Skip to main content
Log in

A High-Order Maximum-Principle-Satisfying Discontinuous Galerkin Method for the Level Set Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Level set (LS) method is a widely used interface capturing method. In the simulations of incompressible two-phase flows, in order to avoid discontinuities at interfaces, the LS function is usually taken as a smeared-out Heaviside function bounded on [0, 1] and advected by a given velocity field \(\mathbf {u}\) obtained from the solution of the incompressible Navier-Stokes equations. In the incompressible limit \(\nabla \cdot \mathbf {u}=0\), the advection equation for the LS function can be written and discretized in conservative form. However, due to numerical errors, the resulting velocity field is in general not divergence free which leads to the solution of the advection equation in conservative form does not satisfy the maximum principle. To overcome this issue, in this work, we develop a high-order discontinuous Galerkin (DG) method to directly solve the advection equation for the LS function in non-conservative form. Moreover, we prove that by applying a linear scaling limiter, the proposed method together with a strong stability preserving (SSP) time discretization scheme can satisfy the strict maximum principle under a suitable CFL condition. Numerical simulations of several well-known benchmark problems, including the application to incompressible two-phase flows, are presented to demonstrate the high-order accuracy and maximum-principle-satisfying property of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bahbah, C., Khalloufi, M., Larcher, A., Mesri, Y., Coupez, T., Valette, R., Hachem, E.: Conservative and adaptive level-set method for the simulation of two-fluid flows. Comput. Fluids 191, 104223 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yang, X., James, A.J., Lowengrub, J., Zheng, X., Cristini, V.: An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids. J. Comput. Phys. 217, 364–394 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Osher, S.J., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sethian, J.A., Smereka, P.: Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35, 341–372 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Osher, S., Fedkiw, R.P.: Level set methods: an overview and some recent results. J. Comput. Phys. 169, 463–502 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Olsson, E., Kreiss, G.: A conservative level set method for two phase flow. J. Comput. Phys. 210, 225–246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Olsson, E., Kreiss, G., Zahedi, S.: A conservative level set method for two phase flow II. J. Comput. Phys. 225, 785–807 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Owkes, M., Desjardins, O.: A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows. J. Comput. Phys. 249, 275–302 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory Report, LA-UR-73-479, 1973

  10. Cockburn, B., Shu, C.-W.: TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MATH  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dafermos, C.M.: Hyperbolic conservation laws in continuum physics. Springer, New York (2000)

    Book  MATH  Google Scholar 

  13. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Sco. A 467, 2752–2776 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, X.-D., Osher, S.: Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I. SIAM J. Numer. Anal. 33(2), 760–779 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8919–8934 (2010)

    Article  MathSciNet  Google Scholar 

  17. Liang, C., Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving multi-dimensional scalar hyperbolic conservation laws. J. Sci. Comput. 58, 41–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xu, Z.: Parametrized maximum principle preserving flux limiters for high order scheme solving hyperbolic conservation laws: one-dimensional scalar problem. Math. Comput. 83, 2213–2238 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xiong, T., Qiu, J.-M., Xu, Z.: A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. J. Comput. Phys. 252, 310–331 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, Y., Zhang, X., Shu, C.-W.: Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes. J. Comput. Phys. 234, 295–315 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, Z., Huang, H., Yan, J.: Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes. J. Comput. Phys. 308, 198–217 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yu, H., Liu, H.L.: Third order maximum-principle-satisfying DG schemes for convection-diffusion problems with anisotropic diffusivity. J. Comput. Phys. 391, 14–36 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Du, J., Yang, Y.: Maximum-principle-preserving third-order local discontinuous Galerkin method for convection-diffusion equations on overlapping meshes. J. Comput. Phys. 377, 117–141 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xiong, T., Qiu, J., Xu, Z.: High order maximum principle preserving discontinuous Galerkin method for convection-diffusion equations. SIAM J. Sci. Comput. 37, A583–A608 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, J.-G., Shu, C.-W.: A high-order discontinuous Galerkin method for 2D incompressible flows. J. Comput. Phys. 160, 577–59 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, M., Dong, H., Hu, B., Xu, L.: Maximum-principle-satisfying and positivity-preserving high order central DG methods on unstructured overlapping meshes for two-dimensional hyperbolic conservation laws. J. Sci. Comput. 79, 1361–1388 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Crandall, M., Majda, A.: Monotone difference approximations for scalar conservation laws. Math. Comput. 34, 1–21 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cheng, J., Zhang, F., Liu, T.G.: A discontinuous Galerkin method for the simulation of compressible gas-gas and gas-water two-medium flows. J. Comput. Phys. 403, 109059 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cheng, J., Zhang, F., Liu, T.G.: A quasi-conservative discontinuous Galerkin method for solving five equation model of compressible two-medium flows. J. Sci. Comput. 85, 12 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations. J. Comput. Phys. 223, 398–415 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47, 475–698 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys. 8, 541–564 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Anderson, R., Dobrev, V., Kolev, T., Kuzmin, D., Quezada de Luna, M., Rieben, R., Tomov, V.: High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation. J Comput Phys 334, 102–124 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31, 335–362 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys. 85, 257–283 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 83–116 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Owkes, M., Desjardins, O.: A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows. J. Comput. Phys. 249, 275–30 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Guermond, J.L., Salgado, A.: A splitting method for the incompressible flows with variable density based on a pressure Poisson equation. J. Comput. Phys. 228, 2834–2846 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Guermond, J.L., Quartapelle, L.: A projection FEM for variable density incompressible flows. J. Comput. Phys. 165, 167–188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, Y., Mei, J.Q., Ge, J.T., Shi, F.: A new fractional time-stepping method for variable density incompressible flows. J. Comput. Phys. 242, 124–137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tryggvason, G.: Numerical simulations of the Rayleigh-Taylor instability. J. Comput. Phys. 75, 235–282 (1988)

    Article  MATH  Google Scholar 

  43. Zhang, F., Cheng, J., Liu, T.G.: A direct discontinuous Galerkin method for the incompressible Navier-Stokes equations on arbitrary grids. J. Comput. Phys. 380, 269–294 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, F., Cheng, J., Liu, T.G.: A high-order discontinuous Galerkin method for the incompressible Navier-Stokes equations on arbitrary grids. Int. J. Numer. Meth. Fluids 90, 217–246 (2019)

    Article  MathSciNet  Google Scholar 

  45. Zhang, F., Cheng, J., Liu, T.G.: A reconstructed discontinuous Galerkin method for incompressible flows on arbitrary grids. J. Comput. Phys. 418, 109580 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 12001020) and China Postdoctoral Science Foundation (No. 2020M680176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moubin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of Theorem 2

A Proof of Theorem 2

Consider an arbitrary order \(P^k\) approximation (\(k\ge 1\)). By using an N-point Gauss-Lobbato and an L-point Gauss-Legendre quadrature rules exact for single-variable polynomials of degree k, we can represent the solution \(\varphi _h(x,y)\) along the line \(y=y_j^\alpha \) (\(1\le \alpha \le L\)) as

$$\begin{aligned} \varphi _h(x,y_j^\alpha )=\sum \limits _{\beta =1}^N\varphi _{{\widehat{\beta }},\alpha }\prod \limits _{\gamma =1,\gamma \ne \beta }^N \frac{(x-\widehat{x}_i^\gamma )}{(\widehat{x}_i^\beta -\widehat{x}_i^\gamma )}\overset{def}{=}\sum \limits _{\beta =1}^N\varphi _{{\widehat{\beta }},\alpha }h^{(\beta )}(x). \end{aligned}$$
(69)

Here, \(\varphi _{{\widehat{\beta }},\alpha }\overset{def}{=}\varphi _h(\widehat{x}_i^\beta ,y_j^\alpha )\). Taking derivative once with respect to x results in

$$\begin{aligned} \partial _x\varphi _h(x,y_j^\alpha )=\sum \limits _{\beta =1}^N\varphi _{{\widehat{\beta }},\alpha } \frac{\sum \limits _{\begin{array}{c} \kappa =1\\ \kappa \ne \beta \end{array}}^N\prod \limits _{\begin{array}{c} s=1\\ s\ne \beta ,\kappa \end{array}}^{N}(x-\widehat{x}_i^s)}{\prod \limits _{\begin{array}{c} \gamma =1\\ \gamma \ne \beta \end{array}}^N(\widehat{x}_i^\beta -\widehat{x}_i^\gamma )}\overset{def}{=}\sum \limits _{\beta =1}^N\varphi _{{\widehat{\beta }},\alpha }h_x^{(\beta )}(x). \end{aligned}$$
(70)

Similarly, we have

$$\begin{aligned} \partial _y\varphi _h(x_i^\alpha ,y)=\sum \limits _{\beta =1}^N\varphi _{\alpha ,{\widehat{\beta }}} \frac{\sum \limits _{\begin{array}{c} \kappa =1\\ \kappa \ne \beta \end{array}}^N\prod \limits _{\begin{array}{c} s=1\\ s\ne \beta ,\kappa \end{array}}^{N}(y-\widehat{y}_j^s)}{\prod \limits _{\begin{array}{c} \gamma =1\\ \gamma \ne \beta \end{array}}^N(\widehat{y}_j^\beta -\widehat{y}_j^\gamma )}\overset{def}{=}\sum \limits _{\beta =1}^N\varphi _{\alpha ,{\widehat{\beta }}}h_y^{(\beta )}(y). \end{aligned}$$
(71)

Here, \(\varphi _{\alpha ,{\widehat{\beta }}}\overset{def}{=}\varphi _h(x_i^\alpha , \widehat{y}_j^\beta )\). Then, the surface integral in Eq. (27) can be further written as

$$\begin{aligned} \begin{aligned}&\frac{\varDelta t}{|I_{i,j}|}\int _{I_{i,j}}\mathbf {u}_h\cdot \nabla \varphi _hd\mathbf {x}\\&\quad =\lambda _x\sum \limits _{\alpha =1}^Lw_\alpha \int _{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}u_h(x,y_j^\alpha )\partial _x\varphi _h(x,y_j^\alpha )dx +\lambda _y\sum \limits _{\alpha =1}^Lw_\alpha \int _{y_{j-\frac{1}{2}}}^{y_{j+\frac{1}{2}}}v_h(x_i^\alpha ,y)\partial _y\varphi _h(x_i^\alpha ,y)dy\\&\quad =\lambda _x\sum \limits _{\alpha =1}^L\sum \limits _{\gamma =1}^Nw_\alpha \widehat{w}_\gamma u_{{\widehat{\gamma }},\alpha }\big (\sum \limits _{\beta =1}^N\varphi _{{\widehat{\beta }},\alpha }h_x^{(\beta )}(\widehat{x}_i^\gamma )\big )\varDelta x +\lambda _y\sum \limits _{\alpha =1}^L\sum \limits _{\gamma =1}^Nw_\alpha \widehat{w}_\gamma v_{\alpha ,{\widehat{\gamma }}}\big (\sum \limits _{\beta =1}^N\varphi _{\alpha ,{\widehat{\beta }}}h_y^{(\beta )}(\widehat{y}_j^\gamma )\big )\varDelta y. \end{aligned}\nonumber \\ \end{aligned}$$
(72)

Substituting Eq. (72) into the scheme Eq. (27), it gives

$$\begin{aligned} \begin{aligned}&{\overline{\varphi }}_{i,j}^{n+1}\\&\quad =\gamma _x\sum \limits _{\alpha =1}^Lw_\alpha \widehat{w}_1\big [\big (1-\frac{\lambda _x}{\gamma _x\widehat{w}_1}\sum \limits _{\gamma =1}^N\widehat{w}_\gamma u_{{\widehat{\gamma }},\alpha }h_x^{(1)} (\widehat{x}_i^\gamma )\varDelta x-\frac{\lambda _x}{\gamma _x\widehat{w}_1} u_{i-\frac{1}{2},\alpha }^+\big )\varphi _{i-\frac{1}{2},\alpha }^++\frac{\lambda _x}{\gamma _x\widehat{w}_1}\widehat{f}(\varphi _{i-\frac{1}{2},\alpha }^-,\varphi _{i-\frac{1}{2},\alpha }^+)\big ]\\&\qquad + \gamma _x\sum \limits _{\alpha =1}^L\sum \limits _{\beta =2}^{N-1}w_\alpha \widehat{w}_\beta \big (1-\frac{\lambda _x}{\gamma _x\widehat{w}_\beta }\sum \limits _{\gamma =1}^N \widehat{w}_\gamma u_{{\widehat{\gamma }},\alpha }h_x^{(\beta )}(\widehat{x}_i^\gamma )\varDelta x\big )\varphi _{{\widehat{\beta }},\alpha }\\&\qquad + \gamma _x\sum \limits _{\alpha =1}^Lw_\alpha \widehat{w}_N\big [\big (1-\frac{\lambda _x}{\gamma _x\widehat{w}_N}\sum \limits _{\gamma =1}^N\widehat{w}_\gamma u_{{\widehat{\gamma }},\alpha }h_x^{(N)} (\widehat{x}_i^\gamma )\varDelta x+\frac{\lambda _x}{\gamma _x\widehat{w}_N} u_{i+\frac{1}{2},\alpha }^-\big )\varphi _{i+\frac{1}{2},\alpha }^--\frac{\lambda _x}{\gamma _x\widehat{w}_N}\widehat{f}(\varphi _{i+\frac{1}{2},\alpha }^-,\varphi _{i+\frac{1}{2},\alpha }^+)\big ]\\&\qquad +\gamma _y\sum \limits _{\alpha =1}^Lw_\alpha \widehat{w}_1\big [\big (1-\frac{\lambda _y}{\gamma _y\widehat{w}_1}\sum \limits _{\gamma =1}^N\widehat{w}_\gamma v_{\alpha ,{\widehat{\gamma }}}h_y^{(1)} (\widehat{y}_j^\gamma )\varDelta y-\frac{\lambda _y}{\gamma _y\widehat{w}_1} v_{\alpha ,j-\frac{1}{2}}^+\big )\varphi _{\alpha ,j-\frac{1}{2}}^++\frac{\lambda _y}{\gamma _y\widehat{w}_1}\widehat{g}(\varphi _{\alpha ,j-\frac{1}{2}}^-,\varphi _{\alpha ,j-\frac{1}{2}}^+)\big ]\\&\qquad + \gamma _y\sum \limits _{\alpha =1}^L\sum \limits _{\beta =2}^{N-1}w_\alpha \widehat{w}_\beta \big (1-\frac{\lambda _y}{\gamma _y\widehat{w}_\beta }\sum \limits _{\gamma =1}^N \widehat{w}_\gamma v_{\alpha ,{\widehat{\gamma }}}h_y^{(\beta )}(\widehat{y}_j^\gamma )\varDelta y\big )\varphi _{\alpha ,{\widehat{\beta }}}\\&\qquad +\gamma _y\sum \limits _{\alpha =1}^Lw_\alpha \widehat{w}_N\big [\big (1-\frac{\lambda _y}{\gamma _y\widehat{w}_N}\sum \limits _{\gamma =1}^N\widehat{w}_\gamma v_{\alpha ,{\widehat{\gamma }}}h_y^{(N)} (\widehat{y}_j^\gamma )\varDelta y+\frac{\lambda _y}{\gamma _y\widehat{w}_N} v_{\alpha ,j+\frac{1}{2}}^-\big )\varphi _{\alpha ,j+\frac{1}{2}}^--\frac{\lambda _y}{\gamma _y\widehat{w}_N}\widehat{g}(\varphi _{\alpha ,j+\frac{1}{2}}^-,\varphi _{\alpha ,j+\frac{1}{2}}^+)\big ]. \end{aligned}\nonumber \\ \end{aligned}$$
(73)

Let us introduce the following formal formulations

$$\begin{aligned} \begin{aligned}&H_{x,\alpha }^{(1)}=\big (1-\frac{\lambda _x}{\gamma _x\widehat{w}_1}\sum \limits _{\gamma =1}^N\widehat{w}_\gamma u_{{\widehat{\gamma }},\alpha }h_x^{(1)} (\widehat{x}_i^\gamma )\varDelta x-\frac{\lambda _x}{\gamma _x\widehat{w}_1} u_{i-\frac{1}{2},\alpha }^+\big )\varphi _{i-\frac{1}{2},\alpha }^++\frac{\lambda _x}{\gamma _x\widehat{w}_1}\widehat{f}(\varphi _{i-\frac{1}{2},\alpha }^-,\varphi _{i-\frac{1}{2},\alpha }^+),\\&H_{x,\alpha }^{(\beta )}=\big (1-\frac{\lambda _x}{\gamma _x\widehat{w}_\beta }\sum \limits _{\gamma =1}^N \widehat{w}_\gamma u_{{\widehat{\gamma }},\alpha }h_x^{(\beta )}(\widehat{x}_i^\gamma )\varDelta x\big )\varphi _{{\widehat{\beta }},\alpha },\quad 2\le \beta \le N-1\\&H_{x,\alpha }^{(3)}=\big (1-\frac{\lambda _x}{\gamma _x\widehat{w}_N}\sum \limits _{\gamma =1}^N\widehat{w}_\gamma u_{{\widehat{\gamma }},\alpha }h_x^{(N)} (\widehat{x}_i^\gamma )\varDelta x+\frac{\lambda _x}{\gamma _x\widehat{w}_N} u_{i+\frac{1}{2},\alpha }^-\big )\varphi _{i+\frac{1}{2},\alpha }^--\frac{\lambda _x}{\gamma _x\widehat{w}_N}\widehat{f}(\varphi _{i+\frac{1}{2},\alpha }^-,\varphi _{i+\frac{1}{2},\alpha }^+). \end{aligned}\nonumber \\ \end{aligned}$$
(74)

Plugging the expression of \(\widehat{f}(\cdot ,\cdot )\) Eq. (25) into Eq. (74), it gives

$$\begin{aligned} \begin{aligned}&H_{x,\alpha }^{(1)}=\big [1-\frac{\lambda _x}{\gamma _x\widehat{w}_1}\big (\sum \limits _{\gamma =1}^N\widehat{w}_\gamma u_{{\widehat{\gamma }},\alpha }h_x^{(1)} (\widehat{x}_i^\gamma )\varDelta x+\frac{1}{2} u_{i-\frac{1}{2},\alpha }^++\frac{1}{2}a_x\big )\big ]\varphi _{i-\frac{1}{2},\alpha }^++\frac{1}{2}\frac{\lambda _x}{\gamma _x\widehat{w}_1}(u_{i-\frac{1}{2},\alpha }^++a_x)\varphi _{i-\frac{1}{2},\alpha }^-,\\&H_{x,\alpha }^{(\beta )}=\big [1-\frac{\lambda _x}{\gamma _x\widehat{w}_\beta }\sum \limits _{\gamma =1}^N \widehat{w}_\gamma u_{{\widehat{\gamma }},\alpha }h_x^{(\beta )}(\widehat{x}_i^\gamma )\varDelta x\big ]\varphi _{{\widehat{\beta }},\alpha },\quad 2\le \beta \le N-1\\&H_{x,\alpha }^{(3)}=\big [1-\frac{\lambda _x}{\gamma _x\widehat{w}_N}\big (\sum \limits _{\gamma =1}^N\widehat{w}_\gamma u_{{\widehat{\gamma }},\alpha }h_x^{(N)} (\widehat{x}_i^\gamma )\varDelta x-\frac{1}{2} u_{i+\frac{1}{2},\alpha }^-+\frac{1}{2}a_x\big )\big ]\varphi _{i+\frac{1}{2},\alpha }^--\frac{1}{2}\frac{\lambda _x}{\gamma _x\widehat{w}_N}(u_{i+\frac{1}{2},\alpha }^--a_x)\varphi _{i+\frac{1}{2},\alpha }^+. \end{aligned}\nonumber \\ \end{aligned}$$
(75)

Then, it is easy to verify that under the CFL condition Eq. (42), \(H_{x,\alpha }^{(1)}\), \(H_{x,\alpha }^{(\beta )}\) \((2\le \beta \le N-1)\) and \(H_{x,\alpha }^{(N)}\) are monotonically increasing with respect to their arguments, i.e.,

$$\begin{aligned} \frac{\partial H_{x,\alpha }^{(1)}(\varphi _{i-\frac{1}{2},\alpha }^-,\varphi _{i-\frac{1}{2},\alpha }^+)}{\partial \varphi _{i-\frac{1}{2},\alpha }^\pm }\ge 0, \quad \frac{\partial H_{x,\alpha }^{(\beta )}(\varphi _{{\widehat{\beta }},\alpha })}{\partial \varphi _{{\widehat{\beta }},\alpha }}\ge 0, \quad \frac{\partial H_{x,\alpha }^{(N)}(\varphi _{i+\frac{1}{2},\alpha }^-,\varphi _{i+\frac{1}{2},\alpha }^+)}{\partial \varphi _{i+\frac{1}{2},\alpha }^\pm }\ge 0.\nonumber \\ \end{aligned}$$
(76)

Moreover, we have

$$\begin{aligned} \begin{aligned}&\widehat{w}_1H_{x,\alpha }^{(1)}(m,m)+\sum \limits _{\beta =2}^{N-1}\widehat{w}_\beta H_{x,\alpha }^{(\beta )}(m)+\widehat{w}_3H_{x,\alpha }^{(N)}(m,m)=m,\\&\widehat{w}_1H_{x,\alpha }^{(1)}(M,M)+\sum \limits _{\beta =2}^{N-1}\widehat{w}_\beta H_{x,\alpha }^{(\beta )}(M)+\widehat{w}_3H_{x,\alpha }^{(N)}(M,M)=M. \end{aligned}\nonumber \\ \end{aligned}$$
(77)

Similar results can be obtained for

$$\begin{aligned} \begin{aligned}&H_{\alpha ,y}^{(1)}=\big [1-\frac{\lambda _y}{\gamma _y\widehat{w}_1}\sum \limits _{\gamma =1}^N\widehat{w}_\gamma v_{\alpha ,{\widehat{\gamma }}}h_y^{(1)} (\widehat{y}_j^\gamma )\varDelta y-\frac{\lambda _y}{\gamma _y\widehat{w}_1} v_{\alpha ,j-\frac{1}{2}}^+\big ]\varphi _{\alpha ,j-\frac{1}{2}}^++\frac{\lambda _y}{\gamma _y\widehat{w}_1}\widehat{g}(\varphi _{\alpha ,j-\frac{1}{2}}^-,\varphi _{\alpha ,j-\frac{1}{2}}^+),\\&H_{\alpha ,y}^{(2)}=\big [1-\frac{\lambda _y}{\gamma _y\widehat{w}_\beta }\sum \limits _{\gamma =1}^N \widehat{w}_\gamma v_{\alpha ,{\widehat{\gamma }}}h_y^{(\beta )}(\widehat{y}_j^\gamma )\varDelta y\big ]\varphi _{\alpha ,{\widehat{\beta }}},\\&H_{\alpha ,y}^{(3)}=\big [1-\frac{\lambda _y}{\gamma _y\widehat{w}_N}\sum \limits _{\gamma =1}^N\widehat{w}_\gamma v_{\alpha ,{\widehat{\gamma }}}h_y^{(N)} (\widehat{y}_j^\gamma )\varDelta y+\frac{\lambda _y}{\gamma _y\widehat{w}_N} v_{\alpha ,j+\frac{1}{2}}^-\big ]\varphi _{\alpha ,j+\frac{1}{2}}^--\frac{\lambda _y}{\gamma _y\widehat{w}_N}\widehat{g}(\varphi _{\alpha ,j+\frac{1}{2}}^-,\varphi _{\alpha ,j+\frac{1}{2}}^+). \end{aligned}\nonumber \\ \end{aligned}$$
(78)

Therefore, \({\overline{\varphi }}_{i,j}^{n+1}\in [m,M]\) under the CFL condition Eq. (42) since it is a convex combination of all the points values involved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Liu, T. & Liu, M. A High-Order Maximum-Principle-Satisfying Discontinuous Galerkin Method for the Level Set Problem. J Sci Comput 87, 45 (2021). https://doi.org/10.1007/s10915-021-01459-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01459-2

Keywords

Navigation