Skip to main content

Advertisement

Log in

Stability and Error Estimate of the Operator Splitting Method for the Phase Field Crystal Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a second-order fast explicit operator splitting method for the phase field crystal equation. The basic idea lied in our method is to split the original problem into linear and nonlinear parts. The linear subproblem is numerically solved using the Fourier spectral method, which is based on the exact solution and thus has no stability restriction on the time-step size. The nonlinear one is solved via second-order strong stability preserving Runge–Kutta method. The stability and convergence are discussed in \(L^2\)-norm. Numerical experiments are performed to validate the accuracy and efficiency of the proposed method. Moreover, energy degradation and mass conservation are also verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Elder, K.R., Katakowski, M., Haataja, M., Grant, M.: Modeling elasticity in crystal growth. Phys. Rev. Lett. 88(24), 245701 (2002)

    Article  Google Scholar 

  2. Elder, K.R., Grant, M.: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70(5), 051605 (2004)

    Article  Google Scholar 

  3. Berry, J., Provatas, N., Rottler, J., Sinclair, C.W.: Defect stability in phase-field crystal models: stacking faults and partial dislocations. Phys. Rev. B 86, 224112 (2012)

    Article  Google Scholar 

  4. Provatas, N., Dantzig, J., Athreya, B., Chan, P., Stefanovic, P., Goldenfeld, N., Elder, K.: Using the phase-field crystal method in the multi-scale modeling of microstructure evolution. JOM 59, 83–90 (2007)

    Article  Google Scholar 

  5. Stolle, J., Provatas, N.: Characterizing solute segregation and grain boundary energy in binary alloy phase field crystal models. Comput. Mater. Sci. 81, 493–502 (2014)

    Article  Google Scholar 

  6. Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319 (1977)

    Article  Google Scholar 

  7. Wang, C., Wise, S.M., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49, 945–969 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baskaran, A., Hu, Z.Z., Lowengrub, J.S., Wang, C., Wise, S.M., Zhou, P.: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 250, 270–292 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Baskaran, A., Lowengrub, J.S., Wang, C., Wise, S.M.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51, 2851–2873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, Q., Mei, L.Q., You, B.: A second-order, uniquely solvable, energy stable BDF numerical scheme for the phase field crystal model. Appl. Numer. Math. 134, 46–65 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xia, B.H., Mei, C.L., Yu, Q., Li, Y.B.: A second order unconditionally stable scheme for the modified phase field crystal model with elastic interaction and stochastic noise effect. Comput. Methods Appl. Mech. Eng. 363, 112795 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng, K.L., Wang, C., Wise, S.M.: An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation. arXiv:1906.12255 [math.NA]

  14. Yang, X.F., Han, D.Z.: Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model. J. Comput. Phys. 330, 1116–1134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhao, J., Wang, Q., Yang, X.F.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods Eng. 110, 279–300 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Q., Mei, L.Q., Yang, X.F., Li, Y.B.: Efficient numerical schemes with unconditional energy stabilities for the modified phase field crystal equation. Adv. Comput. Math. 45, 1551–1580 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, Z.G., Li, X.L.: Two fast and efficient linear semi-implicit approaches with unconditional energy stability for nonlocal phase field crystal equation. Appl. Numer. Math. 150, 491–506 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, Z.G., Li, X.L.: Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation. Numer. Algorithms 85, 107–132 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, X.L., Shen, J.: Stability and error estimates of the SAV Fourier-spectral method for the phase field crystal equation. Adv. Comput. Math. 46, 48 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, X.L., Shen, J.: Efficient linear and unconditionally energy stable schemes for the modified phase field crystal equation. arXiv:2004.04319 [math.NA]

  21. Goldman, D., Kaper, T.: \(N\)th-order operator splitting schemes and nonreversible systems. SIAM J. Numer. Anal. 33, 349–367 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yanenko, N.N.: The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables. Springer, New York (1971)

    Book  MATH  Google Scholar 

  24. Holden, H., Karlsen, K.H., Risebro, N.H.: Operator splitting methods for generalized Korteweg-de Vries equations. J. Comput. Phys. 153, 203–222 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cheng, Y.Z., Kurganov, A., Qu, Z.L., Tang, T.: Fast and stable explicit operator splitting methods for phase-field models. J. Comput. Phys. 303, 45–65 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhai, S.Y., Weng, Z.F., Feng, X.L.: Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen–Cahn model. Appl. Math. Model. 40, 1315–1324 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhai, S.Y., Wu, L.Y., Wang, J.Y., Weng, Z.F.: Numerical approximation of the fractional Cahn–Hilliard equation by operator splitting method. Numer. Algorithms 84, 1155–1178 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, X., Qiao, Z.H., Zhang, H.: Convergence of a fast explicit operator splitting method for the epitaxial growth model with slope selection. SIAM J. Numer. Anal. 55, 265–285 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bao, W.Z., Li, H.L., Shen, J.: A generalized-Laguerre–Fourier–Hermite pseudospectral method for computing the dynamics of rotating Bose–Einstein condensates. SIAM J. Sci. Comput. 31, 3685–3711 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, J., Wang, Z.Q.: Error analysis of the Strang time-splitting Laguerre–Hermite/Hermite collocation methods for the Gross–Pitaevskii equation. Found. Comput. Math. 13, 99–137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, C., Huang, J.F., Wang, C., Yue, X.Y.: On the operator splitting and integral equation preconditioned deferred correction methods for the “Good” Boussinesq equation. J. Sci. Comput. 75, 687–712 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, C., Wang, H., Huang, J.F., Wang, C., Yue, X.Y.: A second order operator splitting numerical scheme for the “good” Boussinesq equation. Appl. Numer. Math. 119, 179–193 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lubich, C.: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Thalhammer, M.: Convergence analysis of high-order time-splitting pseudospectral methods for nonlinear Schrödinger equations. SIAM J. Numer. Anal. 50, 3231–3258 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhai, S.Y., Wang, D.L., Weng, Z.F., Zhao, X.: Error analysis and numerical simulations of Strang splitting method for space Fractional nonlinear Schrödinger equation. J. Sci. Comput. 81, 965–989 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lee, H.G., Shin, J., Lee, J.Y.: First and second order operator splitting methods for the phase field crystal equation. J. Comput. Phys. 299, 82–91 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shen, J., Tang, T., Wang, L.L.: Spectral Methods Algorithms: Analyses and Applications, 1st edn. Springer, Berlin (2010)

    Google Scholar 

  38. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mishra, S., Svärd, M.: On stability of numerical schemes via frozen coefficients and the magnetic induction equations. BIT Numer. Math. 50, 85–108 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tadmor, E.: The exponential accuracy of Fourier and Chebyshev differencing methods. SIAM J. Numer. Anal. 23, 1–10 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  41. Canuto, C., Quarteroni, A., Hussaini, M.Y., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  42. Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers’ Equation. J. Sci. Comput. 53, 102–128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gottlieb, S., Tone, F., Wang, C., Wang, X., Wirosoetisno, D.: Long time stability of a classical efficient scheme for two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 50, 126–150 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and referees for their valuable comments and suggestions which helped us to improve the results of this paper. This work is in part supported by the National Natural Science Foundation of China (Nos. 11701196 and 11701197), the Natural Science Foundation of Fujian Province(No. 2020J01074), and the Fundamental Research Funds for the Central Universities (No. ZQN-702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinnian He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, S., Weng, Z., Feng, X. et al. Stability and Error Estimate of the Operator Splitting Method for the Phase Field Crystal Equation. J Sci Comput 86, 8 (2021). https://doi.org/10.1007/s10915-020-01386-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01386-8

Keywords

Mathematics Subject Classification

Navigation