Skip to main content
Log in

A Fast Algorithm for the Variable-Order Spatial Fractional Advection-Diffusion Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a fast algorithm for the variable-order (VO) space-fractional advection-diffusion equations with nonlinear source terms on a finite domain. Due to the impact of the space-dependent the VO, the resulting coefficient matrices arising from the finite difference discretization of the fractional advection-diffusion equation are dense without Toeplitz-like structure. By the properties of the elements of coefficient matrices, we show that the off-diagonal blocks can be approximated by low-rank matrices. Then we present a fast algorithm based on the polynomial interpolation to approximate the coefficient matrices. The approximation can be constructed in \({\mathcal {O}}(kN)\) operations and requires \({\mathcal {O}}(kN)\) storage with N and k being the number of unknowns and the approximants, respectively. Moreover, the matrix-vector multiplication can be implemented in \({\mathcal {O}} (kN\log N)\) complexity, which leads to a fast iterative solver for the resulting linear systems. The stability and convergence of the new scheme are also studied. Numerical tests are carried out to exemplify the accuracy and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical method for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Mumer. Anal. 47, 1760–1781 (2009)

    Article  MathSciNet  Google Scholar 

  2. Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite difference approximation for the variable order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435–445 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  4. Gomez, H., Colominas, I., Navarrina, F., Casteleiro, M.: A mathematical model and a numerical model for hyperbolic mass transport in compressible flows. Heat Mass Transf. 45, 219–226 (2008)

    Article  Google Scholar 

  5. Rebenshtok, A., Denisov, S., Hänggi, P., Barkai, E.: Non-normalizable densities in strong anomalous diffusion: beyond the central limit theorem. Phys. Rev. Lett. 112, 110601 (2014)

    Article  Google Scholar 

  6. Sabatelli, L., Keating, S., Dudley, J., Richmond, P.: Waiting time distributions in financial markets. Eur. Phys. J. B 27, 273–275 (2002)

    MathSciNet  Google Scholar 

  7. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  8. Zhang, J., Chen, K.: A total fractional-order variation model for image restoration with non-homogeneous boundary conditions and its numerical solution. SIAM J. Imaging Sci. 8, 2487–2518 (2015)

    Article  MathSciNet  Google Scholar 

  9. Fang, Z., Sun, H., Wang, H.: A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations. Comput. Math. Appl. 80, 1443–1458 (2020)

    Article  MathSciNet  Google Scholar 

  10. Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  Google Scholar 

  11. Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equation: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)

    Article  MathSciNet  Google Scholar 

  12. Sun, H., Chen, W., Wei, H., Chen, Y.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193, 185–192 (2011)

    Article  Google Scholar 

  13. Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)

    Article  Google Scholar 

  14. Samko, S., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1, 277–300 (1993)

    Article  MathSciNet  Google Scholar 

  15. Ingman, D., Suzdalnitsky, J.: Application of differential operator with servo-order function in model of viscoelastic deformation process. J. Eng. Mech. 131, 763–767 (2005)

    Article  Google Scholar 

  16. Chen, S., Liu, F., Burrage, K.: Numerical simulation of a new two-dimensional variable order fractional percolation equation in non-homogeneous porous media. Comput. Math. Appl. 68, 2133–2141 (2014)

    Article  MathSciNet  Google Scholar 

  17. Pedro, H., Kobayashi, M., Pereira, J., Coimbra, C.: Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14, 1659–1672 (2008)

    Article  MathSciNet  Google Scholar 

  18. Kikuchi, K., Negoro, A.: On Markov process generated by pseudodifferential operator of variable order. Osaka J. Math. 34, 319–335 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Kobelev, Y., Kobelev, L., Klimontovich, Y.: Statistical physics of dynamic systems with variable memory. Dokl. Phys. 48, 285–289 (2003)

    Article  MathSciNet  Google Scholar 

  20. Diaz, G., Coimbra, C.: Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dyn. 56, 145–157 (2009)

    Article  MathSciNet  Google Scholar 

  21. Kumar, P., Chaudhary, S.: Analysis of fractional order control system with performance and stability. Int. J. Eng. Sci. Technol. 9, 408–416 (2017)

    Google Scholar 

  22. Obembe, A., Hossain, M., Abu-Khamsin, S.: Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Petrol. Sci. Eng. 152, 391–405 (2017)

    Article  Google Scholar 

  23. Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J. Sci. Comput. 37, A2710–A2732 (2015)

    Article  MathSciNet  Google Scholar 

  24. Zhao, X., Sun, Z., Karniadakis, G.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)

    Article  MathSciNet  Google Scholar 

  25. Hajipour, M., Jajarmi, A., Baleanu, D., Sun, H.: On an accurate discretization of a variable-order fractional reaction-diffusion equation. Commun. Nonlinear Sci. Numer. Simulat. 69, 119–133 (2019)

    Article  MathSciNet  Google Scholar 

  26. Wang, H., Zheng, X.: Analysis and numerical solution of a nonlinear variable-order fractional differential equation. Adv. Comput. Math (2019). https://doi.org/10.1007/s10444-019-09690-0

    Article  MathSciNet  Google Scholar 

  27. Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    Article  MathSciNet  Google Scholar 

  28. Lin, X., Ng, M., Sun, H.: A multigrid method for linear systems arising from time dependent two-dimensional space-fractional diffusion equations. J. Comput. Phys. 336, 69–86 (2017)

    Article  MathSciNet  Google Scholar 

  29. Pang, H., Sun, H.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)

    Article  MathSciNet  Google Scholar 

  30. Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)

    Article  MathSciNet  Google Scholar 

  31. Lei, S., Sun, H.: A Circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  Google Scholar 

  32. Lin, X., Ng, M., Sun, H.: A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM Matrix Anal. Appl. 38, 1580–1614 (2017)

    Article  MathSciNet  Google Scholar 

  33. Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)

    Article  MathSciNet  Google Scholar 

  34. Pan, J., Ke, R., Ng, M., Sun, H.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36, A2698–A2719 (2014)

    Article  MathSciNet  Google Scholar 

  35. Pan, J., Ng, M., Wang, H.: Fast iterative solvers for linear systems arising from time-dependent space fractional diffusion equations. SIAM J. Sci. Comput. 38, A2806–A2826 (2016)

    Article  MathSciNet  Google Scholar 

  36. Bai, Z.: Respectively scaled HSS iteration methods for solving discretized spatial fractional diffusion equations. Numer. Linear Algebra Appl. 25, e2157 (2018)

    Article  MathSciNet  Google Scholar 

  37. Bai, Z., Lu, K., Pan, J.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Linear Algebra Appl. 24, e2093 (2017)

    Article  MathSciNet  Google Scholar 

  38. Jia, J., Zheng, X., Fu, H., Dai, P., Wang, H.: A fast method for variable-order space-fractional diffusion equations. Numer. Algor. (2020). https://doi.org/10.1007/s11075-020-00875-z

    Article  MathSciNet  MATH  Google Scholar 

  39. Chan, R., Lin, F., Ng, W.: Fast dense matrix method for the solution of integral equations of the second kind. Numer. Math. J. Chinese Univ. (English Ser.) 7, 105–120 (1998)

    MathSciNet  MATH  Google Scholar 

  40. Dahlquist, G., Björck, Å.: Numerical Methods in Scientific Computing. SIAM, Philadelphia (2008)

    MATH  Google Scholar 

  41. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  42. Shen, J., Wang, Y., Xia, J.: Fast structured direct spectral method for differential equations with variable coefficients, I. The one-dimensional case. SIAM J. Sci. Comput. 38, A28–A54 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for valuable comments and suggestions which lead to a significant improvement of the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Wei Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Hong-Kui Pang is supported by research Grants 11771189 and 11501562 from the National Natural Science Foundation of China, BK20171162 from the Natural Science Foundation of Jiangsu Province, and the Qing-Lan Project of Jiangsu Province. The research of Hai-Wei Sun is supported by The Science and Technology Development Fund, Macau SAR (File No. 0118/2018/A3), and MYRG2018-00015-FST from University of Macau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, HK., Sun, HW. A Fast Algorithm for the Variable-Order Spatial Fractional Advection-Diffusion Equation. J Sci Comput 87, 15 (2021). https://doi.org/10.1007/s10915-021-01427-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01427-w

Keywords

Mathematics Subject Classification

Navigation