Skip to main content
Log in

Computable Interpolation Error Constants for the Geometric Simplex Finite Elements

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a novel high accuracy computation method for interpolation error constants is proposed over the geometric simplex finite elements. Firstly, the expansions of bounded linear operators are employed to derive the explicit estimate of interpolation error constants, which depend only on the shape of the geometric simplex finite elements and the definition of interpolation functions. Then, this method is applied to the linear interpolation function, and the results are consistent with our analysis. Finally, some numerical examples are given to validate our analysis. Such high accuracy computation method for interpolation error constants are beneficial attempts to accelerate the adaptive computation and verification of finite element solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York (2000)

  2. Arbenz, P.: Computable finite element error bounds for Poisson’s equation. IMA J. Numer. Anal. 2(4), 475–479 (1982)

    Article  MathSciNet  Google Scholar 

  3. Barnhill, R.E., Brown, J.H., Mitchell, A.R.: A comparison of finite element error bounds for Poisson’s equation. IMA J. Numer. Anal. 1(1), 95–103 (1981)

    Article  MathSciNet  Google Scholar 

  4. Barnhill, R.E., Gregory, J.A.: Interpolation remainder theory from Taylor expansions on triangles. Numer. Math. 25(4), 401–408 (1975)

    Article  MathSciNet  Google Scholar 

  5. Barnhill, R.E., Gregory, J.A.: Sard kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25(3), 215–229 (1975)

    Article  MathSciNet  Google Scholar 

  6. Binev, P., Dahmen, W., Devore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)

    Article  MathSciNet  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1998)

    Google Scholar 

  8. Chen, H., Chen, S., Qiao, Z.: C\(^0\)-nonconforming tetrahedral and cuboid elements for the three-dimensional fourth order elliptic problem. Numer. Math. 124(1), 99–119 (2013)

    Article  MathSciNet  Google Scholar 

  9. Ciarlet, P.G.: Basic error estimates for elliptic problems. Handb. Numer. Anal. 2(05), 17–351 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Ciarlet, P.G.: The finite element method for elliptic problems. Math. Comput. 36(154), 530–559 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Ciarlet, P.G.: Basic error estimates for elliptic problems. Handb. Numer. Anal. 2(05), 17–351 (2016)

    MATH  Google Scholar 

  12. Gillette, A., Rand, A.: Interpolation error estimates for harmonic coordinates on polytopes. Math. Model. Numer. Anal. 50(3), 651–676 (2016)

    Article  MathSciNet  Google Scholar 

  13. Kikuchi, F., Saito, H.: Remarks on a posteriori error estimation for finite element solutions. J. Comput. Appl. Math. 199(2), 329–336 (2007)

    Article  MathSciNet  Google Scholar 

  14. Lehmann, R.: Computable error-bounds in the finint-element mehtod. IMA J. Numer. Anal. 6(3), 265–271 (1986)

    Article  MathSciNet  Google Scholar 

  15. Li, Q., Liu, X.: Explicit finite element error estimates for nonhomogeneous Neumann problems. Appl. Math. 63(3), 367–379 (2018)

    Article  MathSciNet  Google Scholar 

  16. Lin, Q., Lin, J.: Finite element methods: Accuracy and improvement. Science Press, Beijing (2006)

    Google Scholar 

  17. Liu, X., Kikuchi, F.: Analysis and estimation of error constants for P0 and P1 interpolations over triangular finite elements. J. Math. Sci. 17(1), 27–78 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Liu, X., Kikuchi, F.: Explicit estimation of error constants appearing in non-conforming linear triangular finite element method. Appl. Math. 63(4), 381–397 (2018)

    Article  MathSciNet  Google Scholar 

  19. Liu, X., You, C.G.: Explicit bound for quadratic Lagrange interpolation constant on triangular finite elements. Appl. Math. Comput. 319, 693–701 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Mao, S., Shi, Z.C.: Explicit error estimates for mixed and nonconforming finite elements. J. Comput. Math 27(4), 425–440 (2009)

    Article  MathSciNet  Google Scholar 

  21. Nakao, M.T., Yamamoto, N.: A Guaranteed Bound of the Optimal Constant in the Error Estimates for Linear Triangular Element. Springer, Vienna (2001)

    MATH  Google Scholar 

  22. Qiao, Z., Yao, C., Jia, S.: Superconvergence and extrapolation analysis of a nonconforming mixed finite element approximation for time-harmonic maxwell’s equations. J. Sci. Comput. 46(1), 1–19 (2011)

    Article  MathSciNet  Google Scholar 

  23. Ren, J., Mao, S., Zhang, J.: Fast evaluation and high accuracy finite element approximation for the time fractional subdiffusion equation. Numer. Methods Partial Differ. Equ. 34(2), 705–730 (2018)

    Article  MathSciNet  Google Scholar 

  24. Takayasu, A., Liu, X., Oishi, S.: Verified computations to semilinear elliptic boundary value problems on arbitrary polygonal domains. Nonlinear Theory Appl. IEICE 4(1), 34–61 (2013)

    Article  Google Scholar 

  25. Verfurth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55(3), 309–325 (1989)

    Article  MathSciNet  Google Scholar 

  26. Yao, C.: The solvability of coupling the thermal effect and magnetohydrodynamics field with turbulent convection zone and the flow field. J. Math. Anal. Appl. 476(2), 495–521 (2019)

    Article  MathSciNet  Google Scholar 

  27. Zhang, B., Chen, S., Zhao, J., Mao, S.: A posteriori error analysis of nonconforming finite element methods for convection–diffusion problems. J. Comput. Appl. Math. 321, 416–426 (2017)

    Article  MathSciNet  Google Scholar 

  28. Zhang, Q., Su, H., Lin, S.: The simplex subdivision of a complex region: a positive and negative finite element superposition principle. Eng. Comput. 34(1), 155–173 (2018)

    Article  Google Scholar 

  29. Zhao, J., Chen, S.: Explicit error estimate for the nonconforming Wilson’s element. Acta Math. Sci. (Engl. Ser.) 33(3), 839–846 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the valuable comments from the reviewers, which have contributed significantly to the improvement of this manuscript. This research was supported by the Science Challenge Project (No. TZ2018001), National Natural Science Foundation of China (Nos. 11871467, 11371331, 11301392), Shanghai Peak Discipline Program for Higher Education Institutions (Class I)-Civil Engineering, and Fundamental Research Funds for the Central Universities (No. 22120180529).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Guan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, T., Guan, X., Mao, S. et al. Computable Interpolation Error Constants for the Geometric Simplex Finite Elements. J Sci Comput 87, 35 (2021). https://doi.org/10.1007/s10915-021-01449-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01449-4

Keywords

Mathematics Subject Classification

Navigation