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Abstract. A determinantal point process is a stochastic point process that

is commonly used to capture negative correlations. It has become increasingly
popular in machine learning in recent years. Sampling a determinantal point

process however remains a computationally intensive task. This note intro-

duces a heuristic independent particle approximation to determinantal point
processes. The approximation is based on the physical intuition of fermions

and is implemented using standard numerical linear algebra routines. Sampling

from this independent particle approximation can be performed at a negligible
cost. Numerical results are provided to demonstrate the performance of the

proposed algorithm.

1. Introduction

A determinantal point process is a stochastic point process that is commonly used
to capture negative correlations [12]. Let S be a set of points. A determinantal
point process is a random set A such that the probability of {x1, . . . , xk} ⊂ A is
given by det(K(xi, xj))1≤i,j≤k, where K : S × S → R is symmetric positive semi-
definite operator. To simplify the discussion, we assume for simplicity that S is a
discrete set of size N and A has a fixed size k. Such a DPP is called elementary
and

(1) P(A = {x1, . . . , xk}) = det(K(xi, xj))1≤i,j≤k.

In what follows, we shall also refer to the diagonal ρ(x) ≡ K(x, x) of K as density.
Many natural point processes can be modeled by DPPs. Examples include dis-

tribution of non-interacting Fermions, descent subsequences in random sequences,
non-intersecting random walks, edge distributions of spanning trees, and eigenvalue
of random matrices [3, 4, 8, 15, 16]. More recently, DPP has played a significant
role in improving fairness and diversity of sampling algorithms in modern machine
learning [10].

However, sampling from DPP remains to be a challenging computational prob-
lem. In [7] Hough et al proposed the standard DPP sampling algorithm with
O(Nk3) complexity. Though various improvements (e.g. [9]) and approximate
algorithms (e.g. [6]) have been proposed, sampling from DPP remains a hard com-
putation problem.
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1.1. Problem and contribution. This note considers the problem of approximat-
ing DPP with an independent particle process with disjoint support, i.e., generating
the k samples by sampling each from a support disjoint region. More specifically, we
introduce a disjoint union S = S1∪ . . .∪Sk and associate with each Si a probability
density ρi(·) supported on Si. Each realization of this approximate process is then
generated by sampling one point from each ρi(·). Equivalently, this also amounts to
approximating the kernel matrix K, after an appropriate reordering, with a block-
diagonal matrix, where each diagonal block has rank one and unit trace. The main
advantage of this approximation is that sampling from this approximation can be
done extremely rapidly.

The main contribution of this note is to introduce a simple heuristic algorithm
for constructing such an approximation. The algorithm itself requires no more than
standard numerical linear algebra routines and the numerical results are provided
to demonstrate its effectiveness.

1.2. Motivation. It is natural to ask why one could expect such an approximation
to be reasonable. This approximation, though crude sometimes, is well-motivated
from physics and chemistry consideration. In the work of Macchi [12], DPP is
originally named fermionic point process and the elementary DPP with k points is
exactly the distribution function of k non-interacting electrons. In this language,
K(x, x′) is the density matrix and ρ(x) is the single-electron density. Here, non-
interacting means that there is no further interaction between the electrons besides
the Pauli’s exclusion principle [13]. To see this, note that the matrix K can be
decomposed as

(2) K(x, x′) =

k∑
i=1

φi(x)φi(x
′)

where the functions {φi(x)} from S to R are called electron orbitals. The multi-
electron wave function Φ(x1, . . . , xk) is given by the Slater determinant [11, 14]

Φ(x1, . . . , xk) =
1√
k!

det(φi(xj))1≤i,j≤k.

The multi-electron density is then the square of the wave function,

|Φ(x1, . . . , xk)|2 =
1

k!
|det(φi(xj))|2 =

1

k!
det(K(xi, xj))1≤i,j≤k.

Since electrons are indistinguishable, the probability of finding the k electrons at
the location set {x1, . . . , xk} is given by

P ({x1, . . . , xk}) = k! · 1

k!
det(K(xi, xj)) = det(K(xi, xj)),

which matches (1) exactly.
The choice of the orbitals {φi(x)} in (2) is not unique: applying an arbitrary

k × k orthogonal matrix to {φi(x)} generates an equally valid set of orbitals and
keeps K and the DPP unchanged. However, different sets of orbitals do have differ-
ent physical interpretations and computational implications. It is often preferred to
choose a set of localized orbitals, such as the atomic orbitals 1s, 2s, 2px, 2py, 2pz, . . ..
With these localized orbitals identified, one often says that a certain electron is in
a certain orbital, without actually referring to the actual position of the other
electrons. This implies that, up to a reasonable approximation, it makes sense to
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sample each electron from its own orbital independently due to their locality. How-
ever, such a strategy can violate the Pauli exclusion principle, since the localized
orbitals can still overlap. As a result, in order to implement this intuition in our
DPP approximation, the algorithm needs to construct disjoint supports for each
particle.

1.3. Content. The rest of the note is organized as follows. Section 2 describes the
algorithm for approximating DPP with independent particles. Several numerical
examples are presented in Section 3 to demonstrate the performance of this heuristic
algorithm. Finally, Section 4 includes some discussion for future work.

1.4. Data availability statement. Data sharing not applicable to this article as
no datasets were generated or analyzed during the current study.

2. Algorithm

This section describes the algorithm for approximating DPP with independent
particles. Let us recall that, given a kernel matrix K ∈ RN×N defined on S, the
objective is to introduce a disjoint union S = S1 ∪ . . . ∪ Sk and associate to each
Si a probability density ρi(·) supported within Si. The algorithm consists of two
steps: localization and partitioning.

2.1. Localization. Let us introduce the matrix Φ = (φ1, . . . , φk) ∈ RN×k with
columns equal to the orbitals {φi(x)} in (2). The task of this first step is to find
an equivalent set of orbitals {vi(x)}, which are as localized as possible. Similar to
the definition of Φ, we also introduce the matrix V = (v1, . . . , vk) ∈ RN×k.

Here, we follow the method of selected columns of density matrix (SCDM) in-
troduced in [5]. In the matrix form, the task is to find an orthogonal matrix O such
that

V := ΦO

has columns as localized as possible. Directly optimizing a locality measure/functional
for V over all possible orthogonal matrices is a non-trivial optimization problem.
Instead, the key idea of SCDM is that the density matrix K = ΦΦT often has local-
ized columns [1,2]. Therefore, instead of searching O from the infinite set of k × k
orthogonal matrices, one can simply look for the columns of O from the columns
of ΦT. This can be implemented for example by performing a pivoted QR factor-
ization to the matrix K = ΦΦT. However, since Φ is a matrix with orthogonal
columns, it is equivalent to perform the pivoted QR factorization to the smaller
matrix ΦT instead:

(3) [Q,R, σ] = qr(ΦT),

where Q is a k × k orthogonal matrix, R is a k ×N upper-triangular matrix, and
σ is a k-dimensional integer vectors that identifies the first k pivoted columns of
ΦT. Given σ, the columns in (ΦΦT)(:, σ) = K(:, σ) are all localized since they are
selected columns of K. However, they are not orthogonal. To regain orthogonality,
one can set

(4) V = K(:, σ)(K(σ, σ))−1/2.
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It is easy to check that V is indeed a matrix with orthonormal columns:

V TV = (K(σ, σ))−1/2K(σ, :)K(:, σ)(K(σ, σ))−1/2

= (K(σ, σ))−1/2K(σ, σ)(K(σ, σ))−1/2 = I,

where the second step uses the fact that K is a projection.
Though the definition of V in (4) involves the N ×N matrix K, it is equivalent

to write

V = ΦΦT(:, σ)(Φ(σ, :)ΦT(:, σ))−1/2,

where it is clear that the computation of V can be performed without any explicit
reference to the full matrix K.

2.2. Partitioning. The task of the second step is to partition S into k disjoint
subsets S1, . . . , Sk. The easiest way is to simply set

(5) Si = {x ∈ S|i = argmaxj |vj(x)|},

with random tie-breaking at a point x ∈ S whenever multiple vj(·) vectors have
the same absolute value at x. Once Si is identified, one set the density ρi(x) within
each Si as

(6) ρi(x) =

{
ρ(x)∑

x∈Si
ρ(x) , x ∈ Si

0, x 6∈ Si.

The main shortcoming of this approach is that the sum
∑
x∈Si

ρ(x) can deviate

noticeably from 1. Therefore, after the renormalization step in (6), the density
ρi(x) can differ significantly from the original density ρ(x).

To fix this issue, a heuristic balancing step is introduced. We seek for a set of
scaling factors {αi} close to one such that the sets Si defined via

(7) Si = {x ∈ S|i = argmaxj |(αjvj)(x)|}

satisfy the constraints that for each i∑
x∈Si

ρ(x) = 1.

Once {αi} are identified, one simply set

(8) ρi(x) =

{
ρ(x), x ∈ Si
0, x 6∈ Si.

2.3. Sampling. Once {Si} and {ρi} are computed, sampling from this independent
particle model is straightforward.

(1) For each i = 1, . . . , k, sample xi from Si following the distribution ρi(x).
(2) Return the set {x1, . . . , xk}.

{xi} are clearly disjoint since {Si} are disjoint. The cost of this sampling algorithm
is also extremely low. By adopting a binary search structure for the weights of
ρi(x), each sample xi can be generated in O(logN) steps. Therefore, the overall
sampling cost is O(k logN).
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3. Numerical results

This section considers several geometric sampling problems in two dimensional
spaces to illustrate the performance of the proposed heuristic algorithm. In each
example, the functions {φi(x)} of K(·, ·) are given as input.

20 40 60 80 100 120

20

40

60

80

100

120
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120

20

40

60

80

100

120

10

20

30

40

50

60

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b) (c)

Figure 1. The first example. (a) density ρ(x). (b) partitioning
{Si}. (c) a realization of the resulting independent particle process.

In the first example (see Figure 1), S is a uniform Cartesian grid of [0, 1]2 with√
N = 128 points in each dimension. Clearly, N = 1282. We set k = 61 and

the orbital functions {φi(x)} to be the k = 61 lowest eigenmodes of the discrete
Laplacian −∆ on S with periodic boundary condition. The kernel K(x, x′) is given
by (2) and in this case the density ρ(x) is a constant function. Figure 1(a) shows
the density ρ(x) on the Cartesian grid. Figure 1(b) plots the supports of different
regions {Si} with different colors. This plot demonstrate that {Si} are highly
localized due to the locality of the new orbitals {vi(x)}. Finally, Figure 1(c) shows
one realization of the resulting independent particle process.
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Figure 2. The second example. (a) density ρ(x). (b) partitioning
{Si}. (c) a realization of the resulting independent particle process.

In the second example (see Figure 2), S is the same uniform Cartesian grid and
N = 1282. We set k = 64 and choose functions {φi(x)} to be the lowest eigenmodes
of the differential operator

−∆ + U(x), U(x) ≡ U((x1, x2)) = −512 · (cos(2πx1) + 1) · (cos(2πx2) + 1),

with zero boundary condition. The kernel K(x, x′) can again be obtained from (2).
In this case the density ρ(x) grows significantly nearly the four corners due to the
low potential values there (see Figure 2(a)). Figure 2(b) demonstrates the supports
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of {Si} with different colors. We see that {Si} are again highly localized with
necessary area changes in order to accommodate the density variation across the
domain. Finally, Figure 2(c) provides one realization from the resulting independent
particle process.
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Figure 3. The third example. (a) density ρ(x). (b) partitioning
{Si}. (c) a realization of the resulting independent particle process.

In the third example (see Figure 3), S is still the uniform Cartesian grid with
N = 1282. We choose k = 64 and let {φi(x)} be the lowest eigenmodes of the
differential operator

−∆ + U(x), U(x) ≡ U((x1, x2)) = +512 · (cos(2πx1) + 1) · (cos(2πx2) + 1),

with zero boundary condition. The density ρ(x) grows at the domain center due
to the low potential U(x) there (see Figure 3(a)). Figure 3(b) demonstrates the
supports of {Si} with different colors. {Si} are again highly localized with necessary
area changes to accommodate the density variation. Finally, Figure 3(c) gives one
realization of the point set from this independent particle process.

4. Discussions

This note introduces a heuristic independent particle approximation to deter-
minantal point processes. The main benefit of this approximation is that it can
be sampled with negligible cost. There are several immediate directions for future
work. First, this note only considers the elementary DPP case, and it will be im-
portant to generalize this to general DPPs. Second, it will be useful to explore the
applications of this algorithm in machine learning applications where the sampling
speed of DPP is essential.
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