Skip to main content
Log in

Mixed Finite Element Method for Modified Poisson–Nernst–Planck/Navier–Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a complete mixed finite element method is developed for a modified Poisson–Nernst–Planck/Navier–Stokes (PNP/NS) coupling system, where the original Poisson equation in PNP system is replaced by a fourth-order elliptic equation to more precisely account for electrostatic correlations in a simplified form of the Landau–Ginzburg-type continuum model. A stabilized mixed weak form is defined for each equation of the modified PNP/NS model in terms of primary variables and their corresponding vector-valued gradient variables, based on which a stable Stokes-pair mixed finite element is thus able to be utilized to discretize all solutions to the entire modified PNP/NS model in the framework of Stokes-type mixed finite element approximation. Semi- and fully discrete mixed finite element schemes are developed and are analyzed for the presented modified PNP/NS equations, and optimal convergence rates in energy norms are obtained for both schemes. Numerical experiments are carried out to validate all attained theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Jerome, J.W.: The steady boundary value problem for charged incompressible fluids: PNP/Navier–Stokes systems. Nonlinear Anal. 74, 7486–7498 (2011)

    Article  MathSciNet  Google Scholar 

  2. Choi, H., Paraschivoiu, M.: Advanced hybrid-flux approach for output bounds of electro-osmotic flows: adaptive refinement and direct equilibrating strategies. Microfluidics Nanofluidics 2(2), 154–170 (2005)

    Article  Google Scholar 

  3. Cioffi, M., Boschetti, F., Raimondi, M.T., Dubini, G.: Modeling evaluation of the fluid-dynamic microenvironment in tissue-engineered constructs: a micro-CT based model. Biotechnol. Bioeng. 93(3), 500–510 (2006)

    Article  Google Scholar 

  4. Jerome, J.W., Chini, B., Longaretti, M., Sacco, R.: Computational modeling and simulation of complex systems in bio-electronics. J. Comput. Electron. 7(1), 10–13 (2008)

    Article  Google Scholar 

  5. Hu, Y., Lee, J.S., Werner, C., Li, D.: Electrokinetically controlled concentration gradients in micro-chambers in microfluidic systems. Microfluidics Nanofluidics 2(2), 141–153 (2005)

    Article  Google Scholar 

  6. Bazant, M.Z., Kilic, M.S., Storey, B., Ajdari, A.: Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv. Colloid Interface Sci. 152, 48–88 (2009)

    Article  Google Scholar 

  7. Vlachy, V.: Ionic effects beyond Poisson–Boltzmann theory. Annu. Rev. Phys. Chem. 50, 145–165 (1990)

    Article  Google Scholar 

  8. Silvester, D., Compton, R.: Electrochemistry in room temperature ionic liquids: a review and some possible applications. Z. Phys. Chem. 220, 1247–1274 (2006)

    Article  Google Scholar 

  9. Freyland, W.: Electrochemistry in room temperature ionic liquids: a review and some possible applications. Phys. Chem. Chem. Phys. 10, 923–936 (2008)

    Article  Google Scholar 

  10. Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., Scrosati, B.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009)

    Article  Google Scholar 

  11. Bazant, M.Z., Storey, B.D., Kornyshev, A.A.: Double layer in ionic liquids: overscreening versus crowding. Phys. Rev. Lett. 106(4), 046102-1–046102-4 (2011)

  12. Storey, B.D., Bazant, M.Z.: Effects of electrostatic correlations on electrokinetic phenomena. Phys. Rev. E 86(2), 056303-1–056303-11 (2012)

  13. de Souza, J.P., Bazant, M.Z.: Continuum theory of electrostatic correlations at charged surfaces. J. Phys. Chem. C 124(21), 11414–11421 (2020)

    Article  Google Scholar 

  14. Zheng, Q., Chen, D., Wei, G.: Second-order Poisson–Nernst–Planck solver for ion channel transport. J. Comput. Phys. 230, 5239–5262 (2011)

    Article  MathSciNet  Google Scholar 

  15. Debye, P., Huckel, E.: Zur theorie der elektrolyte. Phys. Z. 24, 185–206 (1923)

    MATH  Google Scholar 

  16. Biler, P., Dolbeault, J.: Long time behavior of solutions of Nernst–Planck and Debye–Hückel drift-diffusion systems. Ann. Henri Poincaré 1, 461–472 (2000)

    Article  MathSciNet  Google Scholar 

  17. Jerome, J.W., Kerkhoven, T.: A finite element approximation theory for the drift diffusion semiconductor model. East-West J. Numer. Math. 28(2), 403–422 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Yang, Y., Lu, B.: An error analysis for the finite element approximation to the steady-state Poisson–Nernst–Planck equations. Adv. Appl. Math. Mech. 5(1), 113–130 (2013)

    Article  MathSciNet  Google Scholar 

  19. Prohl, A., Schmuck, M.: Convergent discretizations for the Nernst–Planck–Poisson system. Numer. Math. 111, 591–630 (2009)

    Article  MathSciNet  Google Scholar 

  20. Prohl, A., Schmuck, M.: Convergent finite element discretizations of the Navier–Stokes–Nernst–Planck–Poisson system. ESAIM Math. Model. Numer. Anal. 44(3), 531–571 (2010)

    Article  MathSciNet  Google Scholar 

  21. Schmuck, M.: Analysis of the Navier–Stokes–Nernst–Planck–Poisson system. Math. Models Methods Appl. Sci. 19(6), 993–1015 (2009)

    Article  MathSciNet  Google Scholar 

  22. Schmuck, M.: Modeling and deriving porous media Stokes–Poisson–Nernst–Planck equations by a multi-scale approach. Commun. Math. Sci. 9(3), 685–710 (2011)

    Article  MathSciNet  Google Scholar 

  23. Ray, N., Muntean, A., Knabner, P.: Rigorous homogenization of a Stokes–Nernst–Planck–Poisson system. J. Math. Anal. Appl. 390, 374–393 (2012)

    Article  MathSciNet  Google Scholar 

  24. Sun, Y., Sun, P., Zheng, B., Lin, G.: Error analysis of finite element method for Poisson–Nernst–Planck equations. J. Comput. Appl. Math. 301, 28–43 (2016)

    Article  MathSciNet  Google Scholar 

  25. Gao, H., He, D.: Linearized conservative finite element methods for the Nernst–Planck–Poisson equations. J. Sci. Comput. 72, 1269–1289 (2017)

    Article  MathSciNet  Google Scholar 

  26. He, M., Sun, P., Sun, Y.: Error analysis of mixed finite element method for Poisson–Nernst–Planck system. Numer. Methods Partial Differ. Equ. 33, 1924–1948 (2017)

    Article  MathSciNet  Google Scholar 

  27. Gao, H., Sun, P.: A linearized local conservative mixed finite element method for Poisson–Nernst–Planck equations. J. Sci. Comput. 77, 793–817 (2018)

    Article  MathSciNet  Google Scholar 

  28. He, M., Sun, P.: Mixed finite element analysis for the Poisson–Nernst–Planck/Stokes coupling. J. Comput. Appl. Math. 341, 61–79 (2018)

    Article  MathSciNet  Google Scholar 

  29. Shen, S., Deng, Q.: Maximum norm error estimates for finite element approximations of the stationary and nonstationary Navier–Stokes problems. Acta Math. Sci. 18(3), 335–349 (1993)

    Article  MathSciNet  Google Scholar 

  30. He, Y.: The Euler implicit/explicit scheme for the 2D time-dependent Navier–Stokes equations with smooth or non-smooth initial data. Math. Comput. 77(264), 2097–2124 (2008)

    Article  MathSciNet  Google Scholar 

  31. Shen, J.: On error estimates of projection methods for Navier–Stokes equations: first-order schemes. Soc. Ind. Appl. Math. 29(1), 57–77 (1992)

    MathSciNet  MATH  Google Scholar 

  32. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2000)

    Google Scholar 

  33. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  Google Scholar 

  34. Gatica, G.N.: A Simple Introduction to the Mixed Finite Element Method. Springer, New York (2014)

    Book  Google Scholar 

  35. Raviart, R., Thomas, J.: A mixed finite element method for 2nd order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Lecture Notes in Mathematics, Vol. 606 of Mathematical Aspects of Finite Element Methods. Springer, New York (1977)

    Google Scholar 

  36. Brezzi, F., Fortin, M., Marini, L.: Mixed finite element methods with continuous stresses. Math. Models Methods Appl. Sci. 3, 275–287 (1993)

    Article  MathSciNet  Google Scholar 

  37. Yang, D.: A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media. Numer. Methods Partial Differ. Equ. 17(3), 229–249 (2001)

    Article  MathSciNet  Google Scholar 

  38. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)

    Book  Google Scholar 

  39. Durãn, R.G.: Error analysis in \(L^p\), \(1\le p\le \infty \) for mixed finite element methods for linear and quasi-linear elliptic problems. ESAIM Math. Model. Numer. Anal. 22(3), 371–387 (1988)

    Article  Google Scholar 

  40. Bikerman, J.: XXXIX. Structure and capacity of electrical double layer. Lond. Edinb. Dublin Philos. Mag. J. Sci. 33(220), 384–397 (1942)

    Article  Google Scholar 

  41. Besteman, K., Zevenbergen, M.A., Heering, H.A., Lemay, S.G.: Direct observation of charge inversion by multivalent ions as a universal electrostatic phenomenon. Phys. Rev. Lett. 93(17), 170802 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

M. He is partially supported by Natural Science Foundation of Zhejiang Province, China (Nos. LY21A010011 and LQ19A010009). P. Sun was supported by a Grant from the Simons Foundation (MPS-706640, PS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengtao Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Sun, P. Mixed Finite Element Method for Modified Poisson–Nernst–Planck/Navier–Stokes Equations. J Sci Comput 87, 80 (2021). https://doi.org/10.1007/s10915-021-01478-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01478-z

Keywords

Mathematics Subject Classification

Navigation