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Abstract

The task of repeatedly solving parametrized partial differential equations (pPDEs)
in, e.g. optimization, control, or interactive applications, makes it imperative to de-
sign highly efficient and equally accurate surrogate models. The reduced basis method
(RBM) presents itself as such an option. Enabled by a mathematically rigorous error
estimator, RBM carefully constructs a low-dimensional subspace of the parameter-
induced high fidelity solution manifold from which an approximate solution is com-
puted. It can improve efficiency by several orders of magnitudes leveraging an offline-
online decomposition procedure. However, this decomposition, usually through the
empirical interpolation method (EIM) when the PDE is nonlinear or its parameter
dependence nonaffine, is either challenging to implement, or severely degrades online
efficiency.

In this paper, we augment and extend the EIM approach as a direct solver, as
opposed to an assistant, for solving nonlinear pPDEs on the reduced level. The result-
ing method, called Reduced Over-Collocation method (ROC), is stable and capable
of avoiding the efficiency degradation inherent to a traditional application of EIM.
Two critical ingredients of the scheme are collocation at about twice as many loca-
tions as the number of basis elements for the reduced approximation space, and an
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efficient L1-norm-based error indicator for the strategic selection of the parameter val-
ues to build the reduced solution space. Together, these two ingredients render the
proposed L1-ROC scheme both offline- and online-efficient. A distinctive feature is
that the efficiency degradation appearing in alternative RBM approaches that utilize
EIM for nonlinear and nonaffine problems is circumvented, both in the offline and on-
line stages. Numerical tests on different families of time-dependent and steady-state
nonlinear problems demonstrate the high efficiency and accuracy of L1-ROC and its
superior stability performance.

1 Introduction

Numerical simulations of systems, often parametrized, arising from various engineering and
applied science disciplines are increasingly becoming of multi-query and/or real-time type.
For example, optimization and optimal control require multiple forward solves, interactive
applications demand real-time responses. Design of fast numerical algorithms with certifiable
accuracies for these settings has therefore continued to attract researchers’ attention. The
parameters delineating these systems may include boundary conditions, material properties,
geometric settings, source properties etc. The wide variety, the complicated dependence of
the system on these parameters, and their potential high dimensionality are the major chal-
lenges. In addition, the differential equations governing these equations may be nonlinear.

The reduced basis method (RBM) [41, 29] has proved an effective option for this pur-
pose. RBM was first introduced for nonlinear structure problem [1, 38] in 1970s and has
proven to be effective for linear evolution equations [28], viscous Burgers equation [45], the
Navier-Stokes equations [18], and harmonic Maxwell’s equation [15, 16], just to name a few.
The key to RBM’s success in realizing orders-of-magnitude efficiency gain is an offline-online
decomposition process where the basis selection and surrogate space construction are per-
formed offline by a greedy algorithm, see review papers [42, 27] and monographs [41, 29] for
details. During the offline process, the necessary preparations for the online reduced solver
are performed. The ultimate goal is that the complexity of the reduced solver, called upon
in a potentially real-time fashion during the online stage, is independent of the number of
degrees of freedom of the high-fidelity approximation of the basis functions.

1.1 A key problem: Online efficiency degradation due to (D)EIM

To achieve the efficiency goals of RBM, the Empirical Interpolation Method (EIM) or its
discrete version (DEIM) [4, 25, 12, 40] is typically leveraged for nonaffine terms and/or
nonlinear equations. However, EIM is often not feasible due to strong nonlinearity and/or
nonaffinity of the problem. Even when it is feasible, performing (D)EIM can severely de-
grade the reduced solver’s online efficiency when either the parameter dependence or the
nonlinearity is complicated, such as when it encodes geometric variability [16, 5]. The rea-
son is that the online complexity is dependent on the number of terms resulting from the
EIM decomposition.
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Let us use a simple system with a nonaffine parameter dependence as an example. Assume
that we are solving a heat conduction problem with nonaffine parameter dependence −∇ ·
(a(x;µ)∇u) = f . For RBM to realize its intended efficiency gain, we would first apply EIM
to approximate the function a(x;µ) by a linear combination of µ-independent functions,
a(x;µ) ≈

∑Qa

q=1 θq(µ)a(x;µq), where {µq}Qa

q=1 is an ensemble, typically chosen through a
greedy procedure. The number of terms Qa affects the online solver as follows, with the
equation written in its weak form a(u, v;µ) := (a(x;µ)∇u,∇v) = (f, v). Once the offline
learning stage identifies a reduced-order solution space spanned by e.g. full order solutions
{ξ1, . . . , ξN}, the reduced solver is assembled for each µ, and the corresponding stiffness
matrix has entries

(a(ξi, ξj;µ))Ni,j=1
:= (a(x;µ)∇ξi,∇ξj)Ni,j=1 =

Qa∑
q=1

θq(µ) (a(x;µq)∇ξi,∇ξj)Ni,j=1 .

The complexity of the online solver is therefore linearly dependent on the number of EIM
terms Qa, potentially suffering substantial reductions in efficiency compared to situations
when EIM is not needed, i.e. Qa = 1. The reason is that Qa can be prohibitively large
(i.e. much larger than the reduced space dimension N) when the model involves geometric
parametrization, see e.g. [16, 5] even if the more efficient matrix version of EIM [35] is
adopted. As far as we are aware, efforts to mitigate this drawback are limited and underde-
veloped.

1.2 The proposed approach

In this paper, we propose an L1-based reduced over-collocation method (L1-ROC) that is
empirically stable and achieves full online efficiency without suffering Qa-based efficiency
degradation. Our main tools are an augmentation of EIM technique, a further leveraging of
the collocation philosophy originally explored in [13], and an extension of the L1 importance
indicator proposed in [17]. Let us summarize the two major ingredients of L1-ROC that,
together, make the method able to circumvent this degradation.

The first ingredient is a strategy to fully explore the EIM framework and adopt the
collocation approach in contrast to variational approaches (i.e. Galerkin or Petrov-Galerkin)
[6, 9, 8] when seeking the reduced solution. This so-called reduced collocation method
is proposed and documented to work well in circumventing the EIM degradation for the
reduced solver in previous work [13]. However its stability is lacking [14]. Our reduced
over-collocation methods mitigate this stability defect by collocating at about twice as many
locations as the dimension of the reduced order space. Half of these collocation points
are identified from manipulation of a basis for this space: They interpolate the reduced
solution (a linear combination of the basis elements). The other half are chosen according
to a computational analysis of the reduced order residuals when these basis functions are
identified during the offline procedure. They are present to ensure a good interpolation of
the residual corresponding to an arbitrary parameter value when the reduced order space is
used to solve the pPDE. This ingredient alone is not enough to achieve online and offline
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efficiency as the efficient calculation of the error estimators, critical for the construction of
the reduced solution space, still relies on direct application of EIM.

This challenge with computing error estimators is resolved by the second ingredient of
the L1-ROC method, an efficient alternative for guiding the strategic selection of parameter
values to build the reduced solution space. In particular, we utilize the recently introduced
empirical L1 approach [17] and extend it to time-dependent problems. Note that this ap-
proach is not a traditional rigorous error estimator, and is instead simply an error indicator.

Together, these two ingredients render the L1-ROC scheme online-efficient (i.e. online
cost is independent of the number of degrees of freedom of the high-fidelity truth approxima-
tion) and successfully circumvents the efficiency degradation of a direct EIM approach for
nonlinear and nonaffine problems. Moreover, the L1-ROC method is highly efficient offline
in that it requires minimal computation beyond the standard RBM cost of acquiring solution
snapshots used to construct the reduced order space. As a consequence, the “break-even”
number of simulations for the pPDE (minimum number of simulations that make the offline
preparation stage worthwhile) is significantly smaller than traditional RBM. We test the
algorithms on the viscous Burgers’ equation [45] and various nonlinear convection diffusion
reaction equations including the Poisson-Boltzmann equation. For all test problems, the
L1-ROC is shown to have accuracy on par with the classical RBM while possessing much
better efficiency due to the independence of the number of expansion terms resulting from
the EIM decomposition. As examples, results for the steady-state and time-dependent cases
of the diffusion with cubic reaction and the viscous Burgers’ equation are shown.

1.3 Other related techniques

Popular model reduction techniques for linear time-dependent problems include Proper Or-
thogonal Decomposition (POD) [33], system-theoretic approaches such as balanced trunca-
tion, moment matching or Hankel norm approximation [6]. RBM stands out, for parametric
problems in particular, with the availability of rigorous a posteriori error estimations, the
resulting greedy algorithm, and the fact that it computes a number of full order solutions
comparable to the theoretically smallest number, defined by the Kolmogorov n width of the
solution manifold.

The additional challenges posed by nonlinear problems are that a high dimensional re-
construction of the surrogate solution is usually needed for each evaluation of the nonlin-
earity. Sampling-based approximation techniques were developed to remedy this problem,
including the Empirical Interpolation Method and its discrete variants [4, 25, 12, 40] and
Hyper-Reduction [43, 44, 10] which are known to be equivalent to DEIM under certain
conditions [21, 19]. Other approaches exist which include POD coupled with “the best inter-
polation points” approach [36, 23], Gappy-POD [20], Missing Point Estimation (MPE) [3]
or GaussNewton with approximated Tensors (GNAT) [9, 10]. Most of these methods work
by first identifying a subset of the important features of the nonlinear function, and then
constructing an approximation of the full solution based solely on an evaluation of these few
components.

Our L1-ROC method can be viewed as adopting hyper reduction for reduced residual
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minimization. That is, instead of enforcing that the full residual is small in either a weak
or strong formulation, one identifies its selected entries and ensures that an accurate evalu-
ation of the residual on that subset is small. This is not the first time this type of idea is
explored. For example, [3, 2] uses a collocation of the original equations based on missing
point interpolation and is followed by a Galerkin projection. The authors in [43] obtain the
solution snapshots and collocation points through an adaptive algorithm in the finite ele-
ment framework. It was also applied to nonlinear dynamical systems with randomly chosen
collocation points [7]. However, the proposed L1-ROC differs from these existing works.
The first distinctive feature is that the basis functions and collocation points are determined
hierarchically via a greedy algorithm based on reduced residual minimization problems that
gradually increase in size. The existing approaches obtain basis functions through POD-
type techniques followed by computing collocation points all at once. The second distinctive
feature is that the only step during the offline process that depends on the full order model
is when we calculate a new high fidelity basis.

The paper is organized as follows. In Section 2, we introduce our L1-ROC method.
Numerical results for two test problems, in both steady-state and time-dependent modes,
are shown in Section 3 to demonstrate the accuracy and efficiency of the scheme. Finally,
concluding remarks are drawn in Section 4.

2 The reduced over-collocation method

In this section, we introduce the L1-ROC method for both steady state and time dependent
problems. We first describe the problem we are solving. The framework of the online
algorithm is then presented in Section 2.1. Specification of part of the algorithm is postponed
until the introduction of the ROC offline algorithm in Section 2.2 which repeatedly calls the
online solver to construct a surrogate solution space. The design of the main algorithm, the
ROC approach, is detailed in Section 2.2.2. To facilitate the reading of this and the following
sections, we list our notation in Table 1.

We let D ⊂ Rp be the domain for a p-dimensional parameter µ, and Ω ⊂ Rd (for
d = 1− or 3) be a bounded physical domain. Given µ ∈ D, and a Hilbert space H, the goal
is to compute u(µ) := u(x;µ) ∈ H satisfying

P(u(x;µ);µ)− f(x) = 0, x ∈ Ω, (1)

or to compute time evolution of the transient problem

ut + P(u(x;µ);µ)− f(x) = 0, x ∈ Ω, (2)

with appropriate boundary (and initial) conditions. For example, for a stationary Laplace
problem, the space H is typically the Sobolev space H1(Ω). Here, P encodes a parametric
second order partial differential operator that may include linear and nonlinear functions
of u(x;µ), ∇u(x;µ), and ∆u(x;µ). In the following, we will first focus on steady state
problems (1) and then extend the algorithm to time dependent case (2).
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To describe our algorithms, we first discretize the equation (1) by a high-fidelity scheme
(termed “truth solver” in the RB literature). In this paper, we adopt finite difference meth-
ods (FDM) for that purpose. However, extension to point-wise schemes such as spectral
collocation is obvious, and to finite element methods is possible. We let XN be a set of N
collocation points on Ω at which the equation is enforced on a discrete level. The discretized
equation then becomes to find uN (XN ;µ), a discretization of the solution u(µ) on the grid
XN , such that

PN (uN (XN ;µ);µ)− f(XN ) = 0, (3)

with∇u(XN ;µ), and ∆u(XN ;µ) approximated by the numerical approximations∇hu(XN ;µ),
and ∆hu(XN ;µ). With a slight abuse of notation, we let N denote the number of the de-
grees of freedom in the solver, even though the N points in XN might include, e.g. points
on a Dirichlet boundary that are not free.

µ = (µ1, . . . , µp) Parameter in p-dimensional parameter domain D ⊆ IRp

Ξtrain Parameter training set, a finite subset of D
u(µ) Function-valued solution of a parameterized PDE on Ω ⊂ Rd

P(u(µ);µ) A (nonlinear) PDE operator

K Number of finite difference intervals per direction of the physical domain

N ≈ Kd Degrees of freedom (DoF) of a high-fidelity PDE discretization, the “truth” solver

XN A size-N (full) collocation grid

uN (µ) Finite-dimensional truth solution

N Number of reduced basis snapshots, N � N
µj “Snapshot” parameter values, j = 1, . . . , N

ûn(µ) Reduced basis solution in the n-dimensional RB space spanned by {uN (µ1), . . . , uN (µn)}
en(µ) Reduced basis solution error, equals uN (µ)− ûn(µ)

∆N (µ) A residual-based error estimate (upper bound) for ‖eN (µ)‖ or an error/importance indicator

XN−1
r = {x1

∗∗, . . . ,x
N−1
∗∗ } A size-(N − 1) reduced collocation grid, a subset of XN determined based on residuals

XN
s = {x1

∗, . . . ,x
N
∗ } An additional size-N reduced collocation grid, a subset of XN determined based on the solutions

XM A reduced collocation grid of size M that is XN−1
r ∪XN

s

T Final time for the time-dependent problems

∆t Time stepsize for the time dependent problems

Nt Total number of time levels, i.e. Nt = T
∆t

tj Time level j, j = 1, . . . ,Nt

εtol Error estimate stopping tolerance in greedy sweep

Offline component The pre-computation phase, where the reduced solver is trained using a greedy selection of snapshots
from the solution space

Online component The process of solving the offline-trained reduced problem, yielding the reduced order solution.

Table 1: Notation and terminology used throughout this article.

2.1 Online algorithm

The online component of the L1-ROC is essentially the same as the previously-introduced
reduced collocation method [13] with the critical difference being that the number of col-
location points is larger than the number of reduced basis snapshots. This over-collocation
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feature gives the method its name and provides additional stabilization of the online solver
as we will observe in the numerical results.

To describe the online algorithm, given N selected parameters {µ1, . . . ,µN}, the corre-
sponding high fidelity truth approximations {un := uN (XN ;µn), 1 ≤ n ≤ N}, and M (≥ N)
collocation points formed from a subset of XN ,

XM = {x1
∗, . . . ,x

M
∗ }, with xj∗ having index ij in XN ,

we are able to perform the online algorithm, which we describe next. Note that, whenever
there is no confusion, we are adopting the same notation for a function and its discrete
representation in the form of a vector of its values at the grid points. These vectors {un, 1 ≤
n ≤ N} constitute the columns of basis matrix Wn ∈ RN×n for n ∈ {1, . . . , N}. Furthermore,
we denote the corresponding reduced representation of the basis space on the set XM , by a
matrix of the following form,

Wn,M = [u1(XM), . . . , un(XM)] ∈ RM×n, for n = 1, . . . , N.

= P∗Wn,

where the operator P∗ ∈ RM×N is defined as,

P∗ = [ei1 , · · · , eiM ]T ,

with ei ∈ RN×1 the i th canonical unit vector.
Reduced approximations of the solution for any given parameter µ are sought in the

form,
ûn(µ) = Wncn(µ).

The condition for obtaining the coefficients cn(µ) is (a reduced version of) equation (3)

PN (Wncn(µ);µ) ≈ f(XN ). (4)

Realizing that this is an over-determined system as we have in principle n� N , the authors
of [13] proposed a Petrov Galerkin approach or collocation on n points which produces a
square system. The distinctive feature of what we propose in this paper for locating the
unknown coefficients cn(µ) is to minimizing the residual of (4) on the set of nodes XM .
Namely, we seek cn(µ) by solving the following optimization problem:

cn(µ) = argmin
ω∈Rn

‖ P∗
(
PN (Wnω;µ)− f(XN )

)
‖RM . (5)

We note that this is a nonlinear system of equations for cn with ∇hûn(µ) and ∆hûn(µ)
computed on the full grid and then evaluated on the reduced grid XM according to

∇hûn(µ) = P∗ [(∇hu1) , . . . , (∇hun)] cn(µ),

∆hûn(µ) = P∗ [(∆hu1) , . . . , (∆hun)] cn(µ).
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Iterative methods, such as Newton’s method, will be used to solve for the coefficients cn(µ)
online. The collocation nature of this scheme allows for solving this system with a cost
only dependent on M and n even when PN is nonlinear and nonaffine. In particular, it is
independent of the degrees of freedom N of the underlying truth solver. Indeed, the next
section describes the offline procedure where the N selected parameters {µ1, . . . ,µN} are
identified sequentially through a greedy algorithm. Once a µj is determined, we precompute
as many quantities as possible so that minimal update is performed at each iteration of
the iterative method. The online procedure of the nonlinear solve for obtaining cn(µ) from
equation (5) involves:

1) realizing/updating Wn,Mcn, ∇h(Wn,M)cn, and ∆h(Wn,M)cn at each iteration taking
O(Mn) operations;

2) calculating the forcing term f(XM) taking O(M) operations; and

3) solving the reduced linear systems at each iteration of the nonlinear solve taking O(n3)
operations.

2.2 Offline algorithm

In this section, we describe the offline procedure of the reduced over collocation framework
based on the L1-approach proposed in [17]. The remaining ingredients of the offline procedure
are identical with the traditional RBM algorithm [42, 27, 41, 29].

2.2.1 A greedy algorithm based on an L1 importance indicator

We first briefly describe the procedure for selecting the representative parameters µ1, . . . ,µN

for constructing the solution space WN . RBM utilizes a greedy scheme to iteratively con-
struct WN relying on an efficiently-computable error estimates that quantify the discrepancy
between the dimension-n RBM surrogate solution ûn(µ) and the truth solution uN (µ). De-
noting such an estimate as ∆n(µ), it traditionally satisfies ∆n(µ) ≥

∥∥ûn(µ)− uN (µ)
∥∥.

Assuming existence and computability of this error estimate, the greedy procedure for
constructing WN then starts by selecting the first parameter µ1 randomly from Ξtrain (a
discretization of the parameter domain D) and obtaining its corresponding high-fidelity
truth approximation uN (µ1) to form a (one-dimensional) RB space given by the range
of W1 =

[
uN (µ1)

]
. Next, we obtain an RB approximation ûn(µ) for each parameter in

Ξtrain together with an error bound ∆n(µ). The greedy choice for the (n + 1)th parameter
(n = 1, · · · , N − 1) is made and the RB space augmented by

µn+1 = argmax
µ∈Ξtrain

∆n(µ), Wn+1 =
[
Wn uN (µn+1)

]
(6)

The design and efficient implementation of the error bound ∆n is usually accomplished
with a residual-based a posteriori error estimate from the truth discretization. Mathematical
rigor and implementational efficiency of this estimate are crucial for the accuracy of the
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reduced basis solution and its efficiency gain over the truth approximation. When P(u;µ) is
a linear operator, the Riesz representation theorem and a variational inequality imply that
∆n can be taken as

∆R
n (µ) =

‖f − PN (ûn;µ)‖2√
βLB(µ)

,

which is a rigorous bound (with the R-superscript denoting it is based on the full residual).
Here βLB(µ) is a lower bound for the smallest eigenvalue of PN (µ)TPN (µ) with PN (µ) being
the matrix corresponding to the discretized linear operator PN (·;µ).

Deriving the counterpart of this estimation for the general nonlinear equation is far from
trivial. Moreover, even for linear equations, the robust evaluation of the residual norm in the
numerator is delicate [11, 17]. We would also have to resort to an offline-online decomposition
to retain efficiency which usually means application of EIM for nonlinear or nonaffine terms.
This complication degrades, sometimes significantly [5, 35], the online efficiency due to the
large number of resulting EIM terms. What exacerbates the situation further is that the
(parameter-dependent) stability factor βLB(µ) must be calculated by a computationally
efficient procedure such as the successive constraint method [31, 30]. For these reasons, we
are going to adopt the following empirical alternative, an importance indicator proposed in
[17], in place of ∆R

n :
∆L
n(µ) = ||cn(µ)||1.

The L-superscript denotes that it is based on the L1-norm making our scheme L1-based. We
note that this is not an error estimator because ∆L

n does not decrease as we increase n since
∆L
n(µi) = 1 for i ∈ {1, . . . , n}. Nevertheless, we demonstrate that it is a reliable quantity to

monitor when deciding which representative parameters µ1, . . . ,µN will form the surrogate
space. We finish this subsection by pointing out that the calculation of ∆L

n is independent of
N while naive approaches to evaluate the traditional estimator ∆R

n for nonlinear problems
would depend on N . This difference leads to the dramatic efficiency gain of the L1-ROC, as
numerically confirmed in Section 3.

2.2.2 Construction of the reduced over-collocation set XM

Let us now describe how we determine the reduced collocation set XM to complete the
offline algorithm. Toward that end, we first describe the construction of two sets. The
first one, denoted by XN

s , consists of the maximizers from the EIM procedure used on the
orthonormalized columns of WN , which are computed as pivots from an LU decomposition.
Realizing the importance of controlling the residuals when solving equations, we need to
represent the residuals well on the reduced grid. For that purpose, we introduce a second
set of points, examines the residual of the RB solution at the chosen µn when only n − 1
basis elements are used,

rn−1 = PN (ûn−1(µn);µn)− f(XN ), n ∈ {2, . . . , N}. (7)

We next take these N − 1 residual vectors and perform an EIM procedure on them. The
N − 1 maximizers from this procedure form the second set which is denoted XN−1

r . The
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Algorithm 1 Offline: construction of WN and the collocation set X2N−1 = XN
s ∪XN−1

r .

1: Choose µ1 randomly from Ξtrain, compute u1 := uN (XN ;µ1).
2: Compute x1

∗ = argmaxx∈XN |u1|, define ξ1 = u1/u1(x1
∗). Let i1 be the index of x1

∗ and
P∗ = [ei1 ]T .

3: Initialize m = n = 1, Xm = Xn
s = [x1

∗], W1 = {ξ1} ,W1,m = P∗W1, and X0
r = ∅.

4: For n = 2, . . . , N
5: Solve cn−1(µ) with Wn−1, P∗ and calculate ∆n−1(µ) for all µ ∈ Ξtrain.
6: Find µn = argmaxµ∈Ξtrain\{µi,i=1,··· ,n−1}∆n−1(µ) and solve for ξn := uN (XN ;µn).

7: Compute an interpolatory residual for ξn : find {αj} and let ξn = ξn −
∑n−1

j=1 αjξj
so that ξn(Xn−1

s ) = 0.
8: Find xn∗ = argmaxx∈XN /Xm |ξn(x)|, ξn = ξn/ξn(xn∗ ), and let Xn

s = Xn−1
s ∪ {xn∗}, and

i1 be the index of xn∗ .
9: Form the full residual vector rn−1 = PN (ûn−1(µn);µn) − f(XN ) and compute its

interpolatory residual: find {αj} and let rn−1 = rn−1−
∑n−2

j=1 αjrj so that rn−1(Xn−2
r ) =

0. Find xn−1
∗∗ = argmaxx∈XN /{Xm,xn

∗ } |rn−1(x)|. Let rn−1 = rn−1/rn−1(xn−1
∗∗ ), andXn−1

r =
Xn−2
r ∪ {xn−1

∗∗ } and i2 is the index of xn−1
∗∗ .

10: Update Wn = {Wn−1, ξn},m = 2n− 1, Xm = Xn
s ∪Xn−1

r , P∗ = P∗ ∪ [ei1 , ei2 ]T .
11: End For

reduced collocation approach in [13] is a specialization that takes M = N and XM = XN
s .

The resulting M = N reduced scheme can be unstable particularly when high accuracy (i.e.
large N) of the reduced solution is desired. It can be resolved in special cases by an analytical
preconditioning approach [14]. The second obvious choice of XM is to append XN−1

r with
one more point such as the maximizer of the first basis. Numerical tests (not reported in
this paper) also reveal instability of this scheme.

The stabilization mechanism and name of the reduced over-collocation methods, outlined
in Algorithm 1, come from the fact that we combine these two choices by taking

M = 2N − 1 and XM = XN
s ∪XN−1

r ,

and solving a least squares problem on the reduced level by collocating on about twice as
many points as the number of basis in the RB space. Note that the first basis function has no
accompanying residual vector (7), so that from the second onward there are two collocation
points selected whenever a new parameter is identified by the greedy algorithm.

2.3 Extension of L1-ROC for time dependent problems

For the time-dependent problem (2), the semi-discretized L1-ROC solver remains identical
to the steady-state case. That is, we seek the reduced approximation of the solution for any
given parameter µ in the form of

ûn(µ, t) = Wncn(µ, t).
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The unknown coefficients cn(µ, t) ∈ Rn×1 is obtained by solving the following optimization
problem:

cn(µ, t) = argmin
ω∈Rn

‖ P∗
(
Wnω + PN (Wnω;µ)− f(XN )

)
‖RM . (8)

To discretize in time, our L1-ROC aligns with the parameter-time greedy framework
[25, 26], as opposed to POD [33, 36] or POD-greedy [24]. We discretize the time and denotes
the (full) set of temporal nodes as Tf := {ti : i = 0, · · · ,Nt} with t0 being the initial time
and Nt = T/∆t where ∆t is the temporal step-size. We extend the L1-based importance
indicator of [17] to the time-dependent case here. Toward that end, we define a reduced set
of temporal nodes Tr that starts from the empty set and is gradually enriched in the greedy
algorithm.

To initiate the reduced solver construction we start with a deterministically or randomly
chosen µ1 (similar to the steady-state case) and invoke the truth solver to obtain the snap-
shots {uN (ti, x;µ1)}Nt

i=0. Tr is initiated by the time instant when the corresponding snapshot
has the largest variation. That is,

Tr = {t1µ1} where t1µ1 = argmax
t∈Tf

(
max
x∈XN

uN (t, x;µ1)− min
x∈XN

uN (t, x;µ1)

)
.

The RB space W1 is initiated with uN (t1µ1 , x;µ1). The (first) collocation point is set to be

the EIM point of this first basis, i.e. the spatial maximizer of |uN (t1µ1 , x;µ1)|,

x1
∗ = argmax

x∈XN
|uN (t1µ1 , x;µ1)|.

Once these ingredients are in place after the first pair (µ1, t1µ1) is determined, we can solve
the reduced problem (8) for every µ ∈ Ξtrain. Similar to the traditional greedy algorithm,
the next step is to determine the subsequent (µ, t) pairs. Our greedy algorithm manifests
itself in the following three aspects:

• Greedy in µ: We define the following importance indicator for each µ after its
corresponding (reduced) solver of (8) is performed,

∆Lt
n (µ) := max

t∈Tr
{‖cn(µ, t)‖1}. (9)

We note that: 1) the maximization is done only on the reduced temporal grid Tr which
is much smaller than the full temporal grid Tf ; 2) the signature feature of the L1-based
approach carries over to the time-dependent case in that the indicator requires nothing
more than the reduced solution coefficients. Our greedy choice for the µ-component
of the (µ, t) pair is through maximizing ∆Lt

n (µ) over the training set Ξtrain:

µn+1 = argmax
µ∈Ξtrain

∆Lt
n (µ).
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• Greedy in t: Next, the t-component of the (µ, t) pair is determined and the set Tr
enriched with a new temporal node through a greedy choice as well. Given the greedy
choice µn+1 and the reduced solution ûn(µn+1, t) = Wncn(µn+1, t) for all time levels
t ∈ Tf , we compute the full residual vectors rn ∈ RN×1 for this µn+1. The greedy
t-choice is given by

t
kµn+1

µn+1 := argmax
t∈Tf

{
ε(t;µ) := ‖rn(t;µn+1)‖∞

}
, and Tr = Tr

⋃
{tkµn+1

µn+1 }. (10)

Here, kµn+1 ≥ 1 is introduced to account for the possibility that multiple temporal
nodes might be selected for the same µ, at different rounds of the greedy algorithm.
We note in particular that, consistent with typical greedy scheme, we choose one (as
opposed to multiple) maximizer in (10). However, as we proceed with building up the
reduced solution space, the same µ (and a different temporal node) may be chosen by
the greedy algorithm at a later step due to the lack of resolution of its corresponding
temporal history.

• XM expansion: Once a new greedy pair (µn+1, t
kµn+1

µn+1 ) is fixed, we solve for the truth

approximations u(t,XN ;µn+1) for t ≤ t
kµn+1

µn+1 . The expansion of XM by two more

colocation points, with one from the EIM procedure of the solution u(t
kµn+1

µn+1 , X
N ;µn+1)

and the other from that of the residual rn(t
kµn+1

µn+1 ;µn+1), is identical to the steady state
case.

The full offline algorithm is seen in Algorithm.2.

3 Numerical results

In this section, we present the numerical results of the L1-ROC method applied to the
nonlinear steady-state and time-dependent problems, in Sections 3.1 and 3.2 respectively.
The equations we test, in each section, include the classical viscous Burgers’ equation and
nonlinear convection diffusion reaction equations.

3.1 L1-ROC for steady-state nonlinear problems

3.1.1 Viscous Burgers’ equation

First, we show the results of our algorithm applied to the one-dimensional (viscous) Burgers’
equation,

uux = µuxx,

u(x = −1) = 1, u(x = 1) = −1.
(11)
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Algorithm 2 L1-ROC algorithm for time dependent problems

1: Choose µ1, and set kµ1 = 1 the first temporal node to be t
kµ1

µ1 =

argmaxt∈Tf
(
maxx u

N (t, x;µ1)−minx u
N (t, x;µ1)

)
. Define ξ1 := uN (t

kµ1

µ1 , X
N ;µ1).

2: Find x1
∗ = argmaxx∈XN |ξ1|, and let P∗ = [ei1 ]T , where i1 is the index of x1

∗.
3: Initialize m = n = 1, Xm = Xn

s = {x1
∗}, W1 = {ξ1} ,W1,m = P∗W1, and X0

r = ∅.
4: For n = 2, . . . , N
5: Solve the reduced problem for cn−1(µ, tk).

6: Find µn = argmaxµ∈Ξtrain
∆Lt
n−1(µ), and a new temporal node t

kµn

µn =
arg maxt∈Tf ε(t;µ

n).

7: Solve ξn = uN (t
kµn

µn , XN ;µn).

8: Compute an interpolatory residual for ξn : find {αj} and let ξn = ξn −
∑n−1

j=1 αjξj
so that ξn(Xn−1

s ) = 0. Find xn∗ = argmaxx∈XN /Xm |ξn|, ξn = ξn/ξn(xn∗ ). Let Xn
s =

Xn−1
s ∪ {xn∗}, and i1 be the index of xn∗ .

9: Form the full residual vector rn−1 = (ûn−1)t (t
kµn

µn ;µn)+PN (XN , ûn−1(t
kµn

µn ;µn);µn)−
f(XN , t

kµn

µn ). Compute an interpolatory residual rn−1 : find {αj} and let rn−1 = rn−1 −∑n−2
j=1 αjrj so that rn−1(Xn−2

r ) = 0. Find xn∗∗ = argmaxx∈XN /{Xm,xn
∗ } |rn−1|.Let rn−1 =

rn−1/rn−1(xn∗∗), and Xn−1
r = Xn−2

r ∪ {xn∗∗}. i2 is the index of xn∗∗.
10: Update Wn = {Wn−1, ξn},m = 2n− 1, Xm = Xn

s ∪Xn−1
r , P∗ = [P∗; (ei1)T ; (ei2)T ].

11: End For

Here the viscosity parameter µ varies on the interval D = [0.05, 1]. The computational
domain [−1, 1] is divided uniformly into N + 1 intervals with grid points denoted by

{x0, x1, . . . , xN+1}.

With h = 2
N+1

, the following finite difference discretization based on the conservative form

of equation (11),
(
u2

2

)
x
− µuxx = 0, is then used

u2
i+1 − u2

i−1

4h
− µui−1 − 2ui + ui+1

h2
= 0, i ∈ {1, . . . ,N}. (12)

This leads to a nonlinear truth solver of size N to resolve (11). The parameter domain D is
sampled 50 times logarithmically spaced to form the training set for the Offline procedure.

We test our method on a subset of Ξtest of D that has empty intersection with the training
set Ξtrain. We compute the relative errors E(n) over all µ in Ξtest of the reduced basis solution
using n basis functions, ûn(µ), in comparison to the high fidelity truth approximation. That
is,

E(n) = max
µ∈Ξtest

{
‖u(µ)− ûn(µ)‖∞
‖u‖L∞(Ξtest,L∞(Ω))

}
(13)

where
||u||L∞(Ξtest,L∞(Ω)) = max

µ∈Ξtest

‖u(µ)‖∞.
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Error curves and the distribution of the first N = 10 selected parameters with N = 100
are showed in Figure 1. It shows a clear exponential convergence as n increases and a
concentration of the selected µ values toward the lower end of the parameter domain. We note
that the distributions of chosen parameters between the traditional residual-based scheme
and the nascent L1-based scheme are very much similar which underscores the reliability of
the new L1-ROC approach.
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Figure 1: Steady viscous Burgers’ result. (Left) Histories of convergence for the error and
error estimator for the traditional residual-based RBM and proposed L1-ROC. Here, ER

and EL refer to the E(n) in (13) with the reduced solution ûn constructed by following
the residual-based error estimator ∆R and L1-based importance indicator ∆L, respectively.
(Middle) Distribution of selected parameters µn, using estimator ∆R and ∆L, as a function
of n. (Right) Sample RB solutions at three parameter values themselves. Note that ∆L does
not decay to zero for large n, but such decay is not expected or needed for this function.

3.1.2 Nonlinear reaction diffusion equations

Here we consider the following cubic reaction diffusion,

−µ2∆u+ u(u− µ1)2 = f(x) in Ω := [−1, 1]× [−1, 1],

u = 0 on ∂Ω.
(14)

We take f(x) = 100 sin(2πx1) cos(2πx2), and the parameter domain D is set to be [0.2, 5]×
[0.2, 2]. D is discretized by a 128 × 64 uniform tensorial grid. Denoting the step size along
the µ1 direction by h1, and the other by h2, we specify the training set and test set as follows,

Ξtrain = (0.2 : 4h1 : 5)× (0.2 : 4h2 : 2),

Ξtest = ((0.2 + 2h1) : 4h1 : (5− 2h1))× ((0.2 + 2h2) : 4h2 : (2− 2h2)),

where (a : h : b) denotes an equidistant mesh over [a, b] with stepsize h. Note in particular
that the two sets defined above are disjoint. The nonlinear solver, based on the 5-point stencil
with

√
N interior points at each direction of Ω, for the high fidelity truth approximation

linearizes, at the (`+ 1)th iteration, the equation according to

− µ2∆u(`+1) + g′(u(`))u(`+1) = g′(u(`))u(`) − g(u(`), µ1) + f(x) (15)
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where g(u;µ1) = u(u− µ1)2.
Relative errors of the RB solution E(n) with K =

√
N = 400 are displayed in Figure 2

top left. Initially, steady exponential convergence is again observed for the L1-ROC method.
The set of selected parameters are shown in Figure 2 top middle, while the collocation points
are shown on the bottom row. We note again that the distributions of chosen parameters
between the traditional residual-based scheme and the more nascent L1-based scheme are
quite similar for this example underscoring the reliability of the L1-ROC approach.

Lastly, we showcase the vast saving of the offline time for the L1-ROC approaches. Toward
that end, the comparison in cumulative computation time for the residual-based, L1-ROC,
and the high fidelity truth approximations is shown in Figure 2 top right. The initial nonzero
start of the L1-ROC is the amount of its offline time. We observe that, when nrun > 172, L1-
ROC starts to save time in comparison to repeated runs of the truth solver. In that regard,
the residual-based ROC is effective when nrun > 276 with

√
N = 200. The difference in this

“break-even” point is because the overhead cost, devoted to calculating ∆L
n (for L1-ROC), is

significantly less than that for ∆R
n . The latter involves (an offline-online decomposition of)

the calculation of the full residual norm while the former only requires, in the L1-ROC case,
obtaining an N × 1 vector and evaluating its L1-norm. It is worth noting that the “break-
even” number of runs is insensitive to

√
N . Though L1-ROC has a much more efficient

offline procedure than the residual-based ROC, their online time for any new parameter is
comparable, see Table 2. We observe that the L1-ROC method accelerates the iterative
truth solver by 2000 ∼ 50000 times. The results also confirm that time consumption of
the online ROC methods is independent of K =

√
N . In order to demonstrate the time

savings more intuitively, we present the online calculation time for the different algorithms
in two different parameter regimes. The first regime is when µ1 is large and µ2 small, in
particular we choose µ1 = 4.55, µ2 = 0.42. The second regime has the relative sizes reversed.
The reduced solver requires 27 iterations for the nonlinear system in the first regime, while
only requiring 8 iterations in the second regime. Therefore, the full-order time consumption
seems very different. However, Table 2 does indicate a speedup range of 3000 ∼ 17000 when√
N = 400, 800.

(µ1, µ2) K Residual-based ROC L1-ROC Direct FDM

(4.55, 0.42)
200 0.003150 0.003159 2.310034
400 0.003067 0.003136 11.779558
800 0.003258 0.003162 53.727031

(1, 1.82)
200 0.001125 0.001060 0.662095
400 0.001141 0.001205 3.338956
800 0.001207 0.001261 15.173460

Table 2: Online computational times (seconds) with different grid sizes K, when N = 40.

Remark 1. The L1-ROC works well for other nonlinear convection diffusion reaction equa-
tions. For example, we tested the dimensionless nonlinear nonaffine Poisson-Boltzmann
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Figure 2: Cubic reaction diffusion result. Top row:(Left) comparison of the histories of
convergence with

√
N = 400 for the errors and the error estimator for the ROC method.

Here, ER and EL refer to the E(n) in (13) with the reduced solution ûn constructed by
following the residual-based error estimator ∆R and L1-based importance indicator ∆L,
respectively. (Middle) Selected N(= 40) parameters of the ROC method for residual-based
and L1-based approaches. (Right) cumulative runtime of the FDM, the residual-based, and
L1-based RBM. Bottom row: selected 40 collocation points XM

s from solutions (Left) and
39 collocation points XM

r from residual vector (Right).

equation

D∇2u = sinhu+ g(x), with g(x) = exp[−50((x1 − 0.2)2 + (x2 + 0.1)2)] (16)

modeling a source distribution centered at (0.2,−0.1). The parameters are diffusion coeffi-
cient D and the voltage differential V at the boundary. The authors have previously designed
a RBM for this equation [32]. However, due to the desire to avoid applying EIM directly,
we observed limited speedup (less than one order of magnitude). With L1-ROC, we achieved
a speedup factor of up to four orders of magnitude, see Table 3. This significant progress
underscores the power of the L1-ROC approach. In addition, we tested an equation with
nonlinear convection term

− µ2∆u+ u (‖∇u‖+ µ1)1.5 = f(x). (17)

The L1-ROC works equally effective as well, see Table 4.
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K Residual-based ROC L1-ROC Direct FDM
200 0.000678 0.000688 1.439812
400 0.000770 0.000646 6.492029
800 0.000728 0.000625 33.722112

Table 3: Online computational times (in seconds) for the Poisson-Boltzmann equation (16)
at different grid sizes K, when V = 3.85, D = 0.152, N = 30.

K Residual-based ROC L1-ROC Direct FDM
200 0.000422 0.000428 0.569732
400 0.000397 0.000410 2.838783
800 0.000424 0.000425 12.582593

Table 4: Online computational times (seconds) for the nonlinear convection diffusion equa-
tion (17) at different grid sizes K, when N = 20, µ1 = 32, µ2 = 3.

3.1.3 Numerical comparison with POD and random generation

To further establish numerically the reliability of the L1-ROC algorithm, we compare it with
two alternative methods of building the reduced basis space. On one end, the proper orthog-
onal decomposition (POD) [22, 33, 46, 34] based on an exhaustive selection of snapshots (i.e.
we include all solutions uN (µ) for µ ∈ Ξtrain) produces the best reduced solution space and
thus the most accurate, albeit costly, surrogate solution. We note that this version of POD
only serves as reference and is in general not feasible as the full solution ensemble must be
generated. On the other end, a random selection of N parameters as our RB snapshots is a
fast but crude method. Comparison results of three steady-state test problems are shown in
Figure 3 with FDM points per dimension

√
N set to be 400 for first two cases (results with

different
√
N are similar) and

√
N = 100 for the third case. Not surprisingly, the exhaustive

POD is the most accurate. Our L1-ROC is one order of magnitude worse than POD, but in
fact slightly better or comparable to the the best possible random generation. It is roughly
one order of magnitude better than the median performance of random generations.

3.2 Time dependent nonlinear problems

In this section, we test the time-dependent equations corresponding to stationary problems
in the last section, namely viscous Burgers’ and cubic reaction diffusion equations.

3.2.1 Viscous Burgers’ equation

We test the viscous Burgers’ equation adopting settings similar to [39, 37]

ut + uux = µuxx + f(x), (x, t, µ) ∈ (0, 1)× (0, 1]×D,
u(x, t = 0;µ) = 0,

u(0, t;µ) = α, u(1, t;µ) = β.

(18)
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Figure 3: Convergence comparison for the L1-ROC, exhaustive POD and (best, median, and
worst cases of) random generation approaches. (a) Poisson-Boltzmann equation (16) with√
N = 400, (b) cubic reaction diffusion (14) with

√
N = 400, (c) steady viscous Burgers’

equation (11) with
√
N = 100.

The authors of [39] takes D = [0.1, 1], f = 0, T = 1,∆t = 10−4, (α, β) = (−1, 1) and monitor
the average error in a Frobenius norm-based metric,

Error =
1

mtest

mtest∑
i=1

||u(·, ·;µ)− û(·, ·;µ)||F
||u(·, ·;µ)||F

, ‖v(·, ·)‖2
F :=

∑
x∈XN ,ti∈Tf

v(x, ti)
2

while the authors in [37] set D = [0.005, 1], f = 1, T = 2,∆t = 2 · 10−6, (α, β) = (0, 0) and
observe the error in L2. We investigate L1-ROC results from both of these setups. The
results are showed in Figure 4. These results are similar to those of [39, 37]. However, we
note that they come at a much smaller computational expense.

3.2.2 Nonlinear reaction diffusion problems

Next, we consider accordingly the following time dependent nonlinear reaction diffusion
equation,

ut − µ2∆u+ u(u− µ1)2 = f(x), in Ω = [−1, 1]× [−1, 1],

u = 0 on ∂Ω,

u(x, t = 0) = u0(x).

(19)

Here f(x) = 100 sin(2πx1) cos(2πx2), and [µ1, µ2] ∈ D := [1, 5] × [0.2, 1]. The parameter
space D is discretized by a 128× 32 uniform tensorial grid. Denoting the step size along the
µ1 direction by h1, and the other by h2, we specify the training and test sets as follows,

Ξtrain = (1 : 8h1 : 5)× (0.2 : 2h2 : 1),

Ξtest = ((1 + 2h1) : 4h1 : (5− 2h1))× ((0.2 + h2) : 4h2 : (1− h2)),

For the truth approximation, we use backward Euler for time marching and the same non-
linear spatial solver as the steady-state case (15).
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Figure 4: Transient viscous Burgers’ result. On the top row are the error curves of L1-ROC
with N = 15 basis elements for the setup in [39] (left) and [37] (right). Plotted at the
bottom are the actual L2 error, ||uN (:, tk;µ)− uN(:, tk;µ)|| as a function of discrete time tk.
The left, center and right plots show N = 5, 10, 15, respectively, each for parameter values
µ = 0.005, 0.01, 0.1, 1 with the setup as in [37].

We report the µ-component of the parameter values selected by L1-ROC in Figure 5
(top). Note that the RB space is built from the snapshots{

u(t1µn , ·;µn), . . . , u(t
kµn

µn , ·;µn)
}N
n=1

.

That is, for each distinct parameter value µn chosen by L1-ROC, there are kµn ≥ 1 time level

snapshots {t1µn , . . . , t
kµn

µn } ⊂ {t0, t1, . . . , tNt}. The red number by each µ values in the left
pane denotes this kµn . It is interesting to note that, consistent with the tendency of RBM
selecting boundary values of the parameter domain, our L1-ROC tends to select multiple
snapshots along time for the selected parameters along the boundary of the parameter do-
main. The right pane is the corresponding 3D-image of the left. The bottom row of Figure 5
shows the L1-ROC error curve, which shows clear exponential convergence, and collocation
points in the physical domain.
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Figure 5: Transient cubic reaction diffusion result. Top Left: Selected parameters when
Nmax = 100. The number means corresponding parameter is selected at many different time
nodes. Top Right: a three-dimensional view of the selected parameters. Error curves of
L1-ROC algorithm, and collocation points from solutions and residuals are shown at the
bottom row from left fo right respectively.

4 Conclusion

This paper proposes a novel reduced over-collocation method, dubbed L1-ROC, for efficiently
solving parametrized nonlinear and nonaffine PDEs. By integrating EIM technique on the
solution snapshots and well-chosen residuals, the collocation philosophy, and the simplicity
of the L1-based importance indicator that is extended to time-dependent problems, L1-ROC
has online computational complexity independent of the degrees of freedom of the underlying
FDM, and furthermore immune from the number of EIM expansion terms. This expansion
would have otherwise significantly degraded the efficiency of a traditional RBM when applied
to the nonaffine and nonliner terms in the equation. The lack of such precomputations
of nonlinear and nonaffine terms makes the method dramatically faster offline and online,
and significantly simpler to implement than any existing RBM. For future directions, we
plan to apply L1-ROC to systems of equations resulting from CFD systems with more
complicated nonlinear and nonaffine terms. A deeper understanding on the theory of this
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L1-ROC algorithm is also in our consideration.
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