for specific applications. One of their preconditioners needs to be inverted
(though not needed in our method). Recently, preconditioning for strongly convex
problems has also been studied [19] and promising numerical performances.

1.2. Contributions. Simply speaking, we find a way to have both non-diagonal
preconditioners (thus much fewer iterations) and very simple subproblem procedures.

Our exposition takes a few steps. First, we present Preconditioned PDHG

ACCELERATION OF PRIMAL-DUAL METHODS 3

(PrePDHG) and discuss how to choose preconditioners by minimizing an upper bound
in PrePDHG’s ergodic convergence analysis. We can observe ADMM as a special case
of PrePDHG where one of the preconditioners is identity (no preconditioning) and the
other is the optimal choice, which minimizes the bound, and, thereby, explaining why
ADMM often takes fewer iterations than PDHG.

Then, we show that PrePDHG still converges when one of its subproblems is
solved inexactly to a specified condition. Remarkably, we do not need to verify
this condition to stop a procedure since it is automatically satisfied as long as one
applies a common iterative method for a fixed number of iterations. Common choices
of subproblem procedures include proximal gradient descent, FISTA with restart,
proximal block coordinate descent, and accelerated block-coordinate-gradient-descent
(BCGD) methods (e.g., [27, 1, 21]). We call this method iPrePDHG (i for “inexact”).

We leave the other subproblem exactly solved in iPrePDHG since we have not
encountered interesting applications that require non-diagonal preconditioners for both
subproblems yet. If one is encountered, we can always split it in a way such that all
ill-conditioned terms are collected in one subproblem.

Next, we apply iPrePDHG and develop effective preconditioners for a set of classic
and representative applications of primal-dual splitting methods: image denoising,
graph cut, optimal transport, and CT reconstruction. The CT reconstruction appli-
cation uses a diagonal preconditioner in one subproblem, which has a closed-form
solution, and a non-diagonal preconditioner in the other, which has no closed-form
solution. In each of the other applications, one subproblem uses no preconditioner,
and the other uses a non-diagonal preconditioner.

Finally, we numerically evaluated the performance of iPrePDHG using our rec-
ommended preconditioners. We obtained speedups of 4–95 times over the existing
state-of-the-art. We believe it is a sufficient demonstration on how to apply precondi-
tioners effectively and efficiently in PDHG.

Since we show ADMM is a special PrePDHG, our method also applies to ADMM.
In fact, the iPrePDHG algorithms for three of the four applications are also Inexact
Preconditioned ADMM under simple transformations.

1.3. Organization. The rest of this paper is organized as follows: Section 2
establishes notation and reviews basics. In the first part of Section 3, we provide a
criterion for choosing preconditioners. In its second part, we introduce the condition
for inexact subproblems, which can be automatically satisfied by iterating a fixed
number of certain inner loops. This method is iPrePDHG. In the last part of Section 3,
we establish the convergence of iPrePDHG. Section 4 describes specific preconditioners
and reports numerical results. Finally, Section 5 concludes the paper.

2. Preliminaries. In this section, we introduce our notation and state the basic
results that we need later.

We use ‖·‖ for `2−norm and 〈·, ·〉 for dot product. M � 0 meansM is a symmetric,
positive definite matrix, and M � 0 means M is a symmetric, positive semidefinite
matrix.

We write λmin(M) and λmax(M) as the smallest and the largest eigenvalues of
M , respectively, and κ(M) = λmax(M)

λmin(M) as the condition number of M . For M � 0, let
‖ · ‖M and 〈·, ·〉M denote the semi-norm and inner product induced by M , respectively.
If M � 0, ‖ · ‖M is a norm.

For a proper closed convex function φ : Rn → R ∪ {+∞}, its subdifferential at

4 Y. LIU, Y. XU, AND W. YIN

x ∈ domf is written as

∂φ(x) = {v ∈ Rn |φ(z) ≥ φ(x) + 〈v, z − x〉 ∀z ∈ Rn},

and its convex conjugate as

φ∗(y) = sup
x∈Rn
{〈y, x〉 − φ(x)}.

We have y ∈ ∂φ(x) if and only if x ∈ ∂φ∗(y).
For any M � 0, we define the extended proximal operator of φ as

ProxMφ (x) := arg min
y∈Rn

{φ(y) + 1
2‖y − x‖

2
M}.(2.1)

If M = γ−1I for γ > 0, it reduces to a classic proximal operator.
We also have the following generalization of Moreau’s Identity:
Lemma 2.1 ([10], Theorem 3.1(ii)). For any proper closed convex function φ and

M � 0, we have

(2.2) x = ProxMφ (x) +M−1 ProxM
−1

φ∗ (Mx).

We say a proper closed function is a Kurdyka-Łojasiewicz (KŁ) function if, for
each x0 ∈ domf , there exist η ∈ (0,∞], a neighborhood U of x0, and a continuous
concave function ϕ : [0, η)→ R+ such that:

1. ϕ(0) = 0,
2. ϕ is C1 on (0, η),
3. for all s ∈ (0, η), ϕ′(s) > 0,
4. for all x ∈ U ∩ {x | f(x0) < f(x) < f(x0) + η}, the KŁ inequality holds:

ϕ′(f(x)− f(x0))dist(0, ∂f(x)) ≥ 1.

3. Main results. This section presents our results on preconditioner selection,
the proposed method iPrePDHG, and its convergence.

Throughout this section, we assume the following regularity assumptions:
Assumption 1.
1. f : Rn → R ∪ {+∞}, g : Rm → R ∪ {+∞} are proper closed convex.
2. A primal-dual solution pair (x?, z?) of (1.1) and (1.2) exists, i.e.,

0 ∈ ∂f(x?) +AT z?, 0 ∈ ∂g(Ax?)− z?.

The problem (1.1) also has the following convex-concave saddle-point formulation:

min
x∈Rn

max
z∈Rm

ϕ(x, z) := f(x) + 〈Ax, z〉 − g∗(z).(3.1)

A primal-dual solution pair (x?, z?) is a solution of (3.1).

3.1. Preconditioned PDHG. The method of Primal-Dual Hybrid Gradient or
PDHG [43, 7] for solving (1.1) refers to the iteration

xk+1 = Proxτf (xk − τAT zk),
zk+1 = Proxσg∗(zk + σA(2xk+1 − xk)).

(3.2)

ACCELERATION OF PRIMAL-DUAL METHODS 5

When 1
τσ ≥ ‖A‖

2, the iterates of (3.2) converge [7] to a primal-dual solution
pair of (1.1). We can generalize (3.2) by applying preconditioners M1,M2 � 0 (their
choices are discussed below) to obtain Preconditioned PDHG or PrePDHG:

xk+1 = ProxM1
f (xk −M−1

1 AT zk),

zk+1 = ProxM2
g∗ (zk +M−1

2 A(2xk+1 − xk)),
(3.3)

where the extended proximal operators ProxM1
f and ProxM2

g∗ are defined in (2.1). We
can obtain the convergence of PrePDHG using the analysis in [8].

There is no need to compute M−1
1 and M−1

2 since (3.3) is equivalent to

xk+1 = arg min
x∈Rn

{f(x) + 〈x− xk, AT zk〉+ 1
2‖x− x

k‖2M1
},

zk+1 = arg min
z∈Rm

{g∗(z)− 〈z − zk, A(2xk+1 − xk)〉+ 1
2‖z − z

k‖2M2
}.

(3.4)

3.2. Choice of preconditioners. In this section, we discuss how to select
appropriate preconditioners M1 and M2. As a by-product, we show that ADMM
corresponds to choosing M1 = 1

τ In×n and optimally choosing M2 = τAAT , thereby,
explaining why ADMM appears to be faster than PDHG.

Let us start with the following lemma, which characterizes primal-dual solution
pairs of (1.1) and (1.2).

Lemma 3.1. Under Assumption 1, (X,Z) is a primal-dual solution pair of (1.1)
if and only if ϕ(X, z) − ϕ(x, Z) ≤ 0 for any (x, z) ∈ Rn+m, where ϕ is given in the
saddle-point formulation (3.1).

Proof. If (X,Z) is a primal-dual solution pair of (1.1), then

−ATZ ∈ ∂f(X), AX ∈ ∂g∗(Z).

Hence, for any (x, z) ∈ Rn+m we have

f(x) ≥ f(X) + 〈−ATZ, x−X〉, g∗(z) ≥ g∗(Z) + 〈AX, z − Z〉.

Adding them together yields ϕ(X, z)− ϕ(x, Z) ≤ 0.
On the other hand, if ϕ(X, z)− ϕ(x, Z) ≤ 0 for any (x, z) ∈ Rn+m, then

〈AX, z〉+ f(X)− g∗(z)− 〈Ax,Z〉 − f(x) + g∗(Z) ≤ 0 for any (x, z) ∈ Rn+m.

Taking x = X yields 〈AX, z − Z〉 − g∗(z) + g∗(Z) ≤ 0, so AX ∈ ∂g∗(Z); Similarly,
taking z = Z gives 〈AX −Ax,Z〉+ f(X)− f(x) ≤ 0, so −ATZ ∈ ∂f(X). As a result,
(X,Z) is a primal-dual solution pair of (1.1).

We present the following convergence result, adapted from Theorem 1 of [8].
Theorem 3.2. Let (xk, zk), k = 0, 1, ..., N be a sequence generated by PrePDHG

(3.3). Under Assumption 1, if in addition

(3.5) M̃ :=
(
M1 −AT
−A M2

)
� 0,

then, for any x ∈ Rn and z ∈ Rm, it holds that

(3.6) ϕ(XN , z)− ϕ(x, ZN) ≤ 1
2N (x− x0, z − z0)

(
M1 −AT
−A M2

)(
x− x0

z − z0

)
,

where XN = 1
N

∑N
i=1 x

i and ZN = 1
N

∑N
i=1 z

i.

6 Y. LIU, Y. XU, AND W. YIN

Proof. This follows from Theorem 1 of [8] by setting Lf = 0, 1
τDx(x, x0) =

1
2‖x− x

0‖2M1
, 1
σDz(z, z0) = 1

2‖z − z
0‖2M2

, and K = A. Note that in Remark 1 of [8],
Dx and Dz need to be 1−strongly convex to ensure that equation (13) holds, which is
exactly our (3.5). Therefore, we don’t need Dx and Dz to be strongly convex.

Based on the above results, one approach to accelerate convergence is to choose
preconditioners M1 and M2 to obey (3.5) and minimize the right-hand side of (3.6).
When a pair of preconditioner matrices attains this minimum, we say they are optimal.
When one of them is fixed, the other that attains the minimum is also called optimal.

By Schur complement, the condition (3.5) is equivalent toM2 � AM−1
1 AT . Hence,

for any given M1 � 0, the optimal M2 is AM−1
1 AT .

Original PDHG (3.2) corresponds to M1 = 1
τ In×n, M2 = 1

σ Im×m with τ and
σ obeying 1

τσ ≥ ‖A‖
2 for convergence. In Appendix A, we show that ADMM for

problem (1.1) corresponds to setting M1 = 1
τ In×n, M2 = τAAT , M2 is optimal since

AM−1
1 AT = τAAT = M2. (This is related to, but different from, the result in [7, Sec.

4.3] stating that PDHG is equivalent to a preconditioned ADMM.)
By using more general pairs of M1,M2, we can potentially have even fewer

iterations of PrePDHG than ADMM.

3.3. PrePDHG with fixed inner iterations. It wastes total time to solve the
subproblems in (3.4) very accurately. It is more efficient to develop a proper condition
and stop the subproblem procedure, which we call inner iterations, once the condition
is satisfied. It is even better if we can simply fix the number of inner iterations and
still guarantee global convergence.

In this subsection, we describe the “bounded relative error” of the z-subproblem
in (3.3) and then show that this can be satisfied by running a fixed number of inner
iterations, uniformly for every outer loop.

Definition 3.3 (Bounded relative error condition). Given xk, xk+1 and zk, we
say that the z-subproblem in PrePDHG (3.3) is solved to a bounded relative error if
there is a constant c > 0 such that

0 ∈ ∂g∗(zk+1) +M2
(
zk+1 − zk −M−1

2 A(2xk+1 − xk)
)

+ εk+1,(3.7)
‖εk+1‖ ≤ c‖zk+1 − zk‖.(3.8)

Remarkably, this condition does not need to be checked at run time. For a fixed
c > 0, the condition can be satisfied by a fixed number of inner iterations using, for
example, proximal gradient iteration (Theorem 3.4). One can also use faster solvers,
e.g., FISTA with restart [30], and solvers that suit the subproblem structure, e.g., cyclic
proximal BCD (Theorem 3.5). Although the error in solving z-subproblems appears
to be neither summable nor square summable, convergence can still be established.
But first, we summarize this method in Algorithm 3.1.

Theorem 3.4. Take Assumption 1. Suppose in iPrePDHG, or Algorithm 3.1, we
choose S as the proximal-gradient step with stepsize γ ∈ (0, 2λmin(M2)

λ2
max(M2)) and repeat it p

times, where p ≥ 1. Then, zk+1 = zk+1
p is an approximate solution to the z-subproblem

up to a bounded relative error in (3.8) for

c = c(p) =
1
γ + λmax(M2)

1− τp (τp + τp−1),(3.9)

where τ =
√

1− γ(2λmin(M2)− γλ2
max(M2)) < 1.

ACCELERATION OF PRIMAL-DUAL METHODS 7

Algorithm 3.1 Inexact Preconditioned PDHG or iPrePDHG
Input: f, g, A in (1.1), preconditioners M1 and M2, initial (x0, z0), z-subproblem
iterator S, inner iteration number p, max outer iteration number K.
Output: (xK , zK)
1: for k ← 0, 1, ...,K − 1 do
2: xk+1 = ProxM1

f (xk −M−1
1 AT zk);

3: zk+1
0 = zk;

4: for i← 0, 1, ..., p− 1 do
5: zk+1

i+1 = S(zk+1
i , xk+1, xk);

6: end for
7: zk+1 = zk+1

p ; . which approximates ProxM2
g∗ (zk +M−1

2 A(2xk+1 − xk))
8: end for

Proof. The z-subproblem in (3.4) is of the form

minimize
z∈Rm

h1(z) + h2(z),(3.10)

for h1(z) = g∗(z) and h2(z) = 1
2‖z − z

k −M−1
2 A(2xk+1 − xk)‖2M2

. With our choice of
S as the proximal-gradient descent step, the inner iterations are

zk+1
0 = zk,

zk+1
i+1 = Proxγh1(zk+1

i − γ∇h2(zk+1
i)), i = 0, 1, ..., p− 1,(3.11)

Concerning the last iterate zk+1 = zk+1
p , we have from the definition of Proxγh1 that

0 ∈ ∂h1(zk+1
p) +∇h2(zk+1

p−1) + 1
γ

(zk+1
p − zk+1

p−1).

Compare this with (3.7) and use zk+1 = zk+1
p to get

εk+1 = 1
γ

(zk+1
p − zk+1

p−1) +∇h2(zk+1
p−1)−∇h2(zk+1

p).

It remains to show that εk+1 satisfies (3.8).
Let zk+1

? be the solution of (3.10), α = λmin(M2), and β = λmax(M2). Then h1(z)
is convex and h2(z) is α-strongly convex and β-Lipschitz differentiable. Consequently,
[3, Prop. 26.16(ii)] gives

‖zk+1
i − zk+1

? ‖ ≤ τ i‖zk+1
0 − zk+1

? ‖, ∀i = 0, 1, ..., p,

where τ =
√

1− γ(2α− γβ2).
Let ai = ‖zk+1

i − zk+1
? ‖. Then, ai ≤ τ ia0. We can derive

‖εk+1‖ ≤ (1
γ

+ β)‖zk+1
p − zk+1

p−1‖ ≤ (1
γ

+ β)(ap + ap−1) ≤ (1
γ

+ β)(τp + τp−1)a0.

(3.12)

On the other hand, we have

‖zk+1 − zk‖ ≥ a0 − ap ≥ (1− τp)a0.(3.13)

8 Y. LIU, Y. XU, AND W. YIN

Combining these two equations yields

‖εk+1‖ ≤ c‖zk+1 − zk‖,

where c is given in (3.9).
Theorem 3.4 uses the iterator S that is the proximal-gradient step. It is straightforward
to extend its proof to S being the FISTA step. We omit the proof.

In our next theorem, we let S be the iterator of one epoch of the cyclic proximal
BCD method. A BCD method updates one block of coordinates at a time while fixing
the remaining blocks. In one epoch of cyclic BCD, all the blocks of coordinates are
sequentially updated, and every block is updated once. In cyclic proximal BCD, each
block of coordinates is updated by a proximal-gradient step, just like (3.11) except
only the chosen block is updated each time. When h1 is block separable, each update
costs only a fraction of updating all the blocks together. When different blocks are
updated one after another, the Gauss-Seidel effect brings more progress. In addition,
since the Lipschitz constant of each block gradient of h2 is typically less than than
that of ∇h2, one can use a larger stepsize γ and get potentially even faster progress.
Therefore, the iterator of cyclic proximal BCD is a better choice for S.

Theorem 3.5. Let Assumption 1 hold and g be block separable, i.e.,
z = (z1, z2, ..., zl) and g(z) =

∑l
i=1 gi(zi). Suppose in iPrePDHG, or Algorithm 3.1,

we choose S as the iterator of cyclic proximal BCD with stepsize γ satisfying

0 < γ ≤ min
{

2λmin(M2))
λ2

max(M2)) ,
1−

√
1− γ(2λmin(M2)− γλ2

max(M2))
4
√

2γlλmax(M2)
,

1
4lλmax(M2) ,

2lλmax(M2)

17lλmax(M2) + 2(1−
√

1−γ(2λmin(M2)−γλ2
max(M2))

γ)2

}
,

and we set p ≥ 1. Then, zk+1 = zk+1
p is an approximate solution to the z-subproblem

up to a bounded relative error (3.8) for

c = c(p) =
(lλmax(M2) + 1

γ)(ρp + ρp−1)
1− ρp ,(3.14)

where ρ = 1−
(

1−
√

1−γ(2λmin(M2)−γλ2
max(M2))

)2

2γ < 1.
Proof. See Appendix B.

3.4. Global convergence of iPrePDHG. In this subsection, we proceed to
establishing the convergence of Algorithm 3.1. Our approach first transforms Algo-
rithm 3.1 into an equivalent algorithm in Proposition 3.6 below and then proves its
convergence in Theorems 3.9 and 3.10 below.

First, let us show that PrePDHG (3.3) is equivalent to an algorithm applied on
the dual problem (1.2). This equivalence is analogous to the equivalence between
PDHG (3.2) and Linearized ADMM applied to the dual problem (1.2), shown in [15]).
Specifically, PrePDHG is equivalent to

zk+1 = ProxM2
g∗ (zk +M−1

2 AM−1
1 (−AT zk − yk + uk)),

yk+1 = ProxM
−1
1

f∗ (uk −AT zk+1),

uk+1 = uk −AT zk+1 − yk+1.

(3.15)

ACCELERATION OF PRIMAL-DUAL METHODS 9

When M1 = 1
τ I,M2 = λI, (3.15) reduces to Linearized ADMM, also known as Split

Inexact Uzawa [42].
Furthermore, iPrePDHG in Algorithm 3.1 is equivalent to (3.15) with inexact

subproblems, which we present in Algorithm 3.2.

Algorithm 3.2 Inexact Preconditioned ADMM
Input: f∗ : Rn → R, g∗ : Rm → R, A ∈ Rm×n, preconditioners M1 and M2,
initial vector (z0, y0, u0), subproblem solver S for the z-subproblem in (3.15), number
of inner loops p, number of outer iterations K.
Output: (zK , yK , uK)
1: for k ← 0, 1, ...,K − 1 do
2: zk+1

0 = zk;
3: for i← 0, 1, ..., p− 1 do
4: zk+1

i+1 = S(zk+1
i , yk, uk);

5: end for
6: zk+1 = zk+1

p ; . approximate ProxM2
g∗ (zk +M−1

2 AM−1
1 (−AT zk − yk + uk)).

7: yk+1 = ProxM
−1
1

f∗ (uk −AT zk+1);
8: uk+1 = uk −AT zk+1 − yk+1;
9: end for

Let us define the following generalized augmented Lagrangian for (3.15):

L(z, y, u) = g∗(z) + f∗(y) + 〈−AT z − y,M−1
1 u〉+ 1

2‖A
T z + y‖2

M−1
1
.(3.16)

Inspired by [40], we use (3.16) as the Lyapunov function to establish convergence of
Algorithm 3.2 and, equivalently, the convergence of Algorithm 3.1.

Proposition 3.6. Under Assumption 1 and the transforms uk = M1x
k, yk+1 =

uk−AT zk−uk+1, PrePDHG (3.3) is equivalent to (3.15), and iPrePDHG in Algorithm
3.1 is equivalent to Algorithm 3.2.

Proof. Set uk = M1x
k, yk+1 = uk −AT zk − uk+1. Then (2.2) and (3.3) yield

yk+1 = M1x
k −AT zk −M1x

k+1 = ProxM
−1
1

f∗ (uk −AT zk),

and

uk+1 = uk −AT zk − yk+1,

zk+1 = ProxM2
g∗ (zk +M−1

2 AM−1
1 (−AT zk − yk+1 + uk+1)).

If the z-update is performed first, then we arrive at (3.15).
In iPrePDHG or Algorithm 3.1, we are solving the z-subproblem of PrePDHG

(3.3) approximately to the bounded relative error in Definition 3.3. This is equivalent
to doing the same to the z-subproblem of (3.15), which yields Algorithm 3.2.

We establish convergence under the following additional assumptions.
Assumption 2.
1. f(x) is µf−strongly convex.
2. g∗(z) + f∗(−AT z) is coercive, i.e., lim‖z‖→∞ g∗(z) + f∗(−AT z) =∞.
3. g∗(z) is a KŁ function.

10 Y. LIU, Y. XU, AND W. YIN

Theorem 3.7. Take Assumptions 1 and 2. Choose any preconditioners M1,M2
and inner iteration number p such that

C1 = 1
2M

−1
1 − ‖M1‖

µ2
f

In×n � 0,(3.17)

C2 = M2 −
1
2AM

−1
1 AT − c(p)Im×m � 0,(3.18)

where c(p) depends on the z-subproblem iterator S and M2 (e.g., (3.9) and (3.14)).
Define Lk := L(zk, yk, uk). Then, Algorithm 3.2 satisfies the following sufficient
descent and lower boundedness properties, respectively:

Lk − Lk+1 ≥ ‖yk − yk+1‖2C1
+ ‖zk − zk+1‖2C2

,(3.19)
Lk ≥ g∗(z?) + f∗(−AT z?) > −∞.(3.20)

Proof. Since the z-subproblem of Algorithm 3.2 is solved to the bounded relative
error in Def. 3.3, we have

0 ∈ ∂g∗(zk+1) +M2(zk+1 − zk −M−1
2 AM−1

1 (−AT zk − yk + uk)) + εk+1,(3.21)

where εk+1 satisfies (3.8):

‖εk+1‖ ≤ c(p)‖zk+1 − zk‖.(3.22)

The y and u updates produce

0 = ∇f∗(yk+1) +M−1
1 (yk+1 − uk +AT zk+1) = ∇f∗(yk+1)−M−1

1 uk+1,(3.23)
uk+1 = uk −AT zk+1 − yk+1.(3.24)

In order to show (3.19), let us write

g∗(zk) ≥ g∗(zk+1)
+ 〈M2(zk − zk+1) +AM−1

1 (−AT zk − yk + uk)− εk+1, zk − zk+1〉,
f∗(yk) ≥ f∗(yk+1) + 〈M−1

1 uk+1, yk − yk+1〉,

Assembling these inequalities with (3.22) gives us

Lk − Lk+1 ≥ ‖zk − zk+1‖2M2−c(p)Im×m

+ 〈AM−1
1 (−AT zk − yk + uk), zk − zk+1〉+ 〈M−1

1 uk+1, yk − yk+1〉
+ 〈−AT zk − yk,M−1

1 uk〉 − 〈AT zk+1 − yk+1,M−1
1 (uk −AT zk+1 − yk+1)〉

+ 1
2‖A

T zk + yk‖2
M−1

1
− 1

2‖A
T zk+1 + yk+1‖2

M−1
1

= ‖zk − zk+1‖2M2−c(p)Im×m

+ 〈AM−1
1 (−AT zk − yk), zk − zk+1〉+ 〈M−1

1 uk+1, yk − yk+1〉(A)
+ 〈−yk,M−1

1 uk〉 − 〈−yk+1,M−1
1 uk〉(B)

+ 1
2‖A

T zk + yk‖2
M−1

1
− 3

2‖A
T zk+1 + yk+1‖2

M−1
1
,

where the terms in (A) and (B) simplify to

〈AM−1
1 (−AT zk − yk), zk − zk+1〉+ 〈M−1

1 (−AT zk+1 − yk+1), yk − yk+1〉.(3.25)

ACCELERATION OF PRIMAL-DUAL METHODS 11

Apply the following cosine rule on the two inner products above:

〈a− b, a− c〉M−1
1

= 1
2‖a− b‖

2
M−1

1
+ 1

2‖a− c‖
2
M−1

1
− 1

2‖b− c‖M
−1
1
.

Set a = AT zk, c = AT zk+1, and b = −yk to obtain

〈AM−1
1 (−AT zk − yk), zk − zk+1〉 = −1

2‖A
T zk + yk‖2

M−1
1
− 1

2‖A
T zk −AT zk+1‖2

M−1
1

+ 1
2‖y

k +AT zk+1‖2
M−1

1
.(3.26)

Set a = yk+1, c = yk, and b = −AT zk+1 to obtain

〈M−1
1 (−AT zk+1 − yk+1), yk − yk+1〉 = 1

2‖A
T zk+1 + yk+1‖2

M−1
1

+ 1
2‖y

k − yk+1‖M−1
1

− 1
2‖A

T zk+1 + yk‖2
M−1

1
.(3.27)

Combining (3.25), (3.26), and (3.27) yields

Lk − Lk+1 ≥ ‖zk − zk+1‖2
M2− 1

2AM
−1
1 AT−c(p)Im×m

+ ‖yk − yk+1‖21
2M

−1
1

− ‖AT zk+1 + yk+1‖2
M−1

1
.(3.28)

Since f is µf -strongly convex, we know that ∇f∗ is 1
µf
−Lipschitz continuous. Conse-

quently,

‖AT zk+1 + yk+1‖2
M−1

1
= ‖uk − uk+1‖2

M−1
1
≤ 1
λmin(M−1

1)
‖M−1

1 (uk − uk+1)‖2

(3.23)
≤ ‖M1‖

µ2
f

‖yk − yk+1‖2.(3.29)

Combining (3.28) and (3.29) gives us (3.19).
Now, to show (3.20), we use (3.23) and smoothness of f∗ to get

f∗(yk) ≥ f∗(−AT zk) + 〈M−1
1 uk, yk +AT zk〉 − 1

2µf
‖AT zk + yk‖2.

Hence, we arrive at

Lk = g∗(zk) + f∗(yk) + 〈−AT zk − yk,M−1
1 uk〉+ 1

2‖A
T zk + yk‖2

M−1
1

≥ g∗(zk) + f∗(−AT zk) + 1
2‖A

T zk + yk‖2
M−1

1
− 1

2µf
‖AT zk + yk‖2.(3.30)

Since C1 � 0 if and only if µf >
√

2‖M1‖, (3.20) follows.
Next, we provide a simple choice of M1,M2, and p that ensures the positive

definiteness of C1 and C2 in Theorem 3.7.
Lemma 3.8. In order to ensure (3.17) and (3.18), it suffices to set M1 = 1

τ In×n
where τ < 1√

2µf , M2 = τAAT + γIm×m with any γ > 0, and p is large enough such
that c(p) < γ.

12 Y. LIU, Y. XU, AND W. YIN

Proof. SinceM1 = 1
τ In×n, it is evident that C1 � 0 if and only if τ < 1√

2µf . With
M1 = 1

τ In×n and M2 = τAAT + Im×m, we have

C2 = 1
2τAA

T + (γ − c(p))Im×m,

since c(p) ∝ αp for some 0 < α < 1, we know that there exists p0 such that C2 � 0 for
any p ≥ p0.

We conclude this section by showing that (xk, zk) in Algorithm 3.1 converges
subsequentially to a primal-dual solution pair of (1.1) and (1.2).

Theorem 3.9. Let the assumptions in Theorem 3.7 hold. Then, (xk, zk) in Algo-
rithm 3.1 is bounded, and any cluster point of {xk, zk} is a primal-dual solution pair
of (1.1) and (1.2).

Proof. According to Theorem 3.6, it is sufficient to show that {M−1
1 uk, zk} is

bounded, and its cluster points are primal-dual solution pairs of (1.1).
Since Lk is nonincreasing, (3.30) tells us that

g∗(zk) + f∗(−AT zk) + 1
2‖A

T zk + yk‖2
M−1

1
≤ L0 < +∞.

Since g∗(z) + f∗(−AT z) is coercive, {zk} is bounded, and, by the boundedness of
{AT zk + yk}, {yk} is also bounded. Furthermore, (3.23) gives us

‖M−1
1 (uk − u0)‖ ≤ 1

µf
‖yk − y0‖.

Therefore, {M−1
1 uk} is bounded, too.

Let (zc, yc, uc) be a cluster point of {zk, yk, uk}. We shall show (zc, yc, uc) is a
saddle point of L(z, y, u), i.e.,

0 ∈ ∂L(zc, yc, uc),(3.31)

or equivalently,

0 ∈ ∂g∗(zc)−AM−1
1 uc,

0 = ∇f∗(yc)−M−1
1 uc,

0 = AT zc + yc,

which ensures (M−1
1 uc, zc) to be a primal-dual solution pair of (1.1).

In order to show (3.31), we first notice that (3.16) gives

∂xL(zk+1, yk+1, uk+1) = ∂g∗(zk+1)−AM−1
1 uk+1 +AM−1

1 (AT zk+1 + yk+1),
∇yL(zk+1, yk+1, uk+1) = ∇f∗(yk+1)−M−1

1 uk+1 +M−1
1 (AT zk+1 + yk+1),

∇uL(zk+1, yk+1, uk+1) = M−1
1 (−AT zk+1 − yk+1).

Comparing these with the optimality conditions (3.21), (3.23), and (3.24), we have

dk+1 = (dk+1
z , dk+1

y , dk+1
u) ∈ ∂L(zk+1, yk+1, uk+1),

ACCELERATION OF PRIMAL-DUAL METHODS 13

where

dk+1
z = M2(zk − zk+1) + 2AM−1

1 (uk − uk+1)−AM−1
1 (uk−1 − uk)− εk+1,

dk+1
y = M−1

1 (uk − uk+1),
dk+1
u = M−1

1 (uk+1 − uk).

Since (3.19) and (3.20) imply zk − zk+1, yk − yk+1 → 0, (3.23) gives uk − uk+1 → 0.
Combine these with (3.8), we have dk → 0.

Finally, let us take a subsequence {zks , yks , uks} → (zc, yc, uc). Since dks → 0
as s → +∞, [36, Def. 8.3] and [36, Prop. 8.12] yield (3.31), which tells us that
(M−1

1 uc, zc) is a primal-dual solution pair of (1.1).
We can show that the whole sequence (xk, zk) in Algorithm 3.1 converges. Since

the proof consists of a standard technique of using the KŁ property in Assumption 2,
which is not relevant to the main idea of this subsection, we leave it to Appendix C.

Theorem 3.10. Let the assumptions in Theorem 3.7 hold. Then, {xk, zk} in
Algorithm 3.1 converges to a primal-dual solution pair of (1.1).

Proof. See Appendix C.

4. Numerical experiments. In this section, we compare our iPrePDHG (Al-
gorithm 3.1) with (original) PDHG (3.2) and diagonally-preconditioned PDHG (DP-
PDHG) [32]. We consider four popular applications of PDHG: TV-L1 denoising, graph
cuts, estimation of earth mover’s distance, and CT reconstruction.

For the preconditioners M1 and M2 in iPrePDHG, We will choose M1 = 1
τ In×n

and M2 = τAAT , which corresponds to ADMM and M2 is optimal (see subsection
3.2). The number of inner loops p is taken from {1, 2, 3}. Although these choices may
be more aggressive than what’s presented in Lemma 3.8 and f may not be strongly
convex in our experiments, we still observe significant speedup compared to other
algorithms.

When we write these examples in the form of (1.1), the matrix A (or a part of A)
is one of the following operators:
Case 1: 2D discrete gradient operator D : RM×N → R2M×N :

For images of size M ×N and grid step size h, we have.

(Du)i,j =
(

(Du)1
i,j

(Du)2
i,j

)
,

where

(Du)1
i,j =

{
1
h (ui+1,j − ui,j) if i < M,

0 if i = M,

(Du)2
i,j =

{
1
h (ui,j+1 − ui,j) if j < N,

0 if j = N.

Case 2: Weighted gradient operator Dw : RM×N → R2M×N :

Dw = diag(w)D,

where w ∈ (R+)2MN is a weight vector.

14 Y. LIU, Y. XU, AND W. YIN

Case 3: 2D discrete divergence operator: div: R2M×N → RM×N given by

div(p)i,j = h(p1
i,j − p1

i−1,j + p2
i,j − p2

i,j−1),(4.1)

where p = (p1, p2)T ∈ R2M×N , p1
0,j = p1

M,j = 0 and p2
i,0 = p2

i,N = 0 for
i = 1, ...,M , j = 1, ..., N .

To take advantages of the finite-difference structure of these operators, we let S
be the iterator of cyclic proximal BCD in Algorithm 3.1. We split {1, 2, ...m} into 2
blocks (for case 3) or 4 blocks (for cases 1 and 2), which are inspired by the popular
red-black ordering [37] for solving sparse linear system.

According to Theorem 3.5, running finitely many epochs of cyclic proximal BCD
gives us a bounded relative error in Def. 3.3. We expect that this solver brings faster
overall convergence. Specifically, when g∗ is linear (or equivalently, g is a δ function),
the z-subproblem in PrePDHG reduces to a linear system with a structured sparse
matrix AAT . Therefore, Gradient Descent amounts to the Richardson method [35, 37],
and cyclic proximal BCD is equivalent to the Gauss-Seidel method [17, 37]. The
following two claims tell us that S in Algorithm 3.1 has a closed form, so Algorithm
3.1 is easy to implement. Furthermore, each execution of S can use parallel computing.

Fig. 1. two-block ordering in Claim 4.1 Fig. 2. four-block ordering in Claim 4.2

Claim 4.1. When A = div (i.e. AT = −D) and M2 = τAAT , for z ∈ RM×N , we
separate z into two block zb, zr where

zb := {zi,j | i+ j is even}, zr := {zi,j | i+ j is odd},

for 1 ≤ i ≤ M , 1 ≤ j ≤ N . If g(z) = Σi,jgi,j(zi,j) and proxλg∗
i,j

have closed-form
solutions for all 1 ≤ i ≤ M , 1 ≤ j ≤ N and λ > 0, then S as the iterator of cyclic
proximal BCD in Algorithm 3.1 has a closed form and computing S is parallelizable.

Proof. As illustrated in Fig. 1, every black node is connected to its neighbor
red nodes, so we can update all the coordinates corresponding to the black nodes in
parallel, while those corresponding to the red nodes are fixed, and vice versa. See
Appendix D for a complete explanation.

ACCELERATION OF PRIMAL-DUAL METHODS 15

Claim 4.2. When A = D or A = Dw (i.e. AT = −div or AT = −div diag(w))
and M2 = τAAT , for z = (z1, z2)T ∈ R2M×N , we separate z into four blocks zb, zr,
zy and zg, where

zb = {z1
i,j | i is odd}, zr = {z1

i,j | i is even},
zy = {z2

i,j | j is odd}, zg = {z2
i,j | j is even},

for 1 ≤ i ≤ M , 1 ≤ j ≤ N . If g(z) = Σi,jgi,j(zi,j) and proxλg∗
i,j

have closed-form
solutions for all 1 ≤ i ≤ M , 1 ≤ j ≤ N and λ > 0, then S as the iterator of cyclic
proximal BCD in Algorithm 3.1 has a closed form and computing S is parallelizable.

Proof. In Figure 2, the 4 blocks are in 4 different colors. The coordinates corre-
sponding to nodes of the same color can be updated in parallel, while the rest are
fixed. See Appendix D for details.

In Table 1, Table 2, Fig. 7, and Table 3, PDHG denotes original PDHG in (3.2)
without any preconditioning; DP-PDHG denotes the diagonally-preconditioned PDHG
in [32], PrePDHG denotes Preconditioned PDHG in (3.3) where the (k + 1)th z-
subproblem is solved until ‖zk−zk+1‖2

max{1,‖zk+1‖2} < 10−5 using the TFOCS [4] implementation
of FISTA with restart; iPrePDHG (S=BCD) and iPrePDHG (S=FISTA) denote our
iPrePDHG in Algorithm 3.1 with the iterator S being cyclic proximal BCD or FISTA
with restart, respectly. All the experiments were performed on MATLAB R2018a on
a MacBook Pro with a 2.5 GHz Intel i7 processor and 16GB of 2133MHz LPDDR3
memory.

A comparison between PDHG and DP-PDHG is presented in [32] on TV-L1

denoising and graph cuts, and in [38] on CT reconstruction. A PDHG algorithm is
proposed to estimate earth mover’s distance (or optimal transport) in [25]. In order
to provide a direct comparison, we use their problem formulations.

4.1. Total variation based image denoising. The following problem is known
as the (discrete) TV-L1 model for image denoising:

minimizeu Φ(u) = ‖Du‖1 + λ‖u− b‖1,

where D is the 2D discrete gradient operator with h = 1, b ∈ RM×N is a noisy input
image, and λ is a regularization parameter. In our experiment we input a 1024× 1024
image with noise level 0.15 and set λ = 1; see Fig. 3. We run the algorithms until
δk := |Φk−Φ?|

|Φ?| < 10−6, where Φk is the objective value at kth iteration and Φ∗ is the
optimal objective value obtained by calling CVX [11, 20].

Observed performance is summarized in Table 1, where the best results for
τ ∈ {10, 1, 0.1, 0.01, 0.001} and p ∈ {1, 2, 3} are presented. Our iPrePDHG (S=BCD)
is significantly faster than the other three algorithms.

Remarkably, our algorithm uses fewer outer iterations than PrePDHG under the
stopping criterion ‖zk−zk+1‖2

max{1,‖zk+1‖2} < 10−5, as this kind of stopping criteria may become

looser as zk is closer to z?. In this example, ‖zk−zk+1‖2
max{1,‖zk+1‖2} < 10−5 only requires 1

inner iteration of FISTA when Outer Iter ≥ 368, while as high as 228 inner iterations
on average during the first 100 outer iterations. In comparison, our algorithm uses
fewer outer iterations while each of them also costs less.

In addition, the diagonal preconditioner given in [32] appears to help very little
when A = D. In fact, M1 = diag(Σi|Ai,j |) will be 4In and M2 = diag(Σj |Ai,j |) will be

16 Y. LIU, Y. XU, AND W. YIN

2Im if we ignore the Neumann boundary condition. Therefore, DP-PDHG performs
even worse than PDHG.

Method Parameters Outer Iter Runtime(s)
PDHG τ = 0.01,M1 = 1

τ
In,M2 = τ‖D‖2Im 2990 114.2576

DP-PDHG M1 = diag(Σi|Di,j |),M2 = diag(Σj |Di,j |) 8856 329.7890
PrePDHG

τ = 0.1,M1 = 1
τ
In,M2 = τDDT 963 5706.2837(ADMM)

iPrePDHG
τ = 0.01,M1 = 1

τ
In,M2 = τDDT , p = 1 541 26.2704(S=BCD)

Table 1
TV-L1 denoising test. PDHG is original PDHG. DP-PDHG uses diagonal preconditioning.

PrePDHG uses non-diagonal preconditioning. iPrePDHG (S=BCD) is our algorithm that uses both
non-diagonal preconditioning and an iterator S instead of solving the z-subproblem.

Fig. 3. Noisy image Fig. 4. Denoising by iPrePDHG (S=BCD)

4.2. Graph cuts. The total-variation-based graph cut model involves minimizing
a weighted TV energy:

minimize ‖Dwu‖1 + 〈u, ωu〉
subject to 0 ≤ u ≤ 1,

where wu ∈ RM×N is a vector of unary weights, wb ∈ R2MN is a vector of binary
weights, andDw = diag(wb)D forD being the 2D discrete gradient operator with h = 1.
Specifically, we have wui,j = α(‖Ii,j−µf‖2−‖Ii,j−µb‖2), wb,1i,j = exp(−β|Ii+1,j−Ii,j |),
and wb,2i,j = exp(−β|Ii,j+1 − Ii,j |). In our experiment, the image has a size 660× 720,
and we set α = 1/2, β = 10, µf = [0; 0; 1] (for the blue foreground) and µb = [0; 1; 0]
(for the green background). We run all algorithms until δk := |Φk−Φ?|

|Φ?| < 10−8, where
Φk is the objective value at the kth iteration and Φ∗ is the optimal objective value
obtained by running CVX.

The best results of τ ∈ {10, 1, 0.1, 0.01, 0.001} and p ∈ {1, 2, 3} are summarized
in Table 2, where we can see that our iPrePDHG (S=BCD) is the fastest. It is also
worth mentioning that its number of outer iterations is close to that of PrePDHG,
which solves z-subproblem much more accurately.

ACCELERATION OF PRIMAL-DUAL METHODS 17

Method Parameters Outer Iter Runtime(s)
PDHG τ = 1,M1 = 1

τ
In,M2 = τ‖Dw‖2Im 5529 140.5777

DP-PDHG M1 = diag(Σi|Dwi,j |), 3571 104.5392
M2 = diag(Σj |Dwi,j |)

PrePDHG
τ = 10,M1 = 1

τ
In,M2 = τDwD

T
w 282 938.3787(ADMM)

iPrePDHG
τ = 10,M1 = 1

τ
In,M2 = τDwD

T
w, p = 2 411 14.9663(S=BCD)

Table 2
Graph cut test

Fig. 5. Input image Fig. 6. Graph cut by iPrePDHG (S=BCD)

4.3. Earth mover’s distance. Earth mover’s distance is useful in image pro-
cessing, computer vision, and statistics [23, 28, 31]. A recent method [25] to compute
earth mover’s distance is based on

(4.2) minimize ‖m‖1,2
subject to div(m) + ρ1 − ρ0 = 0,

where m ∈ R2M×N is the sought flux vector on the M ×N grid, and ρ0, ρ1 represents
two mass distributions on the M ×N grid. The setting in our experiment here is the
same with that in [25], i.e. M = N = 256, h = N−1

4 , and for ρ0 and ρ1 see Fig. 8.
Since the iterates mk may not satisfy the linear constraint, the objective Φ(m) =

I{m|div(m)=ρ0−ρ1} + ‖m‖1,2 is not comparable. Instead, we compare ‖mk‖1,2 and
the constraint violation until k = 100000 outer iterations in Fig. 7, where we set
τ = 3 × 10−6 as in [25], and σ = 1

τ‖div‖2 . In Fig. 7, we can see that our algorithm
provides much lower constraint violation and much more faithful earth mover’s distance
‖m‖1,2. Fig. 8 shows the solution obtained by our iPrePDHG (S=BCD), where m
is the flux that moves the standing cat ρ1 into the crouching cat ρ0. DP-PDHG
and PrePDHG are extremely slow in this example. Similar to 4.1, when A = div,
the diagonal preconditioners proposed in [32] are approximately equivalent to fixed
constant parameters τ = 1

2h , σ = 1
4h and they lead to extremely slow convergence. As

for PrePDHG, it suffers from the high cost per outer iteration.
It is worth mentioning that unlike [25], the algorithms in our experiments are

not parallelized. On the other hand, in our iPrePDHG (S=BCD), iterator S can
be parallelized (which we did not implement). Therefore, one can expect a further
speedup by a parallel implementation.

18 Y. LIU, Y. XU, AND W. YIN

0 50 100 150 200 250 300 350

Runtime (s)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Results on EMD estimation and constraint violation during 100000 outer iterations

Fig. 7. For PDHG, τ = 3 × 10−6, σ = 1
τ‖div‖2 ; For iPrePDHG (S=BCD), τ = 3 × 10−6,

M1 = τ−1In, M2 = τdivdivT, p = 2. ‖m∗|‖1,2 is obtained by calling CVX.

Fig. 8. ρ0, ρ1 are the white standing cat and the black crouching cat, respectively. Both images
are 256× 256, and the earth mover’s distance between ρ0 and ρ1 is 0.6718.

4.4. CT reconstruction. We test solving the following optimization problem
for CT image reconstruction:

(4.3) minimize Φ(u) = 1
2‖Ru− b‖

2
2 + λ‖Du‖1,

ACCELERATION OF PRIMAL-DUAL METHODS 19

where R ∈ R13032×65536 is a system matrix for 2D fan-beam CT with a curved detector,
b = Rutrue ∈ R13032 is a vector of line-integration values, and we want to reconstruct
utrue ∈ RMN , where M = N = 256. D is the 2D discrete gradient operator with h = 1,
and λ = 1 is a regularization parameter. By using the fancurvedtomo function from
the AIR Tools II [22] package, we generate a test problem where the projection angles
are 0◦, 10◦, . . . , 350◦, and for all the other input parameters we use the default values.

Following [38], we formulate the problem (4.3) in the form of (1.1) by taking

g

(
p
q

)
= 1

2‖p− b‖
2
2 + λ‖q‖1, f(u) = 0, A =

(
R
D

)
,(4.4)

By using this formulation, we avoids inverting the matrices R and D.
Since the block structure of AAT is rather complicated, if we naively choose

M1 = 1
τ In and M2 = τAAT like in the previous three experiments, it becomes hard

to find a fast subproblem solver for the z-subproblem. In Table 3, we report a TFOCS
implementation of FISTA for solving the z-subproblem and the overall convergence is
very slow.

Instead, we propose to choose

M1 = 2
τ
In, M2 =

(
τ‖R‖2Im−2n 0

0 τDDT

)
(4.5)

or

M1 = diag(Σi|Ri,j |) + 1
τ
In, M2 =

(
diag(Σj |Ri,j |) 0

0 τDDT

)
.(4.6)

These choices satisfy (3.5), and have simple block structures, a fixed epoch of S as
cyclic proximal BCD iterators gives fast overall convergence. Note that (4.6) is a little
slower but avoids the need of estimating ‖R‖.

We summarize the numerical results in Table 3. All the algorithms are executed
until δk := |Φk−Φ?|

|Φ?| < 10−4, where Φk is the objective value at the kth iteration
and Φ∗ is the optimal objective value obtained by calling CVX. The best results of
τ ∈ {10, 1, 0.1, 0.01, 0.001} and p ∈ {1, 2, 3} are summarized in Table 3, for iPrePDHG
(S=FISTA) with M2 = τAAT , the result for p = 100 is also reported (here we use the
TFOCS implementation of FISTA).

5. Conclusion. We have developed an approach to accelerate PDHG and ADMM
in this paper. Our approach uses effective preconditioners to significantly reduce the
number of iterations. In general, most effective preconditioners are non-diagonal and
cause very difficult subproblems in PDHG and ADMM, so previous arts are restrictive
with less effective diagonal preconditioners. However, we deal with those difficult
subproblems by “solving” them highly inexactly, running just very few epochs of
proximal BCD iterations. In all of our numerical tests, our algorithm needs relatively
few outer iterations (due to effective preconditioners) and has the shortest total running
time, achieving 7–95 times speedup over the next best algorithm.

Theoretically, we show a fixed number of inner iterations suffice for global conver-
gence though a new relative error condition. The number depends on various factors
but is easy to choose in all of our numerical results.

There are still open questions left for us to address in the future: (a) Depending
on problem structures, there are choices of preconditioners that are better than
M1 = 1

τ In,M2 = τAAT (the ones that lead to ADMM if the subproblems are solved

20 Y. LIU, Y. XU, AND W. YIN

Method Parameters Outer Iter Runtime(s)
PDHG τ = 0.001,M1 = 1

τ
In,M2 = τ‖A‖2Im 364366 3663.0348

DP-PDHG M1 = diag(Σi|Ai,j |), 70783 713.9865
M2 = diag(Σj |Ai,j |)

PrePDHG
τ = 0.01,M1 = 1

τ
In,M2 = τAAT - > 104

(ADMM)
iPrePDHG τ = 0.001,M1 = 1

τ
In, - > 104

(S=FISTA) M2 = τAAT , p = 1, 2, or 3
iPrePDHG τ = 0.01,M1 = 1

τ
In, - > 104

(S=FISTA) M2 = τAAT , p = 100

iPrePDHG τ = 0.01,M1 = 2
τ
In,

587 7.5365
(S=BCD) M2 =

(
τ‖R‖2 0

0 τDDT

)
, p = 2

iPrePDHG τ = 0.01,M1 = diag(Σi|Ri,j |) + 1
τ
In,

858 10.3517
(S=BCD) M2 =

(
diag(Σj |Ri,j |) 0

0 τDDT

)
, p = 2

Table 3
CT reconstruction

exactly). For example, in CT reconstruction, our choices of M1 and M2 have much
faster overall convergence. (b) Is it possible to show Algorithm 3.1 converges even with
S chosen as the iterator of faster accelerated solvers like APCG [26], NU_ACDM [1],
and A2BCD [21]? (c) In general, how to accelerate a broader class of algorithms by
integrating effective preconditioning and cheap inner loops while still ensuring global
convergence?

Appendix A. ADMM as a special case of PrePDHG.

In this section we show that if we choose M1 = 1
τ and M2 = τAAT in PrePDHG

(3.3), then it is equivalent to ADMM on the primal problem (1.1).
By Theorem 1 of [41], we know that ADMM is primal-dual equivalent, in the

sense that one can recover primal iterates from dual iterates and vice versa. Therefore,
it suffices to show that M1 = 1

τ and M2 = τAAT in PrePDHG (3.3) on the primal
problem is equivalent to ADMM on the dual problem (1.2).

In Theorem 3.6 we have shown that, under an appropriate change of variables,
PrePDHG on the primal is equivalent to applying (3.15) to the dual. As a result,
we just need to demonstrate that the latter is exactly ADMM on the dual when
M1 = 1

τ In×n and M2 = τAAT .
For the z-update in (3.15), we have

zk+1 = arg min
z∈Rm

{g∗(z)− τ〈z − zk, A(−AT zk − yk + uk)〉+ τ

2‖z − z
k‖2AAT }

= arg min
z∈Rm

{g∗(z)− τ〈z − zk, A(−yk + uk)〉+ τ

2‖z‖
2
AAT }

= arg min
z∈Rm

{g∗(z) + τ〈z,A(yk − uk)〉+ τ

2‖A
T z‖2}

= arg min
z∈Rm

{g∗(z) + τ〈AT z,−uk〉+ τ

2‖A
T z + yk‖2}

= arg min
z∈Rm

{g∗(z) + τ〈−AT z − yk, uk〉+ τ

2‖A
T z + yk‖2}.(A.1)

ACCELERATION OF PRIMAL-DUAL METHODS 21

and for the y-update we have

yk+1 = ProxM
−1
1

f∗ (uk −AT zk+1)

= arg min
y∈Rn

{f∗(y) + τ

2‖y − u
k +AT zk+1‖2}

= arg min
y∈Rn

{f∗(y) + τ〈−AT zk+1 − y, uk〉+ τ

2‖A
T zk+1 + y‖2}.(A.2)

Define vk = τuk, (A.1), (A.2), and the u−update in (3.15) become

zk+1 = arg min
z∈Rm

{g∗(z) + 〈−AT z − yk, vk〉+ τ

2‖A
T z + yk‖2},

yk+1 = arg min
y∈Rn

{f∗(y) + 〈−AT zk+1 − y, vk〉+ τ

2‖A
T zk+1 + y‖2},

vk+1 = vk − τ(AT zk+1 + yk+1),

which are ADMM iterations on the dual problem (1.2).

Appendix B. Proof of Theorem 3.5: bounded relative error when S is
the iterator of cyclic proximal BCD.

The z-subproblem in (3.3) has the form

min
z∈Rm

h1(z) + h2(z),

where h1(z) = g∗(z) =
∑l
i=1 g

∗
i (zi), and h2(z) = 1

2‖z − z
k −M−1

2 A(2xk+1 − xk)‖2M2
.

And zk+1 = zk+1
p is given by

zk+1
0 = zk,

zk+1
i+1 = S(zk+1

i , xk+1, xk), i = 0, 1, ..., p− 1,

Here, S is the iterator of cyclic proximal BCD. Define

T (z) = Proxγg∗(z)(z − γ∇h2(z))),

B(z) = 1
γ

(z − T (z)),

and the ith coordinate operator of B:

Bi(z) = (0, ..., (B(z))i, ..., 0).

Then, we have

zk+1
i+1 = S(zk+1

i , xk+1, xk) = (I − γBl)(I − γB2)...(I − γB1)zk+1
i .

By [3, Prop. 26.16(ii)], we know that T (z) is a contraction with coefficient θ =√
1− γ(2λmin(M2)− γλ2

max(M2)). We know that for ∀z1, z2 ∈ Rm and µ = 1−θ
γ ,

〈B(z1)−B(z2), z1 − z2〉 = 1
γ
‖z1 − z2‖2 −

1
γ
〈T (z1)− T (z2), z1 − z2〉

≥ µ‖z1 − z2‖2,

22 Y. LIU, Y. XU, AND W. YIN

Let zk+1
? = arg minz∈Rm{h1(z) + h2(z)}. For [9, Thm 3.5], we have

‖zk+1
i − zk+1

? ‖ ≤ ρi‖zk+1
0 − zk+1

? ‖, ∀i = 1, 2, ..., p.(B.1)

where ρ = 1− γµ2

2 .
Let yj = (I − γBj)...(I − γB1)zk+1

p−1 for j = 1, ..., l and y0 = zk+1
p−1 . Note that

(zk+1
p)j = (yj)j for j = 1, 2, ..., l, and the blocks of yj satisfies

(yj)t =
{(

Proxγg∗
(
yj−1 − γ∇h2(yj−1)

))
t
, if t = j

(yj−1)t, otherwise.

On the other hand, we have

Proxγg∗
(
yj−1 − γ∇h2(yj−1)

)
= arg min

y∈Rm
{g∗(y) + 1

2γ ‖y − yj−1 + γ∇h2(yj−1)‖2}.

Since g∗ and ‖ · ‖2 are separable, we obtain

0 ∈ ∂g∗j ((yj)j) + 1
γ

(
(yj)j − (yj−1)j + γ

(
∇h2(yj−1)

)
j

)
, ∀j = 1, 2, ..., l,

or equivalently,

0 ∈ ∂g∗j ((zk+1
p)j) + 1

γ

(
(zk+1
p)j − (zk+1

p−1)j + γ
(
∇h2(yj−1)

)
j

)
, ∀j = 1, 2, ..., l.

Therefore,

0 ∈ ∂g∗(zk+1
p) + 1

γ

(
zk+1
p − zk+1

p−1 + γξp

)
, ∀j = 1, 2, ..., l,

where (ξp)j =
(
∇h2(yj−1)

)
j
for j = 1, 2, ..., l. Comparing this with (3.7), we obtain

εk+1 = ξp −∇h2(zk+1
p) + 1

γ
(zk+1
p − zk+1

p−1).

Notice that the first j − 1 blocks of yj−1 are the same with those of yl = zk+1
p , and

the rest of the blocks are the same with those of y0 = zk+1
p−1 , so we have

‖εk+1‖ ≤
l∑

j=1
λmax(M2)‖yj−1 − zk+1

p ‖+ 1
γ
‖zk+1
p − zk+1

p−1‖

≤ lλmax(M2)‖zk+1
p−1 − zk+1

p ‖+ 1
γ
‖zk+1
p − zk+1

p−1‖

≤ (lλmax(M2) + 1
γ

)(‖zk+1
p − zk+1

? ‖+ ‖zk+1
p−1 − zk+1

? ‖)

Combine this with (B.1)

‖εk+1‖ ≤ (lλmax(M2) + 1
γ

)(ρp + ρp−1)‖zk+1
0 − zk+1

? ‖.(B.2)

ACCELERATION OF PRIMAL-DUAL METHODS 23

Combining

‖zk+1 − zk‖ = ‖zk+1
p − zk+1

0 ‖
≥ ‖zk+1

0 − zk+1
? ‖ − ‖zk+1

p − zk+1
? ‖

≥ (1− ρp)‖zk+1
0 − zk+1

? ‖

with (B.2), we obtain

‖εk+1‖ ≤
(lλmax(M2) + 1

γ)(ρp + ρp−1)
1− ρp ‖zk+1 − zk‖.

Appendix C. Proof of Theorem 3.10: KŁ property gives global conver-
gence.

According to Theorem 3.6, we just need to show that {M−1
1 uk, zk} converges to a

primal-dual solution pair of (1.1).
By Theorem 3.9, we can take {zks , yks , uks} → (zc, yc, uc) as s→∞. Note that

L(zks , yks , uks) is monotonic nonincreasing and lower bounded due to Theorem 3.7,
which implies the convergence of L(zks , yks , uks). Since L is lower semicontinuous, we
have

L(zc, yc, uc) ≤ lim
s→∞

L(zks , yks , uks).(C.1)

Since the only potentially discontinuous terms in L is g∗, we have

lim
s→∞

L(zks , yks , uks)− L(zc, yc, uc) ≤ lim sup
s→∞

g∗(zks)− g∗(zc).(C.2)

By (3.21), we know that

g∗(zc) ≥ g∗(zks)
+ 〈M2(zks−1 − zks) +AM−1

1 (−AT zks−1 − yks−1 + uks−1)− εks , zc − zks〉,

Then, yy Theorem 3.7, we further get zks−1−zks → 0. Since zks → zc and {zk, yk, uk}
is bounded, we obtain

lim sup
s→∞

g∗(zks)− g∗(zc) ≤ 0.

Combining this with (C.1) and (C.2), we conclude that lims→∞ L(zks , yks , uks) =
L(zc, yc, uc).

Since g∗ is a KŁ function, L is also KŁ. Consequently, similar to Theorem 2.9 of
[2], we can claim the convergence of {zk, yk, uk} to {zc, yc, uc}.

Appendix D. Two-block ordering in Claim 4.1 and four-block ordering
in Claim 4.2.

According to (3.4), when M2 = τAAT , the z-subproblem of Algorithm 3.1 is

zk+1 = arg min
z∈Rm

{g∗(z)− 〈z − zk, A(2xk+1 − xk)〉+ τ

2‖A
T (z − zk)‖22}.(D.1)

Let us prove Claim 4.1 first. In that claim, A = div ∈ RMN×2MN and z ∈ RMN .
Following the definition of the sets zb and zr, we separate theMN columns of AT = −D
into two blocks Lb, Lr by associating them with zb and zr, respectively. Therefore, we
have AT z = Lbzb + Lrzr for any z ∈ RMN .

24 Y. LIU, Y. XU, AND W. YIN

By the red-black ordering in Fig. 1, different columns of Lb are orthogonal one
another, so LbTLb is diagonal. Similarly, LrTLr is also diagonal.

Let b be the set of black nodes and r the set of red nodes. We can rewrite (D.1) as

zk+1 = arg min
zb,zr∈RMN/2

{g∗b (zb) + g∗r (zr) + 〈zb + zr, c
k〉(D.2)

+τ

2‖Lb(zb − z
k
b) + Lr(zr − zkr)‖22},

where g∗b (zb) =
∑

(i,j)∈b g
∗
i,j(zi,j), g∗r (zr) =

∑
(i,j)∈r g

∗
i,j(zi,j), and ck = −A(2xk+1 −

xk).
Applying cyclic proximal BCD to black and red blocks alternatively yields

z
k+ t+1

p

b = proxτLb
TLb

g∗
b
(·)+〈·,τLb

TLr(z
k+ t

p
r −zk

r)+ck
b
〉
(zk+ t

p

b),(D.3)

z
k+ t+1

p
r = proxτLr

TLr

g∗
r (·)+〈·,τLr

TLb(z
k+ t+1

p
b

−zk
b

)+ck
r 〉

(zk+ t
p

r).(D.4)

for t = 0, 1, ..., p− 1, where p is the number of inner iterations in Algorithm 3.1.
These updates have closed-form solutions since LTb Lb and LTr Lr are diagonal, and

all proxλg∗
i,j

are closed-form. Furthermore, the updates within each block can be done
in parallel.

The proof of Claim 4.2 is similar. When A = D or A = Dw, we separate the
columns of AT into four blocks Lb, Lr, Ly, Lg by associating them with zb, zr,
zy ,zg, respectively. Therefore, we have AT z = Lbzb + Lrzr + Lyzy + Lgzg for all
z ∈ R2MN . Similarly, by the block design in Fig. 2, cyclic proximal BCD iterations
have closed-form solutions, and updates within each block can be executed in parallel.

REFERENCES

[1] Z. Allen-Zhu, Z. Qu, P. Richtárik, and Y. Yuan, Even faster accelerated coordinate descent
using non-uniform sampling, in International Conference on Machine Learning, 2016,
pp. 1110–1119.

[2] H. Attouch, J. Bolte, and B. F. Svaiter, Convergence of descent methods for semi-algebraic
and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-
Seidel methods, Mathematical Programming, 137 (2013), pp. 91–129.

[3] H. H. Bauschke, P. L. Combettes, et al., Convex Analysis and Monotone Operator Theory
in Hilbert Spaces, vol. 2011, Springer, 2017.

[4] S. R. Becker, E. J. Candès, and M. C. Grant, Templates for convex cone problems with
applications to sparse signal recovery, Mathematical programming computation, 3 (2011),
p. 165.

[5] K. Bredies and H. Sun, Preconditioned Douglas-Rachford splitting methods for convex-concave
saddle-point problems, SIAM Journal on Numerical Analysis, 53 (2015), pp. 421–444.

[6] K. Bredies and H. Sun, A proximal point analysis of the preconditioned alternating direction
method of multipliers, Journal of Optimization Theory and Applications, 173 (2017),
pp. 878–907.

[7] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with
applications to imaging, Journal of mathematical imaging and vision, 40 (2011), pp. 120–145.

[8] A. Chambolle and T. Pock, On the ergodic convergence rates of a first-order primal–dual
algorithm, Mathematical Programming, 159 (2016), pp. 253–287.

[9] Y. T. Chow, T. Wu, and W. Yin, Cyclic coordinate-update algorithms for fixed-point problems:
Analysis and applications, SIAM Journal on Scientific Computing, 39 (2017), pp. A1280–
A1300.

[10] P. L. Combettes and N. N. Reyes, Moreau’s decomposition in banach spaces, Mathematical
Programming, 139 (2013), pp. 103–114.

ACCELERATION OF PRIMAL-DUAL METHODS 25

[11] I. CVX Research, CVX: Matlab software for disciplined convex programming, version 2.0.
http://cvxr.com/cvx, Aug. 2012.

[12] J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal
point algorithm for maximal monotone operators, Mathematical Programming, 55 (1992),
pp. 293–318.

[13] J. Eckstein and W. Yao, Approximate ADMM algorithms derived from lagrangian splitting,
Computational Optimization and Applications, 68 (2017), pp. 363–405.

[14] J. Eckstein and W. Yao, Relative-error approximate versions of Douglas-Rachford splitting
and special cases of the ADMM, Mathematical Programming, (2017), pp. 1–28.

[15] E. Esser, X. Zhang, and T. F. Chan, A general framework for a class of first order primal-dual
algorithms for convex optimization in imaging science, SIAM Journal on Imaging Sciences,
3 (2010), pp. 1015–1046.

[16] D. Feijer and F. Paganini, Stability of primal–dual gradient dynamics and applications to
network optimization, Automatica, 46 (2010), pp. 1974–1981.

[17] C. F. Gauss, Werke (in German), 9, Göttingen: Köninglichen Gesellschaft der Wissenschaften,
1903.

[18] P. Giselsson and S. Boyd, Diagonal scaling in Douglas-Rachford splitting and ADMM,
in Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on, IEEE, 2014,
pp. 5033–5039.

[19] P. Giselsson and S. Boyd, Linear convergence and metric selection for Douglas-Rachford
splitting and ADMM, IEEE Transactions on Automatic Control, 62 (2017), pp. 532–544.

[20] M. Grant and S. Boyd, Graph implementations for nonsmooth convex programs, in Recent
Advances in Learning and Control, V. Blondel, S. Boyd, and H. Kimura, eds., Lecture
Notes in Control and Information Sciences, Springer-Verlag Limited, 2008, pp. 95–110.
http://stanford.edu/~boyd/graph_dcp.html.

[21] R. Hannah, F. Feng, and W. Yin, A2BCD: An asynchronous accelerated block coordinate
descent algorithm with optimal complexity, arXiv preprint arXiv:1803.05578, (2018).

[22] P. C. Hansen and J. S. Jørgensen, Air tools ii: algebraic iterative reconstruction methods,
improved implementation, Numerical Algorithms, 79 (2018), pp. 107–137.

[23] E. Levina and P. Bickel, The earth mover’s distance is the mallows distance: Some insights
from statistics, in null, IEEE, 2001, p. 251.

[24] M. Li, L.-Z. Liao, and X. Yuan, Inexact alternating direction methods of multipliers with
logarithmic-quadratic proximal regularization, Journal of Optimization Theory and Applica-
tions, 159 (2013), pp. 412–436.

[25] W. Li, E. K. Ryu, S. Osher, W. Yin, and W. Gangbo, A parallel method for earth mover’s
distance, UCLA Comput. Appl. Math. Pub.(CAM) Rep, (2017), pp. 17–12.

[26] Q. Lin, Z. Lu, and L. Xiao, An accelerated proximal coordinate gradient method, in Advances
in Neural Information Processing Systems, 2014, pp. 3059–3067.

[27] Q. Lin, Z. Lu, and L. Xiao, An accelerated randomized proximal coordinate gradient method and
its application to regularized empirical risk minimization, SIAM Journal on Optimization,
25 (2015), pp. 2244–2273.

[28] L. Métivier, R. Brossier, Q. Mérigot, E. Oudet, and J. Virieux, Measuring the misfit
between seismograms using an optimal transport distance: application to full waveform
inversion, Geophysical Supplements to the Monthly Notices of the Royal Astronomical
Society, 205 (2016), pp. 345–377.

[29] M. K. Ng, F. Wang, and X. Yuan, Inexact alternating direction methods for image recovery,
SIAM Journal on Scientific Computing, 33 (2011), pp. 1643–1668.

[30] B. O’donoghue and E. Candes, Adaptive restart for accelerated gradient schemes, Foundations
of computational mathematics, 15 (2015), pp. 715–732.

[31] O. Pele and M. Werman, Fast and robust earth mover’s distances., in ICCV, vol. 9, 2009,
pp. 460–467.

[32] T. Pock and A. Chambolle, Diagonal preconditioning for first order primal-dual algorithms
in convex optimization, in Computer Vision (ICCV), 2011 IEEE International Conference
on, IEEE, 2011, pp. 1762–1769.

[33] T. Pock, D. Cremers, H. Bischof, and A. Chambolle, An algorithm for minimizing the
Mumford-Shah functional, in Computer Vision, 2009 IEEE 12th International Conference
on, IEEE, 2009, pp. 1133–1140.

[34] J. Rasch and A. Chambolle, Inexact first-order primal-dual algorithms, arXiv preprint
arXiv:1803.10576, (2018).

[35] L. F. Richardson, Ix. the approximate arithmetical solution by finite differences of physical
problems involving differential equations, with an application to the stresses in a masonry
dam, Phil. Trans. R. Soc. Lond. A, 210 (1911), pp. 307–357.

http://cvxr.com/cvx
http://stanford.edu/~boyd/graph_dcp.html

26 Y. LIU, Y. XU, AND W. YIN

[36] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, vol. 317, Springer Science &
Business Media, 2009.

[37] Y. Saad, Iterative Methods for Sparse Linear Systems, vol. 82, SIAM, 2003.
[38] E. Y. Sidky, J. H. Jørgensen, and X. Pan, Convex optimization problem prototyping for

image reconstruction in computed tomography with the chambolle–pock algorithm, Physics
in Medicine & Biology, 57 (2012), p. 3065.

[39] T. Valkonen, A primal–dual hybrid gradient method for nonlinear operators with applications
to mri, Inverse Problems, 30 (2014), p. 055012.

[40] Y. Wang, W. Yin, and J. Zeng, Global convergence of ADMM in nonconvex nonsmooth
optimization, arXiv preprint arXiv:1511.06324, (2015).

[41] M. Yan and W. Yin, Self equivalence of the alternating direction method of multipliers, in
Splitting Methods in Communication, Imaging, Science, and Engineering, Springer, 2016,
pp. 165–194.

[42] X. Zhang, M. Burger, and S. Osher, A unified primal-dual algorithm framework based on
bregman iteration, Journal of Scientific Computing, 46 (2011), pp. 20–46.

[43] M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation
image restoration, UCLA CAM Report, 34 (2008).

	1 Introduction
	1.1 Background
	1.2 Contributions
	1.3 Organization

	2 Preliminaries
	3 Main results
	3.1 Preconditioned PDHG
	3.2 Choice of preconditioners
	3.3 PrePDHG with fixed inner iterations
	3.4 Global convergence of iPrePDHG

	4 Numerical experiments
	4.1 Total variation based image denoising
	4.2 Graph cuts
	4.3 Earth mover's distance
	4.4 CT reconstruction

	5 Conclusion
	Appendix A. ADMM as a special case of PrePDHG
	Appendix B. Proof of Theorem 3.5: bounded relative error when S is the iterator of cyclic proximal BCD
	Appendix C. Proof of Theorem 3.10: KL property gives global convergence
	Appendix D. Two-block ordering in Claim 4.1 and four-block ordering in Claim 4.2
	References

