Skip to main content
Log in

An Analysis on the Finite Volume Schemes and the Discrete Lyapunov Inequalities for the Chemotaxis System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We analyze two finite volume schemes, linear and nonlinear, for the chemotaxis system in two-dimensional domain, which preserve the mass conservation and positivity without the CFL condition. For the nonlinear scheme, the well-posedness is proved by using Brouwer’s fixed point theory, and we show the convergence of the Picard iteration. We also investigate two discrete Lyapunov functionals, the asymptotic stability of equilibrium and the local stability. Moreover, we apply the discrete semi-group theory to error analysis and obtain the convergence rate \(O(\tau +h)\) in \(L^p\) norm. The theoretical results are confirmed by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Andreianov, B., Bendahmane, M., Saad, M.: Finite volume methods for degenerate chemotaxis model. J. Comput. Appl. Math. 235, 4015–4031 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bessemoulin-Chatard, M., Chainais-Hilliairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35, 1125–1149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bessemoulin-Chatard, M., Jüngel, A.: A finite volume scheme for a Keller–Segel model with additional cross-diffusion. IMA. J. Numer. 34, 96–122 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chamoun, G., Saad, M., Talhouk, R.: Monotone combined edge finite volume-finite element scheme for anisotropic Keller–Segel model. Numer. Methods Partial Differ. Equ. 30, 1030–1065 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chertock, A., Epshteyn, Y., Hu, H., Kurganov, A.: High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems. Adv. Comput. Math. 44, 327–350 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chertock, A., Kurganov, A.: A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer. Math. 111, 169–205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Childress, S., Percus, J.K.: Nolinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chou, S., Kwak, D.Y., Li, Q.: \({L}^p\) error estimates and superconvergence for covolume or finite volume element methods. Numer. Methods Partial Differ. Equ. 19, 463–486 (2003)

    Article  MATH  Google Scholar 

  10. Chou, S., Li, Q.: Error estimates in \({L}^2\), \({H}^1\) and \({L}^\infty \) in covolume methods for elliptic and parabolic problems: a unified approach. Math. Comput. 69, 103–120 (1999)

    Article  Google Scholar 

  11. Crouzeix, M., Thomée, V.: Resolvent estimates in \(l^p\) for discrete Laplacians on irregular meshes and maximum-norm stability of parabolic finite difference schemes. Comput. Methods Appl. Meth. 1(1), 3–17 (2001)

    Article  MATH  Google Scholar 

  12. Dragomir, S.S.: Some Gronwall Type Inequalities and Applications. Nova Science Publishers Inc, Hauppauge, NY (2003)

    MATH  Google Scholar 

  13. Epshteyn, Y.: Upwind-difference potentials method Patlak–Keller–Segel chemotaxis model. J. Sci. Comput. 53, 689–713 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Epshteyn, Y., Izmirlioglu, A.: Fully discrete analysis of a discontinuous finite element method for the Keller–Segel chemotaxis model. J. Sci. Comput. 40, 211–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Epshteyn, Y., Kurganov, A.: New interior penalty discontinuous Galerkin methods for the Keller–Segel chemotaxis model. SIAM J. Numer. Anal. 47, 386–408 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eymard, R., Gallouët, T., Herbin, R.: Finite Volume Methods. Handbook of Numerical Analysis, vii, North-Holland, Amsterdam (2000)

    Book  MATH  Google Scholar 

  17. Fatkullin, I.: A study of blow-ups in the Keller–Segel model of chemotaxis. Nonlinearity 26, 81–94 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Filbet, F.: A finite volume scheme for the Patlak–Keller–Segel chemotaxis model. Numer. Math. 104, 457–488 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gajewski, H., Zacharias, K.: Global behaviour of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 195, 77–114 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  21. Haškovec, J., Schmeiser, C.: Stochastic p approximation for measure valued solutions of the 2D Keller–Segel system. J. Stat. Phys. 135, 133–151 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Haškovec, J., Schmeiser, C.: Convergence of a stochastic p approximation for measure solutions of the 2D Keller–Segel system. Commun. Partial Differ. Equ. 36, 940–960 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I. Jahresber. Deutsch. Math.-Verein. 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. II. Jahresber. Deutsch. Math.-Verein. 106, 51–69 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Keller, F.F., Segel, L.A.: Initiation on slime mold aggregation viewed as instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  26. Knabner, P., Angermann, L.: Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Springer, New York (2003)

    MATH  Google Scholar 

  27. Li, R., Chen, Z., Wu, W.: Generalized Difference Methods for Differential Equations, Numerical Analysis of Finite, vol. method. Marcel Dekker Inc, New York (2000)

    Book  MATH  Google Scholar 

  28. Marrocco, A.: 2D simulation of chemotaxis bacteria aggregation. M2AN 37, 617–630 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Math. J. 20, 1077–1093 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nagai, T.: Global existence of solutions to a parabolic system for chemotaxis in two space dimensions. Nonlinear Anal. Theory Methods Appl. 30, 5381–5388 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nagai, T., Senba, T., Suzuki, T.: Chemotactic collapse in a parabolic system of mathematical biology. Hiroshima Math. J. 30, 463–497 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Okamoto, H.: On the semidiscrete finite element approximation for the nonstationary Navier–Stokes equation. J. Fac. Sci. Univ. Tokyo Sect. IA.Math. 29, 613–651 (1982)

    MathSciNet  MATH  Google Scholar 

  33. Perthame, B.: PDE models for chemotactic movements: parabolic, hyperbolic and kinetic. Appl. Math. 49, 539–364 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Saito, N.: Remarks on the rational approximation of holomorphic semigroups with nonuniform partitions. Jpn. J. Ind. Appl. Math. 21, 323–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Saito, N.: Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis. IMA J. Numer. Anal. 27, 332–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saito, N.: Error analysis of a conservative finite-element approximation for the Keller–Segel system of chemotaxis. Commun. Pure Appl. Anal. 11, 339–364 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Saito, N., Suzuki, T.: Notes on finite difference schemes to a parabolic–elliptic system modelling chemotaxis. Appl. Math. Comput. 171, 72–90 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Strehl, R., Sokolov, A., Kuzmin, D., Turek, S.: A flux-corrected finite element method for chemotaxis problems. Comput. Methods Appl. Meth. 10, 219–232 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Suzuki, T.: Free Energy and Self-interacting Particles. Birkhauser, Boston (2005)

    Book  MATH  Google Scholar 

  40. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  41. Varga, R.S.: Matrix Iterative Analysis. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  42. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimentional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MATH  Google Scholar 

  43. Yagi, A.: Norm behaviour of solutions to a parabolic system of chemotaxis. Math. Jpn. 45, 241–256 (1997)

    MATH  Google Scholar 

  44. Zhou, G., Saito, N.: Finite volume methods for a Keller–Segel system: discrete energy, error estimates and numerical blow-up analysis. Numer. Math. 135, 265–311 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanyu Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was supported by the research fund from University of Electronic Science and Technology of China and by NSFC (No. 12071061)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G. An Analysis on the Finite Volume Schemes and the Discrete Lyapunov Inequalities for the Chemotaxis System. J Sci Comput 87, 54 (2021). https://doi.org/10.1007/s10915-021-01466-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01466-3

Keywords

Mathematics Subject Classification

Navigation