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HIGHER ORDER APPROXIMATION FOR STOCHASTIC SPACE
FRACTIONAL WAVE EQUATION FORCED BY AN ADDITIVE
SPACE-TIME GAUSSIAN NOISE*

XING LIUT AND WEIHUA DENGH

Abstract. The infinitesimal generator (fractional Laplacian) of a process obtained by subordi-
nating a killed Brownian motion catches the power-law attenuation of wave propagation. This paper
studies the numerical schemes for the stochastic wave equation with fractional Laplacian as the space
operator, the noise term of which is an infinite dimensional Brownian motion or fractional Brownian
motion (fBm). Firstly, we establish the regularity of the mild solution of the stochastic fractional
wave equation. Then a spectral Galerkin method is used for the approximation in space, and the
space convergence rate is improved by postprocessing the infinite dimensional Gaussian noise. In
the temporal direction, when the time derivative of the mild solution is bounded in the sense of
mean-squared LP-norm, we propose a modified stochastic trigonometric method, getting a higher
strong convergence rate than the existing results, i.e., the time convergence rate is bigger than 1.
Particularly, for time discretization, the provided method can achieve an order of 2 at the expenses
of requiring some extra regularity to the mild solution. The theoretical error estimates are confirmed
by numerical experiments.

Key words. spectral Galerkin method, modified stochastic trigonometric method, higher strong
convergence rate, extra regularity
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1. Introduction. The wave propagation in ideal medium is well described by
the classical wave equation 0%u(x,t)/0t*> = Au(z,t). However, sometimes the clas-
sical wave equation fails to model the wave propagations in complex inhomogeneous
media (e.g., viscous damping in the seismic isolation of buildings, medical ultrasound,
and seismic wave propagation [4, 10, 18, 25]), because of their power-law attenuations.
One of the most effective ways to characterize the wave propagation with power-law
attenuations is to resort to the nonlocal operator — the infinitesimal generator (frac-
tional Laplacian) of a process obtained by subordinating a killed Brownian motion.

Currently, two stochastic processes are very popular: one is killed subordinate
Brownian motion, and the other is subordinate killed Brownian motion. Let D be
a bounded region, B(t) be a Brownian motion with B(0) € D, and 7p = inf{t >
0: B(t) ¢ D}. Denote T; as an a-stable subordinator. The first stochastic process
(killed subordinate Brownian motion) [9] is defined as

B(Ty), t<p,
Xl(t)_{ (Gt) t>£

where O is a coffin state, meaning that the subordinate Brownian motion will be killed
when first leaving the domain D; while the second stochastic process (subordinate
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killed Brownian motion) [23] is

. B(Tt), Tt < Tp,
Xz(t)_{ 0, Ty > o

with © still being a coffin state, implying to subordinate a killed Brownian motion
(when first leaving the domain D). The infinitesimal generator of X;(¢) has the form

(—A1)%u(z) = ¢p,oP.V. /Rn %d% a € (0,1),

where ¢,,o = %, P.V. means the principal value integral, and u(y) = 0

for y € R™\D. Denote the infinitesimal generator of X5(t) as (—=A)* and —A the
infinitesimal generator of killed Brownian motion. It shows that [21, 23] if {(\;, ¢:)}52,

[e3%

are the eigenpairs of —A, then {(A\¥, ¢;)}32, are the eigenpairs of (—A)?, i.e.,

{ _A¢z = Ai¢i7 in D7

(1.1) ¢; =0, on 9D,

and

(_A)a¢i = A(il¢i7 in D7
(1.2) { ¢; =0, on 0D.

The operator used in this paper is the one defined in (1.2). Moreover, we are
also concerned with the external noises that possibly affect the wave propagation.
Two most popular external noises are white noise and fractional Gaussian noise,
both of which are considered in this paper. The fractional Gaussian noise is defined
as the formal derivative of the fractional Brownian motion (fBm) S (t), which is
Gaussian process with an index H € (0,1). The fBm has two unique properties:
self-similarity and stationary increments [12, 13]. As H = %, the fBm reduces to a
standard Brownian motion. The formal derivative of Brownian motion is white noise.
For H # %, unlike Brownian motion, the fBm exhibits long-range dependence: the
behavior of the process after a given time ¢ depends on the situation at ¢ and the
whole history of the process up to time ¢ [6]. According to the properties of the fBm
and Brownian motion, one can choose the appropriate noise in practical applications.

With the above introduction of nonlocal operator and the external noise, the
model we discuss in this paper is the stochastic wave equation

diled) — _(—A)*u(z,t) + f (u(z,t)) + Bu(z,t) in D x (0,7,
(1.3) w(x,0) = ug, u(z,0)=vy in D,

u(z,t) =0, in 9D x (0,77,

where u(x,t) is the first order time derivative of u(x,t), d/dt means the partial de-
rivative with respect to ¢, f is the source term, D C R? (d = 1,2,3), and By(z,t) is
the formal derivative of the infinite dimensional space-time Gaussian process By (z,t)
With0<o¢§1and%§H<1.

Over the last few decades, there is much progress in both strong and weak ap-
proximations of the stochastic wave equation driven by the space-time white noise. A
full discretization of the stochastic wave equation driven by additive space-time white
noise is presented with a spectral Galerkin approximation in space and a temporal ap-
proximation by exponential time integrators involving linear functionals of the white
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noise [27]. In [2, 5], the stochastic trigonometric method for solving the stochastic
wave equation with multiplicative space-time white noise is studied in time. The work
[17] investigates a discrete approximation for the stochastic space-time fractional wave
equation forced by an additive space-time white noise. In this paper, besides the ad-
ditive white noise, the additive fractional Gaussian noise is also discussed. Moreover,
if 4(x,t) is bounded in the sense of mean-squared LP-norm, then by modifying the
stochastic trigonometric method for time discretization, we can obtain a high order
convergence rate. In particular, as H = %, we use the independent increment property
of Brownian motion to obtain the optimal temporal error estimate; for H € (%, 1),
by using the covariance of stochastic integral for fBm (Lemma 2.2), we obtain the op-
timal error estimate in time. For space approximation, the spectral Galerkin scheme
is used; and the space convergence rate is improved by postprocessing the additive
Gaussian noise.

This paper is organized as follows. In the next section, we introduce some nota-
tions and preliminaries, including assumptions and properties of fBm. In Section 3,
by using the Dirichlet eigenpairs, we present the regularity of the mild solution u(z,t)
and the time derivative @(z, t) in the sense of mean-squared LP-norm. In Section 4, the
spectral Galerkin spatial semidiscretization of (1.3) and the postprocessing approach
of the additive space-time Gaussian noise are discussed. In Section 5, we modify
the stochastic trigonometric method to obtain a high order temporal discretization
of (1.3); and the convergence order for the proposed fully discrete scheme is derived.
The numerical experiments are performed in Section 6. We end the paper with some
discussions in Section 7.

2. Notations and preliminaries. In this section, we gather preliminary results
on the Dirichlet eigenpairs and fBm, which are commonly used in the paper.

Let U = L?*(D;R) be a real separable Hilbert space with L? inner product (-, )
and the corresponding induced norm || - ||. We define the unbounded linear operator
AY by AYu = (—A)" u on the domain

dom (A") = {A"u e U :u(z) =0, z € 0D} .

Then Equation (1.2) implies that

Afi(x) = A ()

and
0 v
Afu=" A7 (u,6i(2)) dila),
i=1
where ¢;(x), i = 1,2, ..., denote the normalized eigenfunctions of the fractional Lapla-
cian operator (—A)%, and A\?, i =1,2,..., are the corresponding eigenvalues. More-

over, we define the Hilbert space U” = dom (A%) equipped with the inner product

AE (u, ¢i(2)) x A (v, ()

(u,v), =

i

=1
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and norm

2

l[ull, = (Z AY <u,¢i(f1?)>2>

In particular, U° = U.

LeEMMA 2.1 ([15, 16, 24]). Let Q denote a bounded domain in R¢, d € {1,2,3},
and || the volume of Q. Let \; be the i-th eigenvalue of the Dirichlet homogeneous
boundary problem for the Laplacian operator —A in Q. Then

Coid < \; < Cyid,

where i € N, and the constants Cy and Cy are independent of i.

ASSUMPTION 1. The function f:U — U in (1.3) satisfies

1f(w) = F)II S llu = vl| for any u,v € U,

and

JA% F(u)]) £ 1+ | Afull for u € U with v >0

For later use, we collect concepts of fBm; for more details, one can refer to [3, 7, 11,
14, 19].

DEFINITION 1. Let Sp(t) be the two-sided one-dimensional fBm with Hurst index
H € (0,1) and t € R. The stochastic process B (t) is characterized by the properties:

(i) Bu(0) =0;

(i) E [ﬁH(t)] =0, teR;

(i) E[Bu()Br(s)] = 5 (L7 + [T — [t —s]*7), t, s€R,
where E denotes the expectation. As H = %, B (t) is a standard Brownian motion,
being a process with independent increment.

ASSUMPTION 2. Let driven stochastic process By (x,t) be a cylindrical fBm with
respect to the normal filtration {Fi}iepo,r)- The infinite dimensional space-time sto-
chastic process can be represented by the formal series

By (z,t) = Z iy ()i (),
i—1

where |o;| SA;° (p >0, N\ is given in Lemma 2.1), B(t), i = 1,2,..., are mutually
independent real-valued fractional Brownian motions with + < H < 1, and {¢;(x)}ien
is an orthonormal basis of U.

We define LP(D, U”) to be the separable Hilbert space of p-times integrable ran-
dom variables with norm

1
lull Lo (p,gvy = Ellullp)?, v =0.

LEMMA 2.2 ([19]). For f,g € L*(R;R) N LY(R;R), as £ < H < 1, we have

B| [ feasu(s)] ~o
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D [ [ s [ g(t)dﬂH@)] i =) [ [ Bl - - 2ase

1_
For H € (,1) and that fstf(r)(r — 53 (2)> ™ 4r belongs to L2 ([0,T],R),
an expression of the Wiener integral with respect to fBm is introduced as [1, 26]

/f B (s cH// (H——) £y -7 5 (2) " aras(e), ste 0.7),

where ((t) is standard Brownian motion, and

L 2HxTE-H) \?
Cn = (F(H—i— %)F2(2—2H))

3. Regularity of the solution. To begin with we can give a system of equations
by coupling (1.3) and du(z,t) = u(x,t)dt. The system of equations is beneficial to
analyze the regularity of the mild solution of (1.3), including existence, uniqueness,
and time Holder continuity. Moreover, the system of equations is transformed into an
equivalent form, which will be used to obtain the approximation of (1.3).

In the interest of brevity and readability, we use the following equation instead
of (1.3)

di(t) = —A%u(t)dt + f (u(t)) dt + dBy(t),  in D x (0, T,
(3.1) u(0) = ug, 4(0) = vy in D,
u(t) =0, in 0D,

where u(t) = u(z,t) and By (t) = By (z,t). Let v(t) = 4(t). Then

(3.2) AX () = AX ()t + | f(f(t)) }dw [ ; ]dBH(t),
where
wo-[4], 0o % 1)

Then a formal mild solution X (¢) for (3.2) is given as

(3.3) X (t)=eMX(0) +/Ot eMt=s) [ f(f(s)) ds+/0t eME=s) { ? }dBH(s),

At

where e can be expressed as

cos (A% t) A~ % sin (A% t)

At _
(34 T caten(a)  cos(at)

The definitions of cosine operator cos ( 2 t) and sine operator sin (A%t) are given in
Appendix B. Substituting (3.4) into (3.3), then two components of X (¢) are obtained
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as

u(t) = cos (A%t) ug + A”% sin (A%t) vo + /0 A”%sin (A% (t — s)) f (u(s))ds

. /t A_% sin (A% (t — 8)) dBH(S),
(3.5) ’ ¢
W(t) = — A% sin (A%t) o + cos (A%t) vo + /0 cos (A%(t —5)) [ (u(s)) ds

+ /Ot cos (A%(t —s))dBg(s).

In order to obtain the regularity of u(¢) and v(t), we need to consider the regularity
estimate of the stochastic integral in (3.5). For % < H < 1andp > 1, the Burkholder-
Davis-Gundy inequality [20, 22] implies

(3.6) E ’ Ot A" sin (A% (t—s))dB(s) ’
<c, ( ti‘A = sin(A?(t—s))Fds)g
i=1
and
(3.7)
E ‘/OtA¥ sin (A% (t — s)) dBp(s)
=E ’C’H <H - %) /Ot /:A¥ sin (A%(t -7)) (;)E_H (r— s)Hﬁ%deB(s) p]

(NS}

1\* ' & brs\z—H s\’
< P _ '_y—a—?p 2 _ H—35
<C% (H 2> Cp (/0 ;)\1 (/S (T) (r—-s) dr) ds
1\? t s\1-2H / [t s\ 2
< D _ 77af2p e _ H—§
<% (H 2) Cp (/0 ;)\Z (t) (/s (r—s) dr) ds
vr\eam) Tr\T &1 '

(oo}
When Q(V%:‘_%) < —1, then the infinite series 4
i=1
One can obtain the following regularity results of the mild solution u(t) and v(t)
by using the above estimates, Lemma 2.1, and (3.5).

(NS}

2(y—a—2p)

< 00.

THEOREM 3.1. Suppose that Assumptions 1-2 are satisfied, ||U0||Lp(p oy < 00,

HUOHLP(D)UV,Q) <00,e>0,y=a+2p— %, and v > 0. Then there exists a unique
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mild solution X (t) for (3.2) and

tH
(38) 4o o,0m) + WO oo,y S = + I0ll .5y + 0l o, -

Furthermore,
(i) for v < o,

2 (1
) = w6 5 (€ = 97 (5 + Baoliago ooy + ool ooy )

() = W)l 2,y S (6= ) (7 + oll s .60y + 100 2,0 ) -

U) norm. Combining

Proof. Let us start with the estimate of Azwu(t) in LP(D,
3.5), and the assumption

the triangle inequality, (3.6), (3.7), the expression of u(t) in (
of f, we obtain

fosua

L»(D,U)

< HA% cos (A%t) uo‘ + HA¥ sin (A%t)v

Lr(D,U) 0 Lr(D,U)

t
+ ‘ / A= sin (A2 (t—s)) f (u(s))ds
0 L?(D,U)
¢
+ ‘ / A" sin (A%(t —s)) dBpu(s)
0 L?(D,U)
—a t H
< HA%UQ‘ +HAWT’U()‘ —l—/ HA%U(S)‘ s+ —
L?»(D,U) Lr(D,U)  Jo Lp(D,U) 5

The application of Gronwall’s inequality leads to

tH

+ HAg’UQ‘
Lr(D,U) 9

s

s [[az)
L7(D,U) L7(D,U)

The bound of [[v(¢)|[,»(p g~-«) can be achieved in the same way, that is

tH

+ HA¥1)0’
Lr(D,U) 9

[475 00, ., % |47

Lr(D,U) ™

Lr(D,U)

Then using above estimates leads to

tH
lw@l oo,y + 10Ol Lo,y S — + luoll oo,y + 100l Lo ,g7v—e) -
(D) ( )~ (D,U) ( )
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Next, we discuss the time Holder continuity of u(t). Equation (3.5) implies
B [llu(t) - u(s)|?]
SE | (cos (A1) — cos (A%s)) uo||” + [[A~# (sin (4% ) = sin (4%s)) vo|°]

t 2 t 2
+E /A_% sin (A% (¢t — 7)) f (u(r))dr —i—‘/ A" % sin (A% (t — 1)) dBp(r) ]

+E QASA_g(ﬁn(Ag@——m)—sm(Ag(S—TD)f(U@»dT ]

+E /05 A™% (sin (A2 (t—r)) —sin (A% (s —7))) dBp(r) ]

Sh+L+Is+ 1+ Is + I
For & < H < 1, the inequality cos(a) — cos(b) < |a—b|? (0 < 6 < 1) implies

2
I =E { |Z (cos (/\i%t) — cos (/\l% S)) (uo, ¢i(x)) ¢i(x) }

<SE [Z AJ(t = s)?mindaath gy, ¢i(w)>2]

e L2
< (1 g Ag [H A ] _
Similar to the derivation of Iy, it holds that
oy 12
L <(t- s)m‘“{%’Q}E [HAQUQH } .

For the Holder regularity of the third term, using Equation (3.8) and Assumption 1
leads to

I3 < (t—s) /:E {HA_% sin (A% (t—7)) f (u(r))’ﬂ dr
< (t—s>/:E [l +1] ar
ste-92 (B[|atu] ] + B[4 w] ] +1).

}. Combining the fact that |sin(¢)] < [t (¢ € R) and Lemma

2‘|
fe3
2

sin ()\Z (t— T1)> ‘ x |r—r [ 2drdr

Take 6, = min{
2.2 leads to

/t A" % sin (A% (t — 7)) dBg (r)

52:&a2plaltmn0%@_r0]x

S (t _ S)2H+min{g,1} Z /\i%7a72p
[

o1
207 2

I, =E

S (t _ S)2H+min{%,1}'
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Using sin(a) — sin(b) < |a — b|?2 and the assumption of f with f; = min {2, 1}, we

have
2]

<) (o o] o a7 of ] )

For v > «, by using Lemma 2.2 and the inequality sin ()\% (t— T)) —sin ()\Z% (s — T)) <

I < (¢ — symn{E2)E / CATE f (u(r)) dr

)\i% (t — s), we get the bound of I;, i.e.,

]6<Z)\_O‘ 2p/ / }sm t—r)—sin()ﬁ(s—?‘))‘

o
2

sin (/\i2 (t— Tl)) —sin (/\l (s — Tl)) ’ x |r— [P 2drdr
< t2H(t _ 8)2 Z )\q—v+v—a—2p

%

X

<2 (t - 5)2
When v < «, using sin ()\Z% (t— r)) — sin ()\% (s — r)) <AZ(t—s)= leads to
Is S *H(t Z/\7 a2

<2H -
t—s)a.
S —(t-9

J
2

Then collecting the above estimates arrives at

B [ut) - u(s)P] < (¢ = 5)? (t”f +E [HAZuOHQ] +E [HA”Q“UOHQD v >a
and
t2H

B [Ju(t) —u()?] £ (- 9% (——i—E[HAguo‘ﬂ+E[HA72QUOHQ]>,vga.

When H = %, the above Holder regularity results still hold. The proof is completed.O

In fact, one can get an equivalent form of (3.2) by using variable substitution, the
regularity of whose solution is better than the one of the solution of (3.2). Let

(3.9 20 =x(0- [ [ ] aButs)
where
BEC
wo-[ 0]

If X (t) is the unique mild solution of (3.2), then Z(t) is the unique mild solution of
the partial differential equation

(3.10) %Z(t) = AZ(t) + ] for ¢t € (0,T] with Z(0) = X(0),
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where

t
ful)=f <z(t) + / A™% sin (A%(t —3)) dBH(s)> .
0
The unique mild solution of (3.10) is given by

(3.11) Z(t) :eAtZ(O)-l-/O M=) [ f(uo(t)) ]ds.

Then we can obtain z(t) and 2(t) as
(3.12)
t
z(t) = cos (A%2t) ug + A~ % sin (A%t) vo + / A% sin (A% (t—s)) f (u(s))ds,
0

£(t) = —A% sin (A%t) up + cos (A%t) vy + /0 cos (A% (t—s)) f (u(s))ds.

Equation (3.10) will be used to obtain the spatial semi-discretization solution of
(3.2). Therefore we give the following estimates, which will be used to discuss the
spatial error.

COROLLARY 3.2. Suppose that Assumptions 1-2 are satisfied, ||u0||Lp(D ey <

00, ||v0HLp(D7UW) <oo,e>0,vy=a+2p— %, and v > 0. Then there exists a

unique mild solution Z(t) for (3.10) and

. tH
12O Lo (p,tey TIEO N Lop.gy S — F+ 1wl pop.griay + V0l Lop gy -
( ) (D.U7) N ( ) (D,U)

The proof of this corollary is very similar to the proof of Theorem 3.1.

4. Galerkin approximation for spatial discretization. The convergence
rate of the spectral approximation depends on the regularity of the mild solution
in space. Theorem 3.1 and Corollary 3.2 show that z(t) is more regular than u(t) in
space; so we obtain the spatial approximation of (3.2) by using the spectral Galerkin
method to discretize (3.10) and postprocessing the stochastic integral.

A finite dimensional subspace of U will be needed to implement the Galerkin
spatial approximation of (3.10). Denoting the N dimensional subspace of U by U™,
the sequence {¢1(x),...,¢i(x),...,dn(x)} yey is an orthonormal basis of UY. Then
we introduce the projection operator Py : U — UV, for £ € U,

N
PnE =Y (€ ¢i(2)) dil)

and

To obtain the Galerkin formulation of (3.10), we look for 2V (t) € UN and zV € UN
such that

(4.2) [
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and

<Z(JJV7X> = <207X>7 <z(1)vvx> = <207X>7

where

t
f (uN(t)) =f <ZN(t) + PN/ A™% sin (A%(t —3)) dBH(s)> .
0
The Galerkin formulation of (3.10) is obtained by using (4.1) and (4.2), that is

l dzN (1) 2N (t

(4.3) dzN(t) N (t)

=A dt + dt

o)
In (u? (1))

and
zév = Pnug, z"év = Py,
where fy = Py f. We can obtain the mild solution of (4.3) as
(4.4)
2N (t) = cos (A%t) ud + A”% sin (A%t) v + /Ot A™ % sin (A%(t —8)) fn (uN(s)) ds,

iN(t) = — A% sin (A%t) ull + cos (A%t) v + /t cos (A% (t —s)) f (u™(s)) ds.
0

Then the spatial semi-discretization solution of (3.2) is given by

(4.5) uN(t) = 2N (t) + Py /t A™% sin (A% (t — s)) dBu(s)
0

and

(4.6) oV (t) = 2N (t) + Py /Ot cos (A% (t —s)) dBp(s).

In fact, Corollary 3.2 shows z(¢) has better regularity than the stochastic integral
fot A~% sin (A% (t — s)) dBp(s) in space; so we can improve accuracy of the Galerkin
approximate solution by postprocessing the stochastic integral of (4.5). Let Ny =
[N 93} and f3 > 1, with [y] being the nearest integer to y. Then the spatial semi-
discretization solution of (3.2) can be expressed as

(4.7) u(t) = 2V (t) + Py, /Ot A" % sin (A% (t — 5)) dBy(s)
and
(4.8) oV (t) = 2N (t) + Py, /Ot cos (A% (t —s)) dBp(s).

Using (4.3) leads to
(4.9) 2N(t) = —A% sin (A% (t — 5)) 2V (s) + cos (A2 (t — 5)) 2V (s)

—|—/ cos (A% t—1)) fn (uN(r)) dr.
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Then substituting (4.7) and (4.8) into (4.9) leads to
(4.10) oM (t) = —A% sin (A2 (t — s)) uV (s) + cos (A2 (t — 5)) vV (s)

+ Py, /t cos (A% (t — 7)) dBy(r)

+/ cos (A%(t —7)) fn (uN(r)) dr,

which will be used to prove Theorem 5.2.
Combining Theorem 3.1, (4.7) and (4.8), we now deduce the following regularity
results of the spatial semi-discretization solution.

COROLLARY 4.1. Suppose that Assumption 1-2 are satisfied; ||u0||Lp(D)UW) < 00,
||vo||Lp(Dwa,a) <00,e>0,y=a+2p— % and vy > 0. The approzimate solution
ulN(t) and vV (t) is expressed by (4.7) and (4.8), respectively. Then

H

t
||uN(t)||Lp(D7Uw) + ||’UN(t)HLp(D7Uw—a) S ? + ||u0||LP(D)U’Y) + ||’UO||LP(D)U’Y*0<)

and

||UN(t) - UN(S)HLz(D)U) S (t—s) (tH + ||U0||L2(D,Uw) + ||UO||L2(D7Uw—a)) .

The proof of this corollary is done in the same way as Theorem 3.1.
Next, the following lemma are given to analyze the error of the approximate
solution u® (¢) in (4.7).

LEMMA 4.2. IfE [|A2¢]]?] < oo, £ € U, then
EI(Py = DEIP] S A B [IAZlP]
Corollary 3.2 shows z(t) € LP(D,U"*®). From Lemma 4.2, we can infer that

E[|2(t) - Pxz()]?] S Ani°F [||A”*T‘”z(t)||2] Therefore we can obtain an order

of "JfTo‘ for the spatial semi-discretization solution by adjusting Nj in (4.7). Let

yta

N; = {N g ] Then we get following result.

THEOREM 4.3. Let X (t) and ZN(t) be the mild solution of (3.2) and (3.10),
respectively. Suppose that Assumption 1-2 are satisfied. Let |[uollpnp grriay < 00,

||’U0||LP(D1U.,) <00,e>0,y=a+2p— %, v > 0; and (4.7) is the approzimation

of u(t). If Ny = {NWTOC}, then we have

It

_ata (tH
Ju®) = ¥ O]y S N <;+||uo||L2<D,W>+||vo||L2<D,m)).
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Proof. In the first place, using the triangle inequality, Corollary 3.2, Lemma 4.2
and (4.7), we obtain

(4.11)
[u(t) = O] 2 p o)
< z(t) - ZN(t)HL2(D,U)

/ot | S0 i (AL ) ()45

i=N1+1

_|_

L2(D,U)

4
S 1120) = Pralpao,o) + [Pwat) = 2V O oy + =N 7

e [(tH
< ||Pwz(t) - ZN(t)HLz(DyU) + N~ <? + llwoll 2 p ey + ||UO||L2(D,Uw)) :

Then we need to estimate the bound of HPNz(t) - ZN(t)HL2(D 0y The definition

of projection operator Py implies that Py A~ % sin (A%t) f = A"%sin (A%t) Py f.
Thus, first performing Py on (3.12) and then doing subtraction with respect to (4.4)
leads to

HPNZ(t) - ZN(t)HL2(D,U)

/o A7 sin (A% (b1 —9)) (Fn (uls) = [ (u™(s))) ds

L2(D,U)
t
< /0 Hu(s) - “N(S)HH(D,U) ds.

Then the above estimates and the Gronwall inequality imlpy
N < - tH
(412)|u(t) = VO o gy SN (= A loll 2, gbey + 00l 2oy ) -

If N > 1, choosing € = , we have

1
log(N)

_ 2a44pt2a—d—c tH
[u®) = Ol 2p,y SNV - (? llollz(pse) + ||“0||L2<D,U”>>

da+4p—d

<N~ (tH log(N) + [lwoll 12 (p,te) + ||U0||L2(D,Uv)) :

5. Fully discrete scheme. In this section, we concern the time discretization
of (4.3). Meanwhile the error estimates of the fully discrete scheme are derived.

Let zY and zY denote respectively the approximation of 2 (¢,,) and 2% (t,,) with
fixed time step size 7 = % and t, = m7 (m =0,1,2,...,M). Using the stochastic
trigonometric method, we can get the full discrete scheme of (3.2)

(5.1) [ iy ] -

Zm-i—l

cos (A%T) A~% sin (A% 7')
— A% sin (A%T) cos (A% T)
A% sin (A%7) fn (ul))
cos (A7) fn (ul) ] ’

+ 7
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where
tm [e3 [e3
ul = 2N+ Py, / A” % sin (A2 (tm — 5)) dBu(s).
0

By using recursion form of (5.1), we get

(5.2) 2 B cos (A%thrl) A~ % sin (A%th) udl
' ZNJXH | —ASsin (A%thrl) cos (A%thrl)

_|_7-Z -3 sm A (tm+1 - tj)) fN (’l;;v) ‘| .

cos 5 (a1 — tj)) In (ujv
Then we get the approximations of u(t) and v(t), that is,

tm+1
(5.3) ul = zN .+ Pn, / A" % sin (A% (tms1 — 8)) dBp(s)
0
and
tm41 o
(5.4) ol 1 = 2N+ Py, / cos (A2 (tyms1 — 5)) dBa(s).
0
As 1 < H < 1, although ftm“ sin (A% (ty41 — 5)) dBp(s) is a Gaussian process,

it is difficult to accurately simulate this process; thus we give the approximation of
stochastic integral, that is

Moot
(55) PN1 Z/ A2 gin (A7 (tm+1 — tj)) dBH(S)
—0/t;

Using Lemma 2.2, we obtain the error estimate

B |||y, Z/t 41 —% sln (A%(tm_,_l — s)) — gin (A% (tms1 — tj))) dBpy (s)

Ny
2H _min{ 22 2 § : min{vy,a}—a—2p
Stm-i-lT {a } )\1 ’
=0

which implies that this approximation (5.5) does not change the temporal convergence
rate of scheme (5.1). The proof of this estimate is done in the same way as (5.11).
For H = %, the simulation of stochastic integral is easily implementable without
approximation. We now investigate the error estimates of the fully discrete scheme
(5.1). The triangle inequality implies that

lettm) =t 2 p 1y S laltm) =™ @)l 2 )+ 1™ ) = vl 2 .0y

Thus, we need to give the bound estimate of HuN(tm) — “%HU(D )" This bound

estimate can be obtained by using the time Holder regularity of u® (¢), (4.7), and
(5.3). Therefore combining the error estimate of the approximation (5.5), Corollary
4.1, and Theorem 4.3 leads to the following results.
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PROPOSITION 5.1. Let u(tm41) and ul) | be expressed by (3.5) and (5.8), respec-
tively. Suppose that Assumption 1-2 are satisfied. Suppose Corollary 4.1 and Theorem

~

4.3 hold. Let Ny = [N *} Then

H“(tmﬂ) - uﬁJrl"L?(D,U)

5 T (TH + ||u0||L2(D,U7+°‘) + ||v0||L2(D,U7))

yto

+ N (T+||uo||L2<D,m+a>+||“0”L2<D)U”>>’””

and

||u(tm+1) - u717\‘[L+1 HL2(D,U)

. (TH
<ra (? + l[woll L2 (p grtey + ||vo||Lz<D,m>)

yta

_ TH
+ N~ 4 (? + H’U,OHL2(D,U’Y+Q) + ||UO||L2(D,U7)) 7 < a.

The proof of this proposition is similar to the one of Theorem 5.2 given in Appendix
A.

As v > a, the derivative of u(t) is time Holder continuous in the sense of mean-
squared LP-norm, which means that the scheme (5.1) is not optimal to discretize (3.1)
in time. Thus we can design a higher order scheme for the time discretization, as v(t)
belongs to LP(D,U). By modifying the scheme (5.1), we can get a better convergence
rate than one of (5.1) in time. The modified scheme is as follows

2
50 [ + ] -

21

cos (A% 7') ~% sin (A% 7')
—A% sin (A%T) cos (A% T)
A7 (1 —cos (A%7)) fn (ud)
A~% sin (A%T) In (uév) ‘|

+

and for m > 1,

cos (A%T) A~% gin (A% 7')

N
(5.7) Fmt |
N — A% sin (A%T) cos (A% 7')

Z7n-i-1

. [ A~ (1 — oS (A%T)) fn (u%)
| A Esin (A%7) fyv (u))

. TA*‘LA’? sin(4%7) (fv (ulh) = f (um—1))
| A () ) = ()
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Then a classic application of recursion gives

(5.8)ul ;= cos (A%thrl) ud + A”% sin (A%th) vy

+ ) AT (cos (A (tms1 — ty41)) — cos (A% (i1 — 1)) S ()
7=0

+ A7 cos (A% (b — 1)) (v (4) = fv (w04))

m A= (Y o5 (A5 (tyy — 8)) d
g Ao B Ny g )

. T
J=1

tmi1
+Pn;, / A" % sin (A% (tms1 — 8)) dBp(s)
0

and
(5.9 | = —A% sin (A%thrl) ud’ + cos (A%thrl) oY
- Z A_% (sin (A% (tm+1 — tj_:,_l)) — sin (A% (tm+1 — tj))) fN (ujv)
7=0

M

A7 sin (A3 (tm1 = t510) (v (07) = fov (u0)

<.
I
a

A~% f:jj“ sin (A% (tm41 — 5)) ds

T

+

NE

(fv (w)") = fv (wil))

<.
Il
-

tm+1
+Pn, / o8 (A% (tmy1 — 8)) dBu(s).
0

For % < H < 1and v > q, if the time steps of (5.5) and (5.7) are the same, the desired
convergence rate can not be got. Thus, a more precise approximation of stochastic
integral than (5.5) is expected. The inequality cos(tmi1 — 1) — cO8(tmy1 — t5) S
lr —t;]° (0 <6 < 1) and the error equation ft?“ ftj cos (A% (tmq1 — 1)) drdBp (s) of
(5.5) imply that we can improve the accuracy of approximation for stochastic integral

by the following scheme, that is,
(5.10)

PNl Z/ o (Ai% sin (A%(thrl - tj)) — (S — tj) COSs (A% (tm+1 - tj))) dBH(S),
i=0"%

which ensures the implementation of scheme (5.7) without loss of convergence rate;
and Equation (5.10) is easy to simulate by using its explicit variance. Using Lemma
2.2, the following error estimate of the approximation for stochastic integral is ob-



HIGHER ORDER APPROXIMATION FOR STOCHASTIC WAVE EQUATION 17

tained.
(5.11)
Moot
E ||| Pn, Z/ (A% sin (A2 (tygr — 5))
j=0"1i
— A7 sin (A% (tmi1 — t5)) + (s — t;) cos (A2 (tppr — t))) dBH(s)HQ}
[ Mmoo ortitr s N
=E PN1 Z/ / (COS (A7 (tm+1 — tj))
i j=0"1ti tj
— cos (A% (tmt1 — 7“1))) drldBH(s)Hz}

Ny m tit1 ps
—2p

sy a0

i=0 j=0 "t tj

m tr41 t
k=0 th b
N1 m tjy1 ™ lkt1
. 2y . _ _2 J + B
STmm{ - ,4}2 :)\;nm{y a,a} pz :/ 2 :/ |S . t|2H 2dsdt
i=0 j=0"1ti k=0"tr

Ny tm+1 tm+1
ind 22 i — -2 -
:Tmln{ Y 4} } :/\;nm{V a,a} P/ / s — t|2H 24sdt
i=0 0 0

o o
2 2

cos ()\i (tmt1 — tj)) — cos ()\i (tmt1 — 7“1)) ‘ dry

(=3 (=3
2 2

cos ()\i (tmt1 — tk)) — cos ()\i (tmt1 — T)) ‘ dr|s — t|*H~2dsdt

Ny
2H _min{2Y 4 } : min{y—a,a}—2p
Stm-‘rlT { } )\i )

=0

the second inequality of which uses the fact

@

cos ()\% (tmt1 — s)) — cos ()\-2 (tmt1 — t)) hS A;nin{%’%”s — t|min{%71}.

K3 K3

We end this section by showing the error estimates of the fully discrete scheme
(5.7) in L?(D,U) norm.

THEOREM 5.2. Let u(tmy1) and ul) .| be expressed by (3.5) and (5.8), respec-
tively. Suppose that f(u) € C*(R) and f'(u) satisfies the Lipschitz condition, and the
conditions of Corollary 4.1 and Theorem /.3 are satisfied. Take N > 1 and0 < 7 < 1.
If v > a and Ny = [N#], then

(1) for a < v < 2a,

Hu(tm+1) - UﬁHHL%D,U)

at+2p—4

P
St (T10g(r)] + 4ol 2 gvsey + Ioo0ll o, )

2p+2a7%

+NTT (TH log(N) + [luoll L2 (p,grr+ay + ”UOHL?(D,U’Y)) ;
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(ii) for v > 2,

H“(tmﬂ) - ur]XHHm(D,U)

5 7'2 (TH + ||U0||L2(D)Uw+o<) + H’UO”LZ(D,UV))
2p+2a— &

+ N~ a (TH log(N) + [lwoll 12 (p,te) + HU0||L2(D,U'/)) :

The detailed proof of Theorem 5.2 is given in Appendix A.

Proposition 5.1 and Theorem 5.2 show that one can choose the appropriate tech-
nique to solve (1.3), i.e., when a < v, use (5.1) to discretize (1.3), and if o > =,
the scheme (5.7) can be chosen to obtain the approximation of w(¢). In fact, when
ug € L*(D,U") and vo € L*(D,UY~%), the temporal rates of convergence still hold
in Proposition 5.1 and Theorem 5.2.

6. Numerical experiments. In this section, we present numerical examples
to verify the theoretical results and the effect of the parameters o and p on the
convergence. All numerical errors are given in the sense of mean-squared L2-norm.

We solve (1.3) in the two-dimensional domain D = (0, 1) x (0,1) by the proposed
scheme (5.7) with x = (x1,22), the smooth initial data vy = sm(”l)zw, and
vo = sin(4mzy) sin(4rzs). In D = (0,1) x (0,1), the Dirichlet eigenpairs of —A are
Nij = m2(i% + j2) and ¢;; = 2sin(imzy)sin(jrrs) with i,j = 1,2,..., N. Unless
otherwise specified, we choose f(u(t)) = u(t). To calculate the convergence orders,
the following formulas are used.

L2(D,U))

3

3

In (Hu‘}vj[\[ A ] .

Ina

convergence rate in space =

o o = ¥l e = e
convergence rate in time =

Ina

. . . N N
where the constant a > 1. In numerical simulations, the errors ||u‘}w — uM||L2(D,U)
are calculated by Monte Carlo method, i.e.,

|

1
aNM = (B [llus - udel])’

aN,M N,M’

L2(D,U)
3

1 o aN N |2
~ EZHUM,/@—UM,ICH :
k=1

We take K = 1000 as the number of the simulation trajectories. The symbol k
represents the k-th trajectory.



HIGHER ORDER APPROXIMATION FOR STOCHASTIC WAVE EQUATION 19

TABLE 1
Spatial convergence rates with T'= 0.3, M = 900, H = 0.5 and p = 1.

N a=04 Rate a=0.6 Rate a=028 Rate

N, =N 256  2.610e-04 1.064e-04 4.810e-05
576  1.608e-04 0.597 5.910e-05 0.725 2.365e-05 0.875
1296 9.545e-05 0.643 3.220e-05 0.749 1.173e-05 0.865

Ny = [NW"] 9256 1.051c-04 2.367¢-05 5.9126-06
576 4.787e-05 0.970 9.867e-06 1.079 2.073¢-06 1.292
1206 2.175¢-05 0.973 4.055c-06 1.097 7.343¢-07 1.280

The spatial convergence rates of the scheme (5.7) is tested with the end time
T = 0.3 and M = 900, which ensures the spatial error is the dominant one. In Table

1, one can see that the spatial convergence rates tend to W if Ny = N, and the

2p+2a—1
2

convergence rates are approximately equal to after postprocessing the sto-

Ita

chastic integral (N1 = [N 2] D And the convergence rates of the spectral Galerkin

method are improved, as « increases. The numerical results verify the theoretical
ones.

error

o@?

277 276 2"5 24 2"3 272 2"

Fic. 1. Temporal error convergence of the modified stochastic trigonometric method for the
space-time white noise (H = 0.5).

Next, we observe the behavior of the temporal convergence. We solve the problem
(1.3) by using the scheme (5.7) with f(u(t)) = u?(t), p = 2.5, T = 0.6, and N = 400
in Figures 1 and 2. The sufficiently big p and N guarantee that the dominant errors
arise from the temporal approximation. As H = %, the simulation of the stochastic
integral fOT sin (A\; ;(T" —t)) dB(t) is easily implementable by using explicit variance of
the stochastic integral, which is % — w For H € (%, 1), one can obtain the
approximation of the stochastic integral by using scheme (5.10). The simulation of
the approximation is given in Appendix C. Figures 1 and 2 show that the temporal
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convergence rates have an order of 2 by using the proposed scheme, as v > 2«, and
the convergence rates are independent of H.

10

error

£ 2.

o)

277 276 275 24 2"3 272 271
M

F1G. 2. Temporal error convergence of the modified stochastic trigonometric method for the
space-time fractional Gaussian noise (H = 0.75).

TABLE 2
Time convergence rates with N =108, T = 0.6, H = 0.5, and p = 0.68.

M a=0.5 Rate a=0.7 Rate a=0.9 Rate

4 1.400e-03 2.414e-03 2.980e-03
8 4.158e-04 1.751 8.575e-04 1.493 1.134e-03 1.394
16 1.220e-04 1.769 3.077e-04 1.479 4.341e-04 1.385

As a < v < 2a, the convergence rates of the proposed scheme are close to %

in time. For H = %, from Table 2, one can see that the temporal convergence rates
reduce with the increase of «, for fixing p. As a = 0.5, 0.7, and 0.9, the theoretical
convergence rates are approximately 1.720, 1.514, and 1.400, respectively. For H =
0.6, Table 3 demonstrates that the time convergence rates increase with the increase
of p, for fixing a. The temporal theoretical convergence rates are approximately 1.556,
1.667, and 1.778, for p = 0.75, 0.80, and 0.85, respectively. Tables 2 and 3 show that

the numerical results confirm the error estimates in Theorem 5.2.

TABLE 3
Time convergence rates with N = 106, T = 0.6, H = 0.6, and o = 0.9.

M p=0.75 Rate p=0.8 Rate p=0.85 Rate

4 4.568e-03 3.543e-03 2.907e-03
8 1.559e-03 1.551 1.156e-03 1.616 8.956e-04 1.699
16 5.330e-04 1.548 3.733e-04 1.630 2.704e-04 1.728
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7. Conclusion. This paper discusses the numerical schemes and their error
analyses for the equation describing the wave propagation with attenuation and pos-
sible external disturbance. Two kinds of external noises (white noise and fractional
Gaussian noise) are considered. The regularity results of the mild solution of the
equation are obtained. The spectral Galerkin method is used for space approximation
and the stochastic trigonometric method for time approximation. The detailed error
analyses are performed. The techniques of equivalent transformation and postprocess-
ing the stochastic integral improve the convergence rate in space from (2p+ a — %) /d
to (2p + 2a — %)/d. For the temporal approximation, by modifying the stochastic
trigonometric method, when v > «, the superlinear convergence is obtained. The
convergence rates of the designed schemes are independent of hurst index H. The
extensive numerical experiments confirm the theoretical results.

Appendix A. Proof of Theorem 5.2.

Proof. First, combining (4.7), (5.8), (5.11), the assumptions, and Corollary 4.1
leads to

AD) [ (tms1) = umia | 2.0

Z;/thl A7% sin (A% (ts1 — ) [fv (1N (s))

— fn (u / I (™ (t5)) N(tj)dT] ds

L2(D,U)
TCOS A% (thrl — thrl)) f it COS (A (thrl — S)) ds

+Z TJ

< [rfn (W) N () = fv (ul) + f (ul 1)]HL2(DU)

+ Z/ . A7 F sin (A% (tngr — ) [fv (uV (1)) = v (uf))] ds
j=17t Hem
t1

AT e (AT (s =) [ (6V(5) = i ()] s

1
N1 2

Tmin{gﬂ} § :)\Enin{'yfa,a}72p
=0

m
,S J1 +J2+ZT||UN
=0

N 3
Tmin{% ,2} <Z /\;nm{v—a,a}—2p>

i=0

L2(D,U)

uj'vHL?(D,U) +7
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When—<H<1 lett9*mln{V 1} We have

m t]
J1 S Z/ - A% gin (A%(thrl - s))
j=1"1

X l : n (uN(T)) vN(T)dr — : n (uN(tj)) vN(tj)dr] ds

L2(D,U)
Ui tj+1 o o

Z/ A” % sin (A% (tmy1 — $))

j=1"%

X /S (fn (uN(r)) —fy (uN(tj))) o™ (r)drds

tj

L2(D,U)

: n (uN(tj)) (cos (A%(r —t;)) — 1) o (t)drds

L2(D,U)

tj L (D)U)

moortivr s
< Z/t t (™ (r) —u™(t;)) x UN(T‘)||L2(D)U) drds

=17t j

0 [ [ Aty drds + IT
+]2T / / 20 (t5) ’LQ(D,U) rds +
Zl/tj / / H’U (T)HL2(D7U)dtdrds
i=

- 246 || 4 & N
+;T HA ti) L2(D, U)+II
m J+1
Z/ // H”U ’ —i—‘ N " ) dtdrds
=y L2(D,U)

- 240 ba N
+;T HA ti) L2(D, U)+II

+ 11
L2(D,U)

9(1
S 72 (1 o3 acp, 0y + 00l - a)+ZTMHA Vi)

The condition v > « implies that p > %. Then combining the fact that {8% () }ien
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are mutually independent, Lemma 2.2, and (4.10), we have

o i s
A™% sin (A% (tyr — 5) fn (N (t))
S At —o) [ (V0)

—A? sin (A% (r— tj)) uN(tj) + /T cos (A%(r — y)) In (uN(y)) dy

X
tj

S cos (A (r =) oidi(a )dﬁmy)] drds

L2(D,U)

2 H
s T (T ol oy + ol 2o, -

F2+0 Z HA"‘“”” N ’
ti1 N 8
Z)\—%E Z/t T As sin (A% (tymq1 — 5)) . Iy (“N(tj))

2

=

< [ eos (A =) enta)asi s

Ny ) m.om tit1 S tht1 t T T1
S8 2 Y A I
Z D Z Z t tj ]i}j k}j tj tk . ( ( i S))

r =) 6u(@) A sin (A% (trg1 — 1)

o
2

X €08 (/\l (ri —w1)

2+9 Z H a(9+1)
SN B @VE)) si@)| (| (@ ) ds@)])]

j=1k=1

1
tit1 tht1 2 m a(6+1)
></ / Iy—y1|2H_2dydy1> +72+"ZHA = u™(t)
t t 4
=1

) Gi(x)|ly —y1 |2H72dydy1drdsdr1dtdx})

L2(D U)

L2(D,U)

Combining the above estimates and Corollary 4.1 leads to
TH
o
5578 (T + Muollzgo oy + ool
2 2
+ uoll3ap,0m) + Wl (p,gre) ) » @ <7 < 20

and
S ST (TH +lwollp2(p,y + Vol L2 (p,r-a)

2 2
+ uolFa(p.0m) + IWolFa (e ) » 7 > 20
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Similar to Ji, one gets

moA-% le :Hl sin (A% (tye1 — 7)) drds
Z ft] f (T +1 ) [fN (uN(tjfl))

— fn (WN () + 7 (WN () oV ()] HL2(D,U)

72w (w¥(1) = Sy (@ (t-1)) = I () + I (550 g,

J2 S

A8 [ [ i (A3t )

> S

~

j=1
[ pty 7]
< /t Fiv (™ (2)) 0¥ (t5)dr — /t Tiv (u™(r) UN(de] o
mo A3 ftt_j“ f:j“ sin (A2 (g1 — 7)) drds
+ J
i=1 7
X /tj I (uN(r)) (’UN(tj) — cos (A% (t; —7)) ’UN(T)) dr}
|t L2(D,U)
m ATE [ [ sin (A% (g — 7)) drds
+ Z_} .
- )
X / Iy (uN(r)) (cos (A2 (t; —r)) —1I) UN(T)dT]
L tji—1 LQ(DvU)

For a < v < 2a, we have

, (TH
52 578 (T + Mollzgo oy + ool

m
2 2
+ llwollzs(p,ivy + HUOHL‘l(D,UW*OL)) + TZ ||uN(tj) - uj'vHLQ(D,U) :
=0

When v > 2«a, we also have

2 572 (TH 4 ol 2,6) + 100 2, g-e)

m
2 2
+ ||u0||L4(D,U’Y) + ||UOHL4(D,U’Y*O‘)) + TZ ||UN(tJ') - uijL?(D,U) )
j=0
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Combining (A.1), J1, and Jz leads to
[[u® (tm1) = up s ||L2(D,U)
TH
jad
73 (5 + luollsgo oy + ool
2 2
+ llwoll3a o0 + I0ll3ap,0-e) ) s < 7 < 20
and
|u® (tmgr) — U%JrlHN(D,U)
S 72 (T + ol oo, imy + 00l 2,6
2 2
+ o3,y + N0l Fa(p0-e) ) »7 > 20
When H = %, using the same steps in (A.1), we get
HuN(thrl) - uvzyz—i-l HLQ(D)U)
m
Sh+1L+ ZT HuN(tj) — uj»VHB(D’U) + 72
=0

For a < v < 2q, using Corollary 4.1 and the assumptions of f, we obtain

m it
(A2) I < Z/t : A% sin (A%(th —5))
J=1"4

X /ts (fn (uN(r)) -y (uN(tj))) o™ (r)drds

J

L2(D,U)
m tj+1 o o

+ Z/ A” 7 sin (A% (tmy1 — $))
j=1"%i

X : n (uN(tj)) (cos (A% (r—t;)) — 1) oV (t;)drds

L2(D,U)

m tjt1
<[> / A% sin (A3 (tps — 9))
j=1"%

X /S In (uN(tj)) (’UN(T) — cos (A% (r—t;)) UN(tj)) drds
ti L2(D,U)
" /ts I (u™(r) —u™(t))) x UN(T)HL2(D,U) drds

m
53
j=171%

m .
e it s
ZT “
— t; t;

7j=1

~—

AT o (1)

drds+ I11
L2(D,U)

+

TH
< a = . .
ST < . + ||u0||L2(D,Uw) + ”vOHL?(D,UW*a)

2 2
+ ol 3ap,0) + 001 a0,y ) + TTT.

25
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Combining the fact that {8%(¢)}ien are mutually independent and Equation (4.10),

we have
m ot s
=" / A% sin (A% (tyyr —9)) [ fo (1N (E)))
j=1"% g

2(r—y) fv (N (y)) dy

X
r N1 o .

4 / Z cos ()\f (r— y)) oipi(x)dp (y) | drds
ti =1 L2(D,U)

+ 72 (T7 + ol 2,5y + 10l 20,0 -))

m
<143 30 43|

= L2(D,U)
m tiv1 N1 o N s
+ ZE / Z A; % sin ()\f (tma1 — s)) / Fao (W (t5))
j=1 i =1 ti
1

2 2

X /tr cos ()\1% (r— y)) o6 (2)d B (y)drds

J
5 (TH
$75 (T + Bualiamy + loliogoon) )

In first inequality, we employ the fact that Brownian motion is a process with inde-

pendent increment, that is

/:H /t o)) /t cos (Af (r = y) ) 4" (y)drds

J

X /ttk+1 sz’v (u™ (tr)) /T o8 ()‘1% (r_y)) dﬁi(y)drds} STk

E

tk tk
Then
< 2 T 2 2
Lste | — +lwollzp,om) + 1vollLagp,a-a) + w0llzap,om) + lvollLacp vy ) -
Similar to Jy and Iy, we have
<. 2 TH 2
VENNE = + ||u0||L2(D,Uw) + ||UO||L2(Dwafa) + ||u0||L4(Dwa)
m
2
ool a(p,0m-)) +7 22 0™ ) = 0| a1y

J=0

If v > 2, then

2 2
LS 72 (T 4 Juoll oo i) + W0l 2,6y + Il a0, + 0l (.- )



HIGHER ORDER APPROXIMATION FOR STOCHASTIC WAVE EQUATION 27

and

2 2
I £ 7 (T llwoll a0y + 2ol ey + N0l o,y + N0l )
m
N N
+TZ ([ (t;) — uj HL2(D,U) :
§=0
Using the above estimates and the discrete Grénwall inequality, we obtain
N N
(A.3) HU (tm+1) — “m+1HL2(D,U)
<2 (T
ST ? + ||u0||L2(D,U’Y) + ||UOHL2(D,U’Y*°‘)

2 2
+ llwoll34p,0m) + 001340, 0v-) ) s < 7 < 20

and
(A.4) HUN(th) - u%ﬂ HL2(D,U)
S 7 (T + ol 2,6y + W0l 2,
+ ||“0||2L4(D,Uv) + ||U0||i4(D,Uv—a)) Y > 2a.
Take 0 < 7 < 1 and € = m. Combining above estimates and Theorem 4.3, we
obtain the desired results. d

Appendix B. Definitions of the cosine and sine operators.
In term of the eigenpairs {(\i, ¢;)};=,, the cosine and sine operators can be ex-
pressed as

sin (A%t) u(t) = Z sin (A¥t) (u(t), ¢i(x)) ¢i(x)
0o oo an2i—1
=3 Yo S ) o)
i=1 j=1 '
and
cos (A%t) u(t) = Z cos (At) (u(t), i (x)) ¢i(x)
=30 Y 1 S ), o) ox(o)
i=1 j=0 ’

Appendix C. Simulation of stochastic integral for fBm.
Suppose 0 <t <+ <t < - <tpyy =T (m=1,2,...,M — 1) and the fixed
sizes of the mesh 7 = t,,,41 — t;,. Let’s consider the following vector

7= </0 sdﬁH@),/:(s—mdﬁH(s),...,/t:”l(s—tM1>dﬂH<s>> .

The stochastic integral f:’"“ (s — tm)dBm(s) is a Gaussian process with mean 0. The
Cholesky method can be applied to stationary and non-stationary Gaussian processes.
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Thus, we use the Ckolesky method to simulate (5.10). The probability distribution
of the vector Z is normal with mean 0 and the covariance matrix 3. Let ¥; ; be the
element of row i, column j of matrix . Then

tj tk

Ei)j = E [/ a (S — tj)dBH(S)/ k+l(f — tk)dBH(t)

By using Lemma 2.2, for j > k, we have

B [ / s 4)dBa(s) / B )

J 22

tiv1  ptegr
:fﬂm¥—2{/ / (5 —t;)(t — tg)(s — )" 2dtds
tj tr
7'2 oH T

= —?(tj+1 —tep1)” + eH 1) ((tj41 — t5) 2 — (85 — tk+1)2H+1)

- SRET 1§(2H ) ((t541 — te)2H2 = 25 — )72 4 (1) — 4 )21 12)

L24+2H 242
= ) (j—k)QH—Fm((j+1_k)2H+1_(j_k_l)QHJrl)
72+2H
“spm EE T TR 2 - R 4 (- k- 1P
When j = &,
tjt1 tit1 7-2H+2
E [/tj (s —t;)dBu(s) /tj (t—t;)dBgu(t)| = T3

When ¥ is a symmetric positive matrix, the covariance matrix 3 can be written as
L(M)L(M)', where the matrix L(M) is lower triangular matrix and the matrix L(M)’
is the transpose of L(M). Let V = (V4,Va,...,Vas). The elements of the vector V
are a sequence of independent and identically distributed standard normal random
variables. Since Z = L(M)V, then Z can be simulated. Let I; ; be the element of row
i, column j of matrix L(M). That is,

J
Yij = Zli,klj,ka J <
k=1

Asi=j=1,wehavel}, =¥;. The l;; satisfies

Y11
lig10 = —+

3

lia

i
2 v 2
li+1,i+l = Yit1it1 — E :li+1,k7
k=1
1 iy
liv1,; = T Yit1, — E Liviklin], 1<j<i.
i —
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