Skip to main content
Log in

Optimal A Priori Error Estimates for the Finite Element Approximation of Dual-Phase-Lag Bio Heat Model in Heterogeneous Medium

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Galerkin finite element method is applied to dual-phase-lag bio heat model in heterogeneous medium. Well-posedness of the model interface problem and a priori estimates of its solutions are established. Optimal a priori error estimates for both semidiscrete and fully discrete schemes are proved in \(L^\infty (L^2)\) norm. The fully discrete space-time finite element discretizations is based on second order in time Newmark scheme. Finally, numerical results for two dimensional test problems are presented in support of our theoretical findings. Finite element algorithm presented here can contribute to a variety of engineering and medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Ammari, H., Chen, D., Zou, J.: Well-posedness of an electric interface model and its finite element approximation. Math. Models Meth. Appl. Sci. 26, 601–625 (2016)

    Article  MathSciNet  Google Scholar 

  3. Antonietti, P., Mazzieri, I., Muhr, M., Nikolić, V., Wohlmuth, B.: A high-order discontinuous Galerkin method for nonlinear sound waves, arXiv:1912.02281 (2019)

  4. Baker, G.A.: Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal. 13, 564–576 (1976)

    Article  MathSciNet  Google Scholar 

  5. Basson, M., Stapelberg, B., Van Rensburg, N.F.J.: Error estimates for semi-discrete and fully discrete galerkin finite element approximations of the general linear second-order hyperbolic equation. Numer. Funct. Anal. Optim. 38, 466–485 (2017)

    Article  MathSciNet  Google Scholar 

  6. Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79, 175–202 (1998)

    Article  MathSciNet  Google Scholar 

  7. Dai, W., Wang, H., Jordan, P.M., Mickens, R.E., Bejan, A.: A mathematical model for skin burn injury induced by radiation heating. Int. Jour. Heat Mass Transf. 51, 5497–5510 (2008)

    Article  Google Scholar 

  8. Deka, B., Ahmed, T.: Convergence of finite element method for linear second order wave equations with discontinuous coefficients. Numer. Methods Partial Differ. Equ. 29, 1522–1542 (2013)

    Article  MathSciNet  Google Scholar 

  9. Deka, B., Dutta, J.: \(L^{\infty }(L^2)\) and \(L^{\infty }(H^1)\) norms error estimates in finite element methods for electric interface model, accepted in Applicable Analysis, https://doi.org/10.1080/00036811.2019.1643010

  10. Joseph, D.D., Preziosi, L.: Heat Waves. Rev. Mod. Phys. 61, 41–73 (1989)

    Article  MathSciNet  Google Scholar 

  11. Joshi, A.A., Majumdar, A.: Transient ballistic and diffusive phonon heat transport in thin films. J. Appl. Phys. 74, 31–39 (1993)

    Article  Google Scholar 

  12. Kaltenbacher, B., Lasiecka, I.: Global existence and exponential decay rates for the Westervelt equation. Discrete Contin. Dyn. Syst.-S 2, 503–523 (2009)

    Article  MathSciNet  Google Scholar 

  13. Karaa, S.: Error estimates for finite element approximations of a viscous wave equation. Numer. Funct. Anal. Optim. 32, 750–767 (2011)

    Article  MathSciNet  Google Scholar 

  14. Kumar, P., Kumar, D., Rai, K.N.: A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment. J. Thermal Biol. 49, 98–105 (2015)

    Article  Google Scholar 

  15. Lagnese, J.E., Leugering, G., Schmidt, E.J.P.G.: Modeling Analysis and Control of Dynamic Elastic Multi-link Structures. Birkhäuser, Boston (1994)

    Book  Google Scholar 

  16. Larsson, S., Thomée, V., Wahlbin, L.B.: Finite element methods for a strongly damped wave equation. IMA J. Numer. Anal. 11, 115–142 (1991)

    Article  MathSciNet  Google Scholar 

  17. Li, J.Z., Melenk, J.M., Wohlmuth, B., Zou, J.: Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60, 19–37 (2010)

    Article  MathSciNet  Google Scholar 

  18. Lim, H., Kim, S., Douglas, J.: Numerical methods for viscous and nonviscous wave equations. Appl. Numer. Math. 57, 194–212 (2007)

    Article  MathSciNet  Google Scholar 

  19. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Application, vol. II. Springer-Verlag, New York (1972)

    Book  Google Scholar 

  20. Liu, K.-C., Chen, H.-T.: Investigation for the dual phase lag behavior of bio-heat transfer. Int. J. Thermal Sci. 49, 1138–1146 (2010)

    Article  Google Scholar 

  21. Luikov, A.: Application of irreversible thermodynamics methods to investigation of heat and mass transfer. Int. J. Heat Mass Transf. 9, 139–152 (1966)

    Article  Google Scholar 

  22. Mitra, K., Kumar, S., Vedavarz, A., Moallemi, M.K.: Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transf. 117, 568–573 (1995)

    Article  Google Scholar 

  23. Narasimhan, A., Sadasivam, S.: Non-Fourier bio heat transfer modelling of thermal damage during retinal laser irradiation. Int. J. Heat Mass Transf. 60, 591–597 (2013)

    Article  Google Scholar 

  24. Nikolić, V., Kaltenbacher, B.: On higher regularity for the Westervelt equation with strong nonlinear damping. Appl. Anal. 95, 2824–2840 (2016)

    Article  MathSciNet  Google Scholar 

  25. Nikolić, V., Wohlmuth, B.: A priori error estimates for the finite element approximation of Westervelt’s quasi-linear acoustic wave equation. SIAM J. Numer. Anal. 57, 1897–1918 (2019)

    Article  MathSciNet  Google Scholar 

  26. Pani, A.K., Yuan, J.Y.: Mixed finite element method for a strongly damped wave equation. Numer. Methods Partial Differ. Equ. 17, 105–119 (2001)

    Article  MathSciNet  Google Scholar 

  27. Pennes, H.H.: Analysis of tissue and arterial temperature in the resting human forearm. J. Appl. Physiol. 1, 93–122 (1948)

    Article  Google Scholar 

  28. Qiu, T.Q., Tien, C.L.: Short-pulse laser heating on metals. Int. J. Heat Mass Transf. 35, 719–726 (1992)

    Article  Google Scholar 

  29. Ren, X., Wei, J.: On a two-dimensional elliptic problem with large exponent in nonlinearity. Trans. Am. Math. Soc. 343, 749–763 (1994)

    Article  MathSciNet  Google Scholar 

  30. Robinson, J.C.: Infinite-Dimensional Dynamical System: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics (2001)

  31. Showalter, R.E.: Hilbert Space Methods for Partial Differential Equations. Pitman, London (1977)

    MATH  Google Scholar 

  32. Tzou, D.Y.: A unified field approach for heat conduction from macro- to micro-scales. Trans. ASME 117, 8–16 (1995)

    Article  Google Scholar 

  33. Tzou, D.Y.: Macro- to Microscale Heat Transfer: The Lagging Behavior. Taylor & Francis, Washington, DC (1996)

    Google Scholar 

  34. Tzou, D.Y., Chiu, K.S.: Temperature-dependent thermal lagging in ultrafast laser heating. Int. J. Heat Mass Transf. 44, 1725–1734 (2001)

    Article  Google Scholar 

  35. van Rensburg, N.F.J., van der Merwe, A.J.: Analysis of the solvability of linear vibration models. Appl. Anal. 81, 1143–1159 (2002)

    Article  MathSciNet  Google Scholar 

  36. van Rensburg, N.F.J., Stapelberg, B.: Existence and uniqueness of solutions of a general linear second-order hyperbolic problem. IMA J. Appl. Math. 84, 1–22 (2019)

    Article  MathSciNet  Google Scholar 

  37. Vedavarz, A., Kumar, S., Moallemi, M.K.: Significance of non-fourier heat waves in conduction. J. Heat Transf. 116, 221–226 (1994)

    Article  Google Scholar 

  38. Xu, F., Lu, T.J., Seffen, K.A., Ng, E.Y.K.: Mathematical modeling of skin bioheat transfer. Appl. Mech. Rev. 62, 1–35 (2009)

  39. Xu, F., Lu, T.J., Seffen, K.A.: Non-Fourier analysis of skin biothermomechanics. Int. Jour. Heat Mass Transf. 51, 2237–2259 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for valuable comments and suggestions which greatly improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupen Deka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 4.1:

Taking \( t\rightarrow 0^+ \) in (4.1) and then using definition of \(\mathcal{Q}_h\) operator, we obtain

$$\begin{aligned} (u_h^{\prime \prime }(0),v_h)= & {} -\mathcal{B}_{\sigma h}(u_h^\prime (0),v_h)-\mathcal{B}_{\delta h}(u_h(0),v_h)\nonumber \\&-\mathcal{A}_{\epsilon h}(u_h^\prime (0),v_h)-\mathcal{A}_{\beta h}(u_h(0),v_h)+(f(0),v_h)\nonumber \\= & {} -\mathcal{B}_{\sigma h}(\mathcal{Q}_{\epsilon h}v_0,v_h)-\mathcal{B}_{\beta h}(\mathcal{Q}_{\beta h}u_0,v_h)\nonumber \\&-\mathcal{A}_{\epsilon h}(\mathcal{Q}_{\epsilon h}v_0,v_h)-\mathcal{A}_{\beta h}(\mathcal{Q}_{\beta h}u_0,v_h)+(f(0),v_h)\nonumber \\= & {} -\mathcal{B}_{\sigma h}(\mathcal{Q}_{\epsilon h}v_0,v_h)-\mathcal{B}_{\beta h}(\mathcal{Q}_{\beta h}u_0,v_h)\nonumber \\&-\mathcal{A}_{\epsilon }(v_0,v_h)-\mathcal{A}_{\beta }(u_0,v_h)+(f(0),v_h). \end{aligned}$$
(7.3)

Here, we have used the fact that \(u_h\in C^2(J; V_h)\). For the third term and fourth term in (7.3), we use Green’s formula and boundary condition to derive

$$\begin{aligned}&\mathcal{A}_{\epsilon }(v_0,v_h)=-(\nabla \cdot (\epsilon \nabla v_0),v_h)\le C\Vert v_0\Vert _2\Vert v_h\Vert ,\\&\mathcal{A}_{\beta }(u_0,v_h)=-(\nabla \cdot (\beta \nabla u_0),v_h)\le C\Vert u_0\Vert _2\Vert v_h\Vert . \end{aligned}$$

Hence, (7.3) yields

$$\begin{aligned} \Vert u_h^{\prime \prime }(0)\Vert \le C\big (\Vert u_0\Vert _2+\Vert v_0\Vert _2+\Vert f\Vert _{H^1(L^2)} \big ). \end{aligned}$$
(7.4)

In the previous estimate, we have used the fact that

$$\begin{aligned} \sup _{0\le t \le T}\Vert f(t)\Vert \le C(T)\Vert f\Vert _{H^1(J;W)}. \end{aligned}$$

In fact, for any Banach space \( \mathcal{B} \), we know that (cf. [30], Proposition 7.1)

$$\begin{aligned} \sup _{0\le t \le T}\Vert v(t)\Vert _\mathcal{B}\le C(T)\Vert v\Vert _{H^1(J;\mathcal{B})}\;\forall v\in H^1(J;\mathcal{B}). \end{aligned}$$
(7.5)

Also, from the definition of \( \mathcal{Q}_h \) operator, we can easily derive

$$\begin{aligned} \Vert u_h^\prime (0)\Vert _1=\Vert \mathcal{Q}_{\epsilon h}v_0\Vert _1\le C\Vert v_0\Vert _1. \end{aligned}$$
(7.6)

For \(i=3\), taking \( t\rightarrow 0^+ \) in (2.3) and using (7.3), we have

$$\begin{aligned} (u_h^{\prime \prime }(0)-u^{\prime \prime }(0),v_h)= & {} \mathcal{B}_{\sigma }(v_0,v_h)-\mathcal{B}_{\sigma h}(\mathcal{Q}_{\epsilon h}v_0,v_h)+\mathcal{B}_{\delta }(u_0,v_h)\nonumber \\&-\mathcal{B}_{\delta h}(\mathcal{Q}_{\beta h}u_0,v_h)\nonumber \\= & {} \mathcal{B}_{\sigma }^\Delta (v_0,v_h)+\mathcal{B}_{\sigma h}(v_0-\mathcal{Q}_{\epsilon h}v_0,v_h)+\mathcal{B}_{\delta }^\Delta (u_0,v_h)\nonumber \\&+\mathcal{B}_{\delta h}(u_0-\mathcal{Q}_{\beta h}u_0,v_h)\nonumber \\\le & {} C (h^2+\lambda )(\Vert u_0\Vert _2+\Vert v_0\Vert _2)\Vert v_h\Vert . \end{aligned}$$
(7.7)

In the last inequality, we have used Lemmas 3.2 and 3.4, and the fact that \(u\in C^2(J; W)\). Then use definition of \(L^2\) projection and (7.7) to obtain

$$\begin{aligned} (u_h^{\prime \prime }(0)-\mathcal{L}_hu^{\prime \prime }(0),v_h)= & {} (u_h^{\prime \prime }(0)-u^{\prime \prime }(0),v_h)\nonumber \\\le & {} C (h^2+\lambda )(\Vert u_0\Vert _2+\Vert v_0\Vert _2)\Vert v_h\Vert , \end{aligned}$$
(7.8)

which imply

$$\begin{aligned} \Vert u_h^{\prime \prime }(0)-\mathcal{L}_hu^{\prime \prime }(0)\Vert \le C h(\Vert u_0\Vert _2+\Vert v_0\Vert _2). \end{aligned}$$
(7.9)

Estimate (7.9) together with inverse inequality and (3.19) yields

$$\begin{aligned} \Vert u_h^{\prime \prime }(0)\Vert _1\le & {} Ch^{-1}\Vert u_h^{\prime \prime }(0)-\mathcal{L}_hu^{\prime \prime }(0)\Vert +\Vert \mathcal{L}_hu^{\prime \prime }(0)\Vert _1\nonumber \\\le & {} C(\Vert u_0\Vert _3+\Vert v_0\Vert _3+\Vert f\Vert _{H^1(H^1)}). \end{aligned}$$
(7.10)

Next, for \(u_h\in C^3(J; V_h)\), we differentiate (4.1) with respect to t and then take \(t\rightarrow 0^+\) to have

$$\begin{aligned} (u_h^{\prime \prime \prime }(0),v_h)= & {} -\mathcal{B}_{\sigma h}(u_h^{\prime \prime }(0),v_h)-\mathcal{B}_{\delta h}(u_h^\prime (0),v_h)\nonumber \\&-\mathcal{A}_{\epsilon h}(u_h^{\prime \prime }(0),v_h)-\mathcal{A}_{\beta h}(u_h^\prime (0),v_h)+(f^{\prime }(0),v_h)\nonumber \\= & {} -\mathcal{B}_{\sigma h}(u_h^{\prime \prime }(0),v_h)-\mathcal{B}_{\delta h}(\mathcal{Q}_{\epsilon h}v_0,v_h)\nonumber \\&-\mathcal{A}_{\epsilon h}(u_h^{\prime \prime }(0)-\mathcal{Q}_{\epsilon h}u^{\prime \prime }(0),v_h)-\mathcal{A}_{\beta h}(\mathcal{Q}_{\epsilon h}v_0-\mathcal{Q}_{\beta h}u^\prime (0),v_h)\nonumber \\&-\sum _{l=1}^{2}\Big \{\mathcal{A}_{\epsilon }^l(u^{\prime \prime }(0),v_h)+\mathcal{A}_{\beta }^l(u^{\prime }(0),v_h)\Big \}+(f^{\prime }(0),v_h). \end{aligned}$$

Now, for \(u\in H^3(J; \mathcal{Y})\) or equivalently \(u\in C^2(J;\mathcal{Y})\), use the fact that

$$\begin{aligned} \Biggl [\epsilon (x){\partial u^{\prime \prime }(t) \over {\partial \mathbf{n}}}+\beta (x){\partial u^{\prime }(t) \over {\partial \mathbf{n}}}\Biggr ] =0\;\;\;\text{ along }\; \Gamma \times [0,T] \end{aligned}$$

in the Eq. (7.11) to obtain

$$\begin{aligned} (u_h^{\prime \prime \prime }(0),v_h)= & {} -\mathcal{B}_{\sigma h}(u_h^{\prime \prime }(0),v_h)-\mathcal{B}_{\delta h}(\mathcal{Q}_{\epsilon h}v_0,v_h)\nonumber \\&-\mathcal{A}_{\epsilon h}(u_h^{\prime \prime }(0)-\mathcal{Q}_{\epsilon h}u^{\prime \prime }(0),v_h)-\mathcal{A}_{\beta h}(\mathcal{Q}_{\epsilon h}v_0-\mathcal{Q}_{\beta h}v_0,v_h)\nonumber \\&+\sum _{l=1}^{2}\Big \{(\nabla \cdot \epsilon _l \nabla u^{\prime \prime }(0),v_h)_{\Omega _l}+(\nabla \cdot \beta \nabla u^{\prime }(0),v_h)_{\Omega _l}\Big \}+(f^{\prime }(0),v_h)\nonumber \\\le & {} C\Big \{\Vert u^{\prime \prime }_h(0)\Vert +h^{-1}(\Vert u_h^{\prime \prime }(0)-\mathcal{Q}_{\epsilon h}u^{\prime \prime }(0)\Vert _1+\Vert \mathcal{Q}_{\epsilon h}v_0-\mathcal{Q}_{\beta h}v_0\Vert _1)\nonumber \\&\;\;\;\;\;+\sum _{l=1}^{2}\Vert u^{\prime \prime }(0)\Vert _{2, \Omega _l}+\Vert v_0\Vert _2+\Vert f\Vert _{H^2(L^2)}\Big \}\Vert v_h\Vert . \end{aligned}$$
(7.11)

From (7.8) and Remark 3.1, we have

$$\begin{aligned}&\Vert u_h^{\prime \prime }(0)-\mathcal{Q}_{\epsilon h}u^{\prime \prime }(0)\Vert _1\nonumber \\&\quad \le Ch^{-1}\Vert u_h^{\prime \prime }(0)-\mathcal{L}_hu^{\prime \prime }(0)\Vert +\Vert \mathcal{L}_hu^{\prime \prime }(0)-\mathcal{Q}_{\epsilon h}u^{\prime \prime }(0)\Vert _1\nonumber \\&\quad \le C(\Vert u_0\Vert _2+\Vert v_0\Vert _2)+Ch\sum _{l=1}^{2}\Vert u^{\prime \prime }(0)\Vert _{2, \Omega _l}\nonumber \\&\quad \le Ch(\Vert u_0\Vert _4+\Vert v_0\Vert _4+\Vert f\Vert _{H^1(H^2)}). \end{aligned}$$
(7.12)

In the last inequality, we have used the fact that \(\Vert u_0\Vert _K\le Ch\Vert u_0\Vert _{2, K}\) for all \(K\in \mathcal{T}_h.\) Using (7.12) in (7.11), we obtain

$$\begin{aligned} \Vert u_h^{\prime \prime \prime }(0)\Vert \le C(\Vert u_0\Vert _4+\Vert v_0\Vert _4+\Vert f\Vert _{H^2(H^2)}). \end{aligned}$$
(7.13)

The case \(i=4\) can be done in a similar way and hence details are omitted. This completes the rest of the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, J., Deka, B. Optimal A Priori Error Estimates for the Finite Element Approximation of Dual-Phase-Lag Bio Heat Model in Heterogeneous Medium. J Sci Comput 87, 58 (2021). https://doi.org/10.1007/s10915-021-01460-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01460-9

Keywords

Mathematics Subject Classification

Navigation