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Abstract We study a decoupling iterative algorithm based on domain decomposition
for the time-dependent nonlinear Stokes-Darcy model, in which different time steps can
be used in the flow region and in the porous medium. The coupled system is formulated
as a space-time interface problem based on the interface condition for mass conserva-
tion. The nonlinear interface problem is then solved by a nested iteration approach
which involves, at each Newton iteration, the solution of a linearized interface prob-
lem and, at each Krylov iteration, parallel solution of time-dependent linearized Stokes
and Darcy problems. Consequently, local discretizations in time (and in space) can be
used to efficiently handle multiphysics systems of coupled equations evolving at differ-
ent temporal scales. Numerical results with nonconforming time grids are presented to
illustrate the performance of the proposed method.

Keywords Stokes-Darcy coupling · Non-Newtonian fluids · Domain decomposition ·
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1 Introduction

Multiscale and multiphysics processes are ubiquitous in many science and engineering
applications. Mathematically, coupled partial differential equations are used to model
various processes possibly taking place on different regions of the problem domain and
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at different scales in space and time. One example of such a coupling is the coupled
(Navier-)Stokes-Darcy system arising in a number of applications: surface and subsur-
face flow interaction, flow in vuggy porous media, industrial filtrations, biofluid-organ
interaction, cardiovascular flows, and others. In these applications, the Stokes equa-
tions are used to model the free flow and the Darcy equations are used to model the
flow in a porous medium; the two flow domains are coupled via suitable transmission
conditions on the interface to enforce mass conservation, balance of the normal forces
and the Beavers-Joseph-Saffman law [4,58,45].

The development of numerical approximations and efficient solvers for the Stokes-
Darcy coupling has been an active research area and attracted great attention over the
past two decades. For the stationary case, the existence and uniqueness of the weak so-
lution of the coupled system are proved in [25,46,5,28]. Regarding a numerical solution
of the mixed Stokes-Darcy model, one can either solve the coupled system directly with
some suitable preconditioner, or use the domain decomposition-based approach [53,61]
to decouple the system into two local subsystems which are solved separately. Con-
cerning the former or monolithic approach, new finite element spaces were studied in
[49,1,8,2] with mixed formulations and in [54,55] with discontinuous approximations.
Preconditioning techniques for solving the sparse linear system of saddle point form
resulted from finite element discretization of the fully coupled Stokes-Darcy system
were investigated in [10,50,20]. Concerning the decoupled approach, several directions
have been considered. Lagrange multiplier techniques were proposed in [46,31] and
mortar finite elements were studied in [36,5,32,38,35] in which the meshes on the in-
terface and subregions do not necessarily match. Heterogeneous domain decomposition
methods were explored using either the classical Dirichlet-Neumann (Steklov-Poincaré)
type operator [25,26,27,44,37,63] or the Robin-Robin interface conditions [29,24,13,
19,12]. Two-grid methods were applied to the mixed Stokes-Darcy model in [51,9], and
optimization-based approach was proposed in [30].

For nonstationary Stokes-Darcy problems, only a few studies have been carried
out. A monolithic method based on implicit time discretization was presented in [23]
in which the evolutionary system is uncoupled at each time step by domain decom-
position iteration. In [52], a decoupled backward Euler scheme was devised by lagging
the interface coupling terms, i.e. at each time level, one solves the Stokes and Darcy
problems using Neuman interface boundary conditions computed from the previous
time level. Long term stability of this method and a modified two-step method was an-
alyzed in [47]. A similar decoupled scheme with Robin interface conditions was studied
in [14] in which higher order time discretization (three-step backward differentiation
method) was also considered. In these works, the same time step is used in both regions.
Decoupled schemes with different time step sizes were proposed and analyzed in [59,
57]. These schemes are extensions of the method in [52] in which the time step size
in the Stokes region is an integral multiple of the time step size in the Darcy region.
The advancement in time is then carried out sequentially; first the Stokes problem is
solved with a small time step size using the Darcy pressure (freezing from the previous
coarse time step) as interface data, then the Darcy problem is solved using the recently
computed Stokes velocity as interface data. These methods are non-iterative by using
an explicit method for the coupling terms, and the key issue is how to achieve desired
accuracy and stability properties. A different approach was proposed in [48] by formu-
lating the coupled problem as a constrained optimal control problem which is solved
at each time step by a least square method (thus, the same time step is used in both
regions).
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As the model concerns the flow of fluid, there are two possible fluid types: Newto-
nian fluids (e.g. water and air) and non-Newtonian fluids (e.g. honey and quicksand).
The difference between these two types of fluid lies in the viscosity which is a constant
for Newtonian fluids and a function of the magnitude of the deformation tensor for
non-Newtonian fluids (more discussion can be found in [31]). Mathematically, one deals
with a linear or nonlinear coupled flow problem; the nonlinear Stokes-Darcy coupling
was considered in [31,32,48,30]. In addition, approximation methods for the nonlinear
Navier-Stokes/Darcy system were studied in [29,39,10,21,22,18], and for the coupling
with transport in [62,17,56].

In this work, we aim to develop a parallel decoupling method for the time-dependent
nonlinear Stokes-Darcy system in which different time step sizes can be used in the
free flow domain and the porous medium. Differently from [59,57], we apply the
so-called global-in-time (or space-time) domain decomposition method in which the
dynamic system is decoupled into dynamic subsystems defined on the subdomains (re-
sulting from a spatial decomposition), then time-dependent problems are solved in each
subdomain at each iteration and information is exchanged over space-time interfaces
between subdomains. Consequently, local discretizations in both space and time can
be enforced in different regions of the computational domain, which makes the method
well-suited and efficient for multiscale multiphysics problems. Note that this approach
is implicit in time, thus considerably large time step sizes can be used without affecting
stability, unlike the explicit method in [59,57]. This can be important for applications
in geosciences where long time simulations are often required. The method has been
studied for porous medium flows (see [42,43] and the references therein), and here
we extend the idea to the nonlinear Stokes-Darcy coupling, which, to the best of our
knowledge, hasn’t been considered in the literature. We construct a time-dependent
Steklov-Poincaré type operator and reduce the coupled problem into a nonlinear time-
dependent interface problem. The interface problem is then solved by a nested iteration
approach which involves, at each Newton iteration, the solution of a linearized interface
problem and, at each Krylov iteration, parallel solution of time-dependent linearized
Stokes and Darcy problems. As the local problems are solved globally in time at each
iteration, it makes possible the use of different time discretization methods or different
time grids in the Stokes and Darcy regions. To exchange information at the inter-
face with nonconforming time grids, an L2 time projection between subdomains is
performed by an optimal projection algorithm without any additional grid [34]. High
order time stepping methods can be applied straightforwardly, see [40]. The idea can be
generalized to the case of multiple subdomains where interfaces of different types are
introduced: Stokes-Darcy, Stokes-Stokes and Darcy-Darcy as considered in [63] for the
steady problems. However, in this work we restrict ourselves to the case of two subdo-
mains and conforming spatial meshes, and focus on numerical performance - in terms
of accuracy and efficiency - of the proposed method with nonmatching time grids.

The rest of this paper is structured as follows. In Section 2, we present the model
problem which is the nonstationary nonlinear Stokes-Darcy system, and the interface
coupling conditions. The variational formulation of the continuous coupled system is
derived in Section 3. The coupled problem is formulated as a time-dependent nonlinear
interface problem in Section 4, and nonconforming time discretization is discussed in
Section 5. Numerical results are presented in Section 6 to study the performance of the
proposed algorithm with nonmatching time grids. Finally, some concluding remarks
are given in Section 7.
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2 Time-dependent nonlinear Stokes-Darcy system

We consider a free non-Newtonian fluid flow in Ωf coupled with a porous medium flow
in Ωp, where Ωf and Ωp are subsets of Rd for d = 2, 3. Denote by Γ the interface
between the two domains, and by Γf = ∂Ωf \Γ and Γp = ∂Ωp \Γ the external bound-
aries of the fluid domain and porous medium respectively (see Figure 1). Let nnnf and
nnnp be the outward unit normal vectors to Ωf and Ωp respectively, and {tttj}j=1,...,d−1

be an orthogonal set of unit tangent vectors on Γ .

Fig. 1: Example of a two dimensional domain formed by a fluid region and a porous
medium.

Let T > 0 be a finite time. The free flow in Ωf is described by the nonlinear Stokes
equations subject to no-slip boundary condition on Γf :

∂uuuf
∂t
−∇ · TTT (uuuf , pf ) = ffff in Ωf × (0, T ), (2.1a)

∇ · uuuf = 0 in Ωf × (0, T ), (2.1b)

uuuf = 000 on Γf × (0, T ), (2.1c)

uuuf (·, 0) = uuuf0 in Ωf , (2.1d)

where uuuf is the fluid velocity, pf the fluid pressure, TTT (uuuf , pf ) = νf (|DDD(uuuf )|)DDD(uuuf )−

pfIII the stress tensor (with III the identity tensor), DDD(uuuf ) =
1

2

(
∇uuuf +∇uuuTf

)
the rate

of the strain tensor, νf (·) the fluid viscosity and ffff the body force. In this work we
consider the Cross model for the viscosity function:

νf (|DDD(uuuf )|) = νf∞ +
νf0 − νf∞

1 +Kf |DDD(uuuf )|2−rf
, (2.2)

where rf > 1, νf∞, νf0 > 0 and Kf > 0 are constants; νf∞ and νf0 denote the
limiting viscosity values at an infinite shear rate and at zero shear rate respectively,
and satisfy νf∞ ≤ νf0. Other nonlinear viscosity models such as Carreau model, power
law model and Ladyzhenskaya model can also be used [31].
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The porous medium flow in Ωp is described by the nonlinear Darcy equations
subject to no-flux boundary condition on Γp:

νeff(|uuup|)κ−1uuup +∇pp = 0 in Ωp × (0, T ), (2.3a)

Sp
∂pp
∂t

+∇ · uuup = fp in Ωp × (0, T ), (2.3b)

uuup ·nnnp = 0 on Γp × (0, T ), (2.3c)

pp(·, 0) = pp0 in Ωp, (2.3d)

where uuup and pp are the Darcy velocity and pressure respectively, Sp > 0 the storage
coefficient, νeff(·) the effective fluid viscosity, κ > 0 the permeability and fp is the
source/sink. The Cross model for νeff is defined as follows (see [31] for other models):

νp(|uuup|) = νp∞ +
νp0 − νp∞

1 +Kp|uuup|2−rp
, (2.4)

where rp > 1, νp0 ≥ νp∞ > 0 and Kp > 0 are constants.
The viscosity functions (2.2) and (2.4) have the following properties which will be

used in later analysis [31]:
(A1) νf (·) and νp(·) are strongly monotone and bounded from below and above by

positive constants.
(A2) The nonlinear functions νf (|uuu|)|uuu| and νp(|uuu|)uuu are uniformly continuous with re-

spect to uuu ∈ Rd.
Note that the standard linear Stokes-Darcy system can be recovered by setting rf =
rp = 2.

The coupled Stokes-Darcy system is closed by the following coupling conditions on
the space-time interface:

uuuf ·nnnf + uuup ·nnnp = 0 on Γ × (0, T ), (2.5a)

−nnnf · (νf (|DDD(uuuf )|)DDD(uuuf )− pfIII) ·nnnf = pp on Γ × (0, T ), (2.5b)

−nnnf · (νf (|DDD(uuuf )|)DDD(uuuf )− pfIII) · tttj = cBJSuuuf · tttj on Γ × (0, T ), j = 1, . . . , d− 1,
(2.5c)

where cBJS is a positive constant. These coupling conditions have been studied exten-
sively in the literature (e.g. [25,46,15]). The first two conditions enforce the continuity
of the normal component of velocities and the continuity of the normal stress respec-
tively. The third condition is the Beavers-Joseph-Saffmann condition [58,45], stating
the connection between the slip velocity and the shear stress along the interface. It is
a simplification of the Beavers-Joseph condition [4] by neglecting the porous medium
velocity tangent to the interface. Thus (2.5c) is actually not a coupling condition as it
only involves the fluid domain’s variables. Next, we derive the weak formulation of the
coupled system with the use of Lagrange multipliers.

3 Variational formulation of the fully coupled system

In the following, we will use the convention that if V is a space of functions, then we
write VVV for a space of vector functions having each component in V . In order to write
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the variational formulation of the coupled problems, we first introduce the functional
spaces:

uuuf ∈XXXf := {vvv ∈H1H1
H1(Ωf ) : vvv = 000 on Γf}, pf ∈ Qf := L2(Ωf ),

uuup ∈XXXp := {vvv ∈ L2L2
L2(Ωp) : ∇ · vvv ∈ L2(Ωp), vvv ·nnnp = 0 on Γp}, pp ∈ Qp := L2(Ωp).

Let Ω = Ω1 ∪ Ω2 ∪ Γ and define the spaces XXX and Q on Ω by XXX = XXXf ×XXXp and
Q = Qf ×Qp respectively. Denote by XXX∗f the dual space of XXXf . For a domain Θ = Ωf

or Θ = Ωp, we denote by (·, ·)Θ the L2 inner product over Θ. As in the stationary
case [46,31], we introduce the Lagrange multiplier λ on the interface representing:

λ = −nnnf · (νf (|DDD(uuuf )|)DDD(uuuf )− pfIII) ·nnnf = pp on Γ × (0, T ). (3.1)

The space for the Lagrange multiplier is Λ := H
1/2
00 (Γ ) (see [46]). We denote by Λ∗ :=(

H
1/2
00 (Γ )

)∗
the dual space of Λ and by 〈·, ·〉Γ the duality pairing between Λ∗ and Λ.

Define the bilinear forms a(·, ·) :XXX ×XXX → R, b(·, ·) :XXX ×Q→ R and bI :XXX ×Λ→ R
by:

a(uuu,vvv) = af (uuuf , vvvf ) + ap(uuup, vvvp), b(vvv, q) = bf (vvvf , qf ) + bp(vvvp, qp),

bΓ (vvv, ζ) = bΓf (vvvf , ζ) + bΓp(vvvp, ζ),

where

af (uuuf , vvvf ) =
(
νf (|DDD(uuuf )|)DDD(uuuf ),DDD(vvvf )

)
Ωf

+
d−1∑
j=1

cBJS(uuuf · tttj , vvvf · tttj)Γ ,

ap(uuup, vvvp) =
(
νeff(|uuup|)κ−1uuup, vvvp

)
Ωp

,

bf (vvvf , qf ) = (qf ,∇ · vvvf )Ωf
, bp(vvvp, qp) = (qp,∇ · vvvp)Ωp

,

bΓf (vvvf , ζ) = 〈ζ,vvvf ·nnnf 〉Γ , bΓp(vvvp, ζ) = 〈vvvp ·nnnp, ζ〉Γ .

The weak formulation of the coupled system (2.1)-(2.3)-(2.5) is then written as follows
(detailed derivation for the stationary problems can be found in [31]):

For a.e. t ∈ (0, T ), find (uuu(t), p(t), λ(t)) ∈XXX ×Q× Λ such that:

(∂tuuuf , vvvf )Ωf
+ a(uuu,vvv)− b(vvv, p) + bΓ (vvv, λ) = (ffff , vvvf )Ωf

, ∀vvv ∈XXX, (3.2)

b(uuu, q)− bΓ (uuu, ζ) + (Sp∂tpp, qp)Ωp
= (fp, qp)Ωp

, ∀(q, ζ) ∈ Q× Λ, (3.3)

with the initial conditions

uuuf (·, 0) = uuuf0 in Ωf , pp(·, 0) = pp0 in Ωp.

The existence and uniqueness of the weak solution to the non-stationary and linear
Stokes-Darcy system is proved in [15] using the Stokes-Laplace formulation, i.e. the
velocity and pressure are the unknowns in the fluid flow domain and the pressure is
the only unknown in the porous media domain. In addition, no Lagrange multiplier is
introduced and the physically more accurate coupling condition - the Beavers-Joseph
condition - is considered in [15]. The well-posedness of the stationary nonlinear Stokes-
Darcy system in mixed form with a Lagrange multiplier is proved in [31]. Here we
assume the variational formulation (3.2)-(3.3) is well-posed, and focus on the decoupled
approach based on global-in-time domain decomposition.
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4 Decoupled problems and nested iteration approach

We shall reformulate the Stokes-Darcy coupled problem as a space-time interface prob-
lem with the interface unknown λ defined in (3.1). Assume that λ is given, the Stokes
and Darcy problems are then decoupled. We derive the weak formulations of the lo-
cal problems using (3.1) as boundary conditions on the interface, then formulate the
interface problem which is solved by a nested iteration approach.

4.1 Free fluid flow

We first consider the Stokes problem with Neumann boundary condition on the inter-
face Γ :

−nnnf · (νf (|DDD(uuuf )|)DDD(uuuf )) ·nnnf + pf = λ, on Γ × (0, T ). (4.1)
Its variational formulation is given by:
For a.e. t ∈ (0, T ), find

(
uuuf (t), pf (t)

)
∈XXXf ×Qf such that:(

∂tuuuf , vvvf
)
+ af (uuuf , vvvf )− bf (vvvf , pf ) = (ffff , vvvf )Ωf

− bΓf (vvvf , λ), ∀vvvf ∈XXXf , (4.2)

bf (uuuf , qf ) = 0, ∀qf ∈ Qf , (4.3)

with the initial condition
uuuf (·, 0) = uuuf0, in Ωf . (4.4)

For given ffff ∈ L2(0, T ;XXX∗f ), λ ∈ L2(0, T ;Λ) and uuuf0 ∈ XXXf , the existence and
uniqueness of the solution

(uuuf , pf ) ∈
(
H1(0, T ;L2L2

L2(Ωf ) ∩ L2(0, T ;XXXf )
)
× L2(0, T ;Qf )

to (4.2)-(4.3) with the initial condition (4.4) are followed from the strong monotonicity
of the viscosity function (2.2), [32] and the classical result of wellposedness of evolu-
tionary (Navier-)Stokes equations [60, Chapter III].

4.2 Porous medium flow

We now consider the Darcy flow with Dirichlet boundary condition on the interface Γ :

pp = λ, on Γ × (0, T ). (4.5)

Its variational formulation is given by:
For a.e. t ∈ (0, T ), find (uuup(t), pp(t)) ∈XXXp ×Qp such that:

ap(uuup, vvvp)− bp(vvvp, pp) = −bΓp(vvvp, λ), ∀vvvp ∈XXXp, (4.6)

bp(uuup, qp) + (Sp∂tpp, qp) = (fp, qp)Ωp
, ∀qp ∈ Qp, (4.7)

with the initial condition
pp(·, 0) = pp0, in Ωp. (4.8)

For given fp ∈ L2(0, T ;Qp)), λ ∈ L2(0, T ;Λ) and pp0 ∈ H1(Ωp), there exists a
unique solution

(uuup, pp) ∈ L2(0, T ;XXXp)×H1(0, T ;Qp)

to (4.6)-(4.7) with the initial condition (4.8). This is obtained by using the strong
monotonicity of the viscosity function (2.4) and the Faedo-Galerkin method for mixed
formulations of the Darcy problem as in [42].
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4.3 Nonlinear space-time interface problem

We first introduce the interface operators:

Sf : L2(0, T ;Λ) −→ L2(0, T ;Λ∗), Sf (λ) = uuuf (λ) ·nnnf |Γ ,

Sp : L2(0, T ;Λ) −→ L2(0, T ;Λ∗), Sp(λ) = uuup(λ) ·nnnp|Γ ,

where
(
uuuf (λ), pf (λ)

)
and (uuup(λ), pp(λ)) are the solutions to the Stokes problem (4.2)-

(4.4) and the Darcy problem (4.6)-(4.8) respectively.
As the continuity of the normal stress (2.5b) is imposed via λ in (4.1) and (4.5)

(note that the Beaver-Joseph-Saffmann condition is imposed naturally in (4.2)), there
remains to enforce the condition (2.5a), which leads to the interface problem:
For a.e. t ∈ (0, T ), find λ(t) ∈ Λ such that:∫ T

0

(
〈Sf (λ), ζ〉Γ + 〈Sp(λ), ζ〉Γ

)
ds = 0, ∀ζ ∈ Λ. (4.9)

This is a time-dependent and nonlinear problem which will be solved by a nested
iteration approach. Toward that end, we define the operator:

Ψ(λ) := Sf (λ) + Sp(λ), (4.10)

and apply the Newton algorithm to (4.9) to obtain the following linear system at each
iteration k:∫ T

0

〈
Ψ ′(λk)(λk+1 − λk), ζ

〉
Γ
ds =

∫ T

0

〈
−Ψ(λk), ζ

〉
Γ
ds, ∀ζ ∈ Λ, (4.11)

where Ψ ′(λ)(h) = Slinf,λ(h) + Slinp,λ(h), and

Slinf,λ(h) = wwwf (h) ·nnnf |Γ , Slinp,λ(h) = wwwp(h) ·nnnp)|Γ ,

in which
(
wwwf (h), ξf (h)

)
is the solution to the linearized Stokes problem [48]:(

∂twwwf , vvvf
)
+
(
νf (|DDD(uuuf )|)DDD(wwwf ),DDD(vvvf )

)
+

(
(rf − 2)(νf0 − νf∞)Kf

(1 +Kf |DDD(uuuf )|2−rf )2|DDD(uuuf )|rf
DDD(uuuf )(DDD(uuuf ) :DDD(wwwf )),DDD(vvvf )

)

− (ξf ,∇ · vvvf ) +
d−1∑
j=1

cBJS(wwwf · tttj , vvvf · tttj)Γ = −〈h,vvvf ·nnnf 〉Γ , ∀vvvf ∈XXXf , (4.12)

(qf ,∇ ·wwwf ) = 0, ∀qf ∈ Qf , (4.13)

and (wwwp(h), ξp(h)) is the solution to the linearized Darcy problem:

(Sp∂tξp, qp) + (qp,∇ ·wwwp) = 0, ∀qp ∈ Qp, (4.14)(
νeff(|uuup|)κ−1wwwp, vvvp

)
+

(
(rp − 2)(νp0 − νp∞)Kp
(1 +Kp|uuup|2−rp)2|uuup|rp

uuup(uuup : wwwp), vvvp

)
− (ξp,∇ · vvvp)

= −〈h,vvvp ·nnnp〉Γ , ∀vvvp ∈XXXp, (4.15)

Note that uuuf = uuuf (λ) in (4.12) and uuup = uuup(λ) in (4.15). The nested iteration algo-
rithm for solving (4.9) is summarized in Algorithm 1.
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Algorithm 1 - Nested Iteration Approach

Input: λ0 initial guess, ε tolerance and Niter maximum number of iterations.
Output: λk

k = 0, error = 0,
while k < Niter and error > ε, do:

1: Compute the RHS of (4.11) by solving the nonlinear Stokes problem (4.2)-(4.3)
and the nonlinear Darcy problem (4.6)-(4.7) with λ = λk:

Ψ(λk) = Sf (λk) + Sp(λk).

2: Solve the linearized interface problem with a Krylov-type method (e.g., GMRES):∫ T

0

〈
Ψ ′(λk)(hk), ζ

〉
Γ
=

∫ T

0

〈
−Ψ(λk), ζ

〉
Γ
, ∀ζ ∈ Λ.

where the left-hand side is given by

Ψ ′(λk)(hk) = Slinf,λk(h
k) + Slinp,λk(h

k).

That means each Krylov-iteration involves solution of linearized problems (4.12)-
(4.15) to compute the matrix-free vector product on the left-hand side.

3: Update λk+1 = λk + hk, k = k + 1, error = ‖hk‖.
The linearized interface problem (4.11) can be preconditioned by using the inverse

operator of Slinf,λ as proposed for the stationary case in [25]. That corresponds to solving
the linearized Stokes problem with given normal velocity on the interface as Dirichlet
boundary condition, and computing the normal stress on the interface.

5 Nonconforming discretization in time

As we solve the nonlinear interface problem (4.9) globally in time, different time dis-
cretization schemes and/or different time step sizes can be used in the Stokes and
Darcy regions. At the space-time interface, data is transferred from one space-time
subdomain to a neighboring subdomain by using a suitable projection.

We consider semi-discrete problems in time with nonconforming time grids. Let Tf
and Tp be two possibly different partitions of the time interval (0, T ) into sub-intervals
(see Figure 2):

Tf = ∪Mm=1J
m
f , with J

m
f = (tm−1

f , tmf ], and Tp = ∪Nn=1J
n
p , with J

n
p = (tn−1

f , tnf ].

The time step sizes are ∆tmf = tm − tm−1, m = 1, . . . ,M , and ∆tnp = tn − tn−1,
n = 1, . . . , N , in the Stokes and Darcy regions, respectively. To simplify the discussion,
the same temporal discretization scheme is considered for both subproblems; we use
the backward Euler method for the time discretization and obtain the following semi-
discrete local problems for the free flow

(
uuumf − uuu

m−1
f

∆tmf
, vvvf )Ωf

+ af (uuu
m
f , vvvf )− bf (vvvf , p

m
f )

= (fffmf , vvvf )Ωf
− bΓf (vvvf , λm), ∀vvvf ∈XXXf , (5.1)

bf (uuu
m
f , qf ) = 0, ∀qf ∈ Qf , (5.2)
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and the Darcy flow

ap(uuu
n
p , vvvp)− bp(vvvp, pnp ) = −bΓp(vvvp, λn), ∀vvvp ∈XXXp, (5.3)

bp(uuu
n
p , qp) +

(
Sp
pnp − pn−1

p

∆tnp
, qp

)
= (fnp , qp)Ωp

, ∀qp ∈ Qp. (5.4)

The wellposedness of the decoupled semi-discrete Stokes and Darcy problems (5.1) -
(5.4) is followed from the strong monotonicity of the viscosity functions (2.2) and (2.4),
and [30]. The same idea can be generalized to higher order methods [40].

Fig. 2: Nonconforming time grids for the Stokes and Darcy problems.

For i = f or i = p, we denote by P0(Ti, Λ) the space of piecewise constant functions
in time on grid Ti with values in Λ:

P0(Tf , Λ) =
{
φ : (0, T )→ Λ, φ is constant on Jmf , ∀m = 1, . . . ,M

}
,

P0(Tp, Λ) =
{
φ : (0, T )→ Λ, φ is constant on Jnp , ∀n = 1, . . . , N

}
.

(5.5)

In order to exchange data on the space-time interface between different time grids, we
define the following L2 projection Πp,f from P0(Tf , Λ) onto P0(Tp, Λ) (see [33,40]) :
for φ ∈ P0(Tf , Λ), Πp,fφ|Jn

p
is the average value of φ on Jnp , for n = 1, . . . , N :

Πp,f (φ) |Jn
p
=

1

| Jnp |

M∑
m=1

∫
Jn
p ∩Jm

f

φ.

The projection Πf,p from P0(Tp, Λ) onto P0(Tf , Λ) can be defined similarly. We use
the algorithm described in [34] for effectively performing these projections.

Next, we weakly enforce the transmission conditions over the time intervals with
nonconforming time grids. We still denote by (uuuf , pf ) and (uuup, pp) the solution of the
semi-discrete in time problems. We choose λ piecewise constant in time on one grid,
either Tf or Tp. For the Stokes-Darcy coupling, the flow is supposed to be faster in
the fluid domain than that in the porous medium, thus we choose λ ∈ P0(Tf , Λ) and
impose (

−nnnf · (νf (|DDD(uuuf )|)DDD(uuuf )) ·nnnf + pf
)
|Γ = Πf,f (λ) = λ.

The weak continuity of the normal stress in time across the interface is fulfilled by
letting

pp|Γ = Πp,f (λ) ∈ P0(Tp, Λ).
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The semi-discrete (nonconforming in time) counterpart of the normal velocity continu-
ity (2.5a) is weakly enforced by integrating it over each time interval Jmf of grid Tf :
∀m = 1, ...,M ,∫

Jm
f

(〈
Sf (λ), ζ

〉
Γ
+
〈
Πf,p

(
Sp
(
Πp,f (λ)

) )
, ζ
〉
Γ

)
ds = 0, ∀ζ ∈ Λ. (5.6)

Similarly for the linearized interface problem:∫
Jm
f

(〈
Slinf,λk(h

k), ζ
〉
Γ
+
〈
Πf,p

(
Slinp,λk(Πp,f (h

k)
)
, ζ
〉
Γ

)
ds =∫

Jm
f

(〈
−Sf (λk), ζ

〉
Γ
+
〈
−Πf,p

(
Sp

(
Πp,f (λ

k)
) )
, ζ
〉
Γ

)
ds, ∀ζ ∈ Λ. (5.7)

6 Numerical results

We investigate the numerical performance of the proposed global-in-time decoupling
algorithm on two test cases: Test case 1 with a known solution and Test case 2 where
the flow is driven by a pressure drop. For the latter, we consider both continuous
and discontinuous parameters. We shall verify the accuracy in space and in time, and
the efficiency of the proposed method with nonconforming time grids over conform-
ing time grids. Note that the code to generate the results below is implemented in
FreeFem++ [41] in a sequential setting, and we do not investigate parallel performance
of the method in this work.

6.1 Test case 1: with a known analytical solution

We consider a test case with a known exact solution. The fluid domain and porous
medium are Ωf = (0, 1) × (1, 2) and Ωp = (0, 1) × (0, 1) respectively, and the exact
solution is given by

uuuf =
[
(y − 1)2x3(1 + t2), − cos(y)e(1 + t2)

]
,

pf =
(
cos(y)ey + y2 − 2y + 1

)(
1 + t2

)
,

uuup =
[
−x (sin(y)e+ 2(y − 1))

(
1 + t2

)
,
(
− cos(y)e+ (y − 1)2

)(
1 + t2

)]
,

pp =
(
− sin(y)e+ cos(x)ey + y2 − 2y + 1

)(
1 + t2

)
,

for which the Beavers-Joseph-Saffman condition is satisfied with α = 1. We perform
the numerical experiments with the following parameters: κ = 1,Kf = Kp = 1, νf∞ =
νp∞ = 0.5 and νf0 = νp0 = 1.5. The boundary and initial conditions are imposed
using the exact solution. For finite element approximations, we consider structured
meshes and use either (i) the Taylor-Hood elements for both Stokes and Darcy problems
or (ii) the MINI elements for the Stokes problem and the Raviart-Thomas of order 1
elements for the Darcy problem. In addition, a stability term η (∇ · uuup,∇ · vvvp) was
added to the Darcy equation with η = 10 as the exact Darcy velocity field is divergence
free.
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We shall verify the convergence rates in space and in time of the proposed algorithm
with nonconforming time grids. For the iterative solvers, unless otherwise specified, only
one Newton iteration is performed (i.e., k=1 in Algorithm 1) and GMRES stops when
the relative residual is smaller than the tolerance ε = 10−7 or when the maximum
number of iterations, itermax= 100, is reached. We first investigate the accuracy in
space for both linear viscosities with rf = rp = 2 and nonlinear viscosities with
rf = rp = 1.5. Tables 1 and 2 show the errors at T = 0.01 with ∆tf = 0.002 and
∆tp = 0.001 for the linear and nonlinear problems using different finite element spaces.
As this is a non-physical example, we have chosen a large time step in the fluid domain
and a small time step in the porous medium. In the next test case, we will consider
the choice where the time step size in the fluid domain is smaller. We observe from
Tables 1 and 2 that the orders of accuracy in space are preserved with nonconforming
time grids. In addition, concerning the convergence of GMRES to solve the linearized
interface problem, we show in Table 3 the number of GMRES iterations needed to reach
the tolerance ε = 10−10 for the case with no preconditioner and with the preconditioner(
Slinf,λ

)−1

. First, we notice the number of iterations required is reasonable; for the case
without preconditioner, it is increasing slightly when the mesh size is decreasing while
for the preconditioned system, the number of iterations remain small when h is small.

h 1/4 1/8 1/16 1/32

Linear viscosities

uuuf
L2 error 9.07e-04 9.33e-05 [3.28] 1.19e-05 [2.97] 1.79e-06 [2.73]

H1 error 2.64e-02 5.55e-03 [2.25] 1.38e-03 [2.01] 3.72e-04 [1.89]

pf L2 error 2.91e-02 5.55e-03 [2.39] 1.36e-03 [2.03] 3.97e-04 [1.78]

uuup
L2 error 1.29e-03 1.71e-04 [2.92] 2.02e-05 [3.08] 4.58e-06 [2.14]

Hdiv error 2.24e-03 3.42e-04 [2.71] 8.19e-05 [2.06] 1.93e-05 [2.09]

pp L2 error 3.12e-02 5.07e-03 [2.62] 1.34e-03 [1.92] 3.24e-04 [2.05]

Nonlinear viscosities

uuuf
L2 error 9.64e-04 1.03e-04 [3.23] 1.82e-05 [2.50] 1.26e-05

H1 error 2.77e-02 5.88e-03 [2.24] 1.47e-03 [2.00] 4.18e-04 [1.81]]

pf L2 error 2.84e-02 5.50e-03 [2.37] 1.50e-03 [1.88] 7.36e-04 [1.03]

uuup
L2 error 1.26e-03 1.72e-04 [2.87] 2.10e-05 [3.03] 7.44e-06

Hdiv error 2.18e-03 3.37e-04 [2.69] 8.00e-05 [2.08] 1.98e-05 [2.02]

pp L2 error 3.02e-02 4.91e-03 [2.62] 1.30e-03 [1.92] 3.15e-04 [2.05]

Table 1: [Test case 1] Errors with Taylor-Hood elements for the Stokes and Darcy
problems at T = 0.01 with ∆tf = 0.002 and ∆tp = 0.001.

For time errors, we analyze the accuracy in time when nonconforming time grids are
used. Toward this end, we fix h = 1/32 and denote by ∆tcoarse ∈ {0.2, 0.1, 0.05, 0.025}
the coarse time step sizes, and ∆tfine = ∆tcoarse/2 the fine time step size. We consider
three types of time grids as follows:

i) Coarse conforming time grids: ∆tf = ∆tp = ∆tcoarse.
ii) Fine conforming time grids: ∆tf = ∆tp = ∆tfine.
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h 1/4 1/8 1/16 1/32

Linear viscosities

uuuf
L2 error 1.09e-02 2.63e-03 [2.05] 6.72e-04 [1.97] 1.82e-04 [1.89]

H1 error 2.24e-01 9.88e-02 [1.18] 5.02e-02 [0.98] 2.69e-02 [0.90]

pf L2 error 2.51e-01 6.65e-02 [1.92] 2.22e-02 [1.58] 1.06e-02 [1.07]

uuup
L2 error 2.11e-02 4.29e-03 [2.30] 1.10e-03 [1.96] 2.65e-04 [2.05]

Hdiv error 2.36e-02 5.03e-03 [2.23] 1.28e-03 [1.97] 3.12e-04 [2.04]

pp L2 error 3.04e-02 4.94e-03 [2.62] 1.31e-03 [1.92] 3.16e-04 [2.05]

Nonlinear viscosities

uuuf
L2 error 1.09e-02 2.62e-03 [2.05] 6.70e-04 [1.97] 1.81e-04 [1.89]

H1 error 2.24e-01 9.88e-02 [1.18] 5.02e-02 [0.98] 2.69e-02 [0.90]

pf L2 error 2.07e-01 5.40e-02 [1.94] 1.86e-02 [1.54] 8.79e-03 [1.08]

uuup
L2 error 2.12e-02 4.30e-03 [2.30] 1.10e-03 [1.97] 2.66e-04 [2.05]

Hdiv error 2.37e-02 5.02e-03 [2.24] 1.28e-03 [1.97] 3.12e-04 [2.04

pp L2 error 2.95e-02 4.79e-03 [2.63] 1.27e-03 [1.92] 3.08e-04 [2.04]

Table 2: [Test case 1] Errors with MINI elements for the Stokes problem and with
Raviart-Thomas of order 1 elements for the Darcy problem at T = 0.01 with ∆tf =
0.002 and ∆tp = 0.001.

h
Linear viscosities Nonlinear viscosities

1/4 1/8 1/16 1/32 1/4 1/8 1/16 1/32

With no preconditioner 17 24 32 46 16 23 30 44

With a preconditioner 21 22 17 21 23 25 18 18

Table 3: [Test case 1] Number of GMRES iterations needed to reach the tolerance
10−10 using MINI elements for the Stokes problem and with Raviart-Thomas of order
1 elements for the Darcy problem at T = 0.01 with ∆tf = 0.002 and ∆tp = 0.001.

iii) Nonconforming time grids: ∆tf = ∆tcoarse and ∆tp = ∆tfine.

We first consider the approximations by Taylor-Hood elements. Figures 3 and 4
show the errors for the linear and nonlinear viscosities respectively. We observe that
first order convergence is preserved with the nonconforming time grids. Moreover, the
errors with nonconforming time grids (in magenta) in the porous medium are close to
those with fine conforming time steps (in red), which is expected as a smaller time step
is used in the porous medium. Likewise, the errors with nonconforming time grids (in
magenta) in the fluid domain are close to those with coarse conforming time steps (in
blue). Thus the accuracy in time of the solution is preserved with the nonconforming
time grids. Moreover, in Table 4, we compare the computer running times when using
conforming and nonconforming time grids, which shows that using nonconforming time
grids could significantly reduce the computational time while still maintaining the
desired accuracy.

We perform a similar test using MINI elements for the Stokes problem and Raviart-
Thomas elements for the Darcy problem. We fix h = 1/64, and consider ∆tcoarse ∈
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Fig. 3: [Test case 1] Errors for the linear Stokes and Darcy problems at T = 0.2 with
Taylor-Hood elements.

∆t
Linear viscosities Nonlinear viscosities

Conforming Nonconforming Conforming Nonconforming
0.2 87 122

143 178
0.1 209 287

285 348
0.05 432 578

578 710
0.025 893 1127

1176 1424
0.0125 1816 2175

Table 4: Comparison of the computer running times (in seconds) of conforming and
nonconforming time grids with Taylor-Hood elements on a fixed mesh h = 1/32.
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Fig. 4: [Test case 1] Errors for the nonlinear Stokes and Darcy problems at T = 0.2
with Taylor-Hood elements.

{0.8, 0.4, 0.2, 0.1} and ∆tfine = ∆tcoarse/2. The final time is large, T = 0.8, thus we
use two Newton iterations for the nonlinear solvers (instead of only one iteration).
Figure 5 shows the errors for the case with nonlinear viscosities, which again confirms
that the convergence order and accuracy in time are preserved with nonconforming time
grids. In addition, we report in Table 5 the computer running times with conforming
and nonconforming time grids on a fixed mesh h = 1/32. We see that the use of
nonconforming time grids is efficient in terms of accuarcy and computational cost.

6.2 Test case 2: flow driven by a pressure drop

In this test case, the flow is driven by a pressure drop: on the top boundary of Ωf
we set pin = 1 and on the bottom boundary of Ωp, pout = 0, which is also chosen as
the initial condition for the Darcy pressure. Along the left and right boundaries, we
impose no-slip boundary condition for the Stokes flow and no-flow boundary condition
for the Darcy flow. We also set zero velocity initial condition for the Stokes problem.
The parameters are κ = 1, Kf = Kp = 1, νf,∞ = νp,∞ = 1, νf,0 = νp,0 = 10,
rf = rp = 1.35 and α = 1. The simulation time is T = 1. For this test case, we use
cell conservative spatial discretization, i.e. MINI elements for the Stokes flow and the
Raviart-Thomas of order 1 elements for the Darcy flow. The velocity magnitude and
vector at the final time are shown Figure 6.
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Fig. 5: [Test case 1] Errors for the nonlinear Stokes and Darcy problems at T = 0.8
with MINI elements for the Stokes problem and Raviart-Thomas elements for the Darcy
problem.

∆t
Linear viscosities Nonlinear viscosities

Conforming Nonconforming Conforming Nonconforming
0.8 72 167

83 188
0.4 154 348

180 420
0.2 310 727

351 791
0.1 632 1447

697 1646
0.05 1262 2791

Table 5: Comparison of the computer running times (in seconds) of conforming and
nonconforming time grids, with MINI elements for the Stokes problem and Raviart-
Thomas elements for the Darcy problem on a fixed mesh h = 1/32. Note that for the
nonlinear viscosities, two Gauss-Newton iterations are performed.

Fig. 6: [Test case 2] Velocity magnitude and velocity vector at T = 1.
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We compute the reference solution on a mesh size h = 1/32 and ∆tref = 0.01.
We want to verify the convergence in time of the global-in-time domain decomposition
method with nonconforming time grids: ∆tf = ∆tp/2. Table 6 shows the errors of the
nonlinear Stokes and Darcy problems at T = 1 with a fixed mesh size h = 1/32, first
order convergence in time is observed. In Tables 7 and 8, we compare the accuracy in
time of the conforming and nonconforming time grids. In particular, the errors (with
nonconforming time grids) in the fluid domain are close to those with fine conforming
time steps, while those in the porous medium are close to those with coarse conforming
time steps.

Time step uuuf pf uuup pp

∆tf ∆tp H1 error L2 error Hdiv error L2 error

1/4 1/2 3.44e-04 2.80e-03 4.56e-03 2.17e-03

1/8 1/4 1.49e-04 [1.21] 1.37e-03 [1.03] 2.18e-03 [1.07] 1.12e-03 [0.95]

1/16 1/8 5.60e-05 [1.41] 6.51e-04 [1.07] 1.04e-03 [1.07] 5.48e-04 [1.03]

1/32 1/16 1.63e-05 [1.78] 2.95e-04 [1.14] 4.70e-04 [1.15] 2.53e-04 [1.12]

Table 6: [Test case 2] Errors for the nonlinear Stokes and Darcy problems at T = 1
with a fixed mesh size h = 1/32.

Time grids ∆tf ∆tp
uuuf pf

L2 error H1 error L2 error

Conforming coarse 1/8 1/8 3.01e-05 1.03e-04 6.71e-04

Nonconforming 1/16 1/8 1.64e-05 5.60e-05 6.51e-04

Conforming fine 1/16 1/16 1.38e-05 4.68e-05 3.08e-04

Table 7: [Test case 2] Errors for the nonlinear Stokes problem at T = 1 with a fixed
mesh size h = 1/32.

Time grids ∆tf ∆tp
uuuf pf

L2 error Hdiv error L2 error

Conforming coarse 1/8 1/8 2.11e-04 1.05e-03 5.56e-04

Nonconforming 1/16 1/8 2.08e-04 1.04e-03 5.48e-04

Conforming fine 1/16 1/16 9.71-05 4.78e-04 2.59e-04

Table 8: [Test case 2] Errors for the nonlinear Darcy problem at T = 1 with a fixed
mesh size h = 1/32.

Next, we consider the case with discontinuous parameters. In particular, we have,
for the Stokes problem, Kf = 1, νf,∞ = 0.5, νf,0 = 1, and for the Darcy problem,



18 T.-T.-P. Hoang and H. Lee

Kp = 0.001, νp,∞ = 1, νp,0 = 10. As before, we impose smaller time step in the fluid
region and larger time step in the porous medium: ∆tf = ∆tp/2 = 0.125. The velocity
magnitude at T = 1 is depicted in Figure 7 and the errors are reported in Table 9,
which again shows that the accuracy in time is well-preserved with nonconforming time
grids.

Fig. 7: [Test case 2 with discontinuous paramters] Velocity magnitude at T = 1.

Time grids ∆tf ∆tp uf pf up pp

Conforming coarse 1/4 1/4 1.48e-03 2.02e-02 5.41e-03 1.45e-02

Nonconforming 1/8 1/4 2.33e-04 1.69e-02 4.70e-03 1.32e-02

Conforming fine 1/8 1/8 2.27e-04 1.00e-02 2.77e-03 7.63e-03

Table 9: [Test case 2 with discontinuous parameters] L2−errors for the nonlinear Stokes
and Darcy problems at T = 1 with h = 1/32.

7 Conclusion

We have introduced a decoupling scheme for the nonlinear Stokes-Darcy system, based
on the time-dependent interface operators. The scheme is an implicit type that requires
iterations between subdomains; the subproblems, time-dependent Stokes and Darcy
equations, are solved using local time-stepping algorithms, respectively. The space-
time domain decomposition method allows us to independently solve each subproblem
using existing local solvers and enables the use of nonconforming time grids as well
as different time-stepping algorithms for local problems. For numerical tests of the
proposed algorithm two numerical examples were considered; the first is a non-physical
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problem with the known exact solution and the second is a flow problem driven by
a pressure drop. Numerical results confirm that the algorithm simulates the model
problem at the optimal order of accuracy and its efficiency is improved with the use
of nonconforming time grids and the preconditioner for GMRES iterations. Although
the model system is nonlinear, only one or two Newton iterations were needed within
the given tolerance range, yielding the optimal accuracy in our test cases.

Some future directions for this work include extending the approach to more com-
plex coupled problems such as the coupled Stokes-Darcy system with transport and
a fluid flow coupled with a quasi-static poroelastic medium. In particular, because of
the use of local time stepping, we expect that this approach is efficiently applicable
to multiphysics problems, where local problems are in different time scales, e.g., fluid
flows interacting with clays or soils. Many such examples are found in applications of
geomechanics and the quasi-static Biot’s consolidation model [7] is often considered
for a deformable porous medium. In the Biot model, the fluid motion in the porous
medium is described by Darcy’s law, while the deformation of the medium is gov-
erned by the linear elasticity. Interface conditions for the (Navier-)Stokes-Biot system
are more complex than those of the Stokes-Darcy system, however, we expect that a
similar approach can be considered for the large multiphysics problem to be turned
into a time dependent Steklov-Poincaré operator equation. We are also currently in-
vestigating an optimized Schwartz waveform relaxation (OSWR) method using Robin
transmission conditions for the Stokes-Darcy model considered in this work. Details
concerning the development, analysis and numerical implementation of space-time do-
main decomposition based on OSWR is a subject of a forthcoming paper.
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