Skip to main content
Log in

A Single-Step Correction Scheme of Crank–Nicolson Convolution Quadrature for the Subdiffusion Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a new correction scheme for time discretization of the subdiffusion equation based on the fractional Crank–Nicolson convolution quadrature. Due to the weak singularity of solution near time \(t=0\), a single-step initial correction of the scheme is proposed with rigorous analysis to render the time discretization of second-order accuracy. Optimal error estimates of the numerical schemes are proved for \(L^2\) initial data based on the integral representations of solutions and resolvent estimates of elliptic operator, with regularity assumptions only on the source term. Numerical examples are presented to demonstrate the performance of the proposed method and the consistency with the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arendt, W., Batty, C.J., Hieber, M., Neubrander, F.: Vector-valued Laplace Transforms and Cauchy Problems, 2nd edn. Birkhäuser, Basel (2011)

    Book  Google Scholar 

  2. Baeumer, B., Kovács, M., Sankaranarayanan, H.: Higher order Grünwald approximations of fractional derivatives and fractional powers of operators. Trans. Amer. Math. Soc. 367, 813–834 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  4. Chen, F., Xu, Q., Hesthaven, J.S.: A multi-domain spectral method for time-fractional differential equations. J. Comput. Phys. 293, 157–172 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chen, S., Shen, J., Wang, L.L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comp. 85, 1603–1638 (2016)

    Article  MathSciNet  Google Scholar 

  6. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75, 673–696 (2006)

    Article  MathSciNet  Google Scholar 

  7. Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54, 3413–3442 (2003)

    Article  MathSciNet  Google Scholar 

  8. Deng, W., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional ordinary differential equations. BIT 55, 967–985 (2015)

    Article  MathSciNet  Google Scholar 

  9. Dimitrov, Y.: Numerical approximations for fractional differential equations. J. Fract. Calc. Appl. 5(22), 45 (2014)

    MathSciNet  Google Scholar 

  10. Gracia, J.L., O’Riodan, E., Stynes, M.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51, 445–466 (2013)

    Article  MathSciNet  Google Scholar 

  12. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)

    Article  MathSciNet  Google Scholar 

  13. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39, A3129–A3152 (2017)

    Article  MathSciNet  Google Scholar 

  14. Jin, B., Li, B., Zhou, Z.: An analysis of the Crank-Nicolson method for subdiffusion. IMA J. Numer. Anal. 38, 518–541 (2018)

    Article  MathSciNet  Google Scholar 

  15. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsecier Science B.V, Amsterdam (2006)

    MATH  Google Scholar 

  16. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)

    Article  MathSciNet  Google Scholar 

  17. Liao, H.L., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    Article  MathSciNet  Google Scholar 

  18. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  19. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52, 129–145 (1988)

    Article  MathSciNet  Google Scholar 

  20. Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65, 1–17 (1996)

    Article  MathSciNet  Google Scholar 

  21. McLean, W., Mustapha, K.: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer. Algorithms 52, 69–88 (2009)

    Article  MathSciNet  Google Scholar 

  22. Mustapha, K.: Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer. Math. 130, 497–516 (2015)

    Article  MathSciNet  Google Scholar 

  23. Mustapha, K., Abdallah, B., Furati, K.M.: A discontinuous Petrov-Galerkin method for time-fractional diffusion equations. SIAM J. Numer. Anal. 52, 2512–2529 (2014)

    Article  MathSciNet  Google Scholar 

  24. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  25. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  26. Sanz-Serna, J.M.: A numerical method for a partial integro-differential equation. SIAM J. Numer. Anal. 25, 319–327 (1988)

    Article  MathSciNet  Google Scholar 

  27. Stynes, M.: Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19, 1554–1562 (2016)

    Article  MathSciNet  Google Scholar 

  28. Sun, Z.Z., Wu, X.: A fully discrete scheme for a diffusion wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  Google Scholar 

  29. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  30. Wang, Y., Yan, Y., Yan, Y., Pani, A.K.: Higher order time stepping methods for subdiffusion problems based on weighted and shifted Grünwald-Letnikov formulae with nonsmooth data. J. Sci. Comput. 83, Paper No. 40, 29 pp (2020)

  31. Xing, Y., Yan, Y.: A higher order numerical method for time fractional partial differential equations with nonsmooth data. J. Comput. Phys. 357, 305–323 (2018)

    Article  MathSciNet  Google Scholar 

  32. Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)

    Article  MathSciNet  Google Scholar 

  33. Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: A unified Petrov-Galerkin spectral method for fractional PDEs. Comput. Methods Appl. Mech. Engrg. 283, 1545–1569 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Jilu Wang and Lihong Yin was partially funded by the National Natural Science Foundation of China (NSFC Grant U1930402). The research of Jungang Wang was supported by the Natural Science Foundation of Shaanxi Province (2020JM-132) and the Fundamental Research Funds for the Central Universities (310201911cx025)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, J. & Yin, L. A Single-Step Correction Scheme of Crank–Nicolson Convolution Quadrature for the Subdiffusion Equation. J Sci Comput 87, 26 (2021). https://doi.org/10.1007/s10915-021-01419-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01419-w

Keywords

Navigation