Skip to main content
Log in

Fifth-Order Hermite Targeted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a targeted essentially non-oscillatory (TENO) scheme based on Hermite polynomials for solving hyperbolic conservation laws. Hermite polynomials have already been adopted in weighted essentially non-oscillatory (WENO) schemes (Qiu and Shu in J Comput Phys 193:115–135, 2003). The Hermite TENO reconstruction offers major advantages over the earlier reconstruction; namely, it is a compact Hermite-type reconstruction and has low dissipation by virtue of TENO’s stencil voting strategy. Next, we formulate a new high-order global reference smoothness indicator for the proposed scheme. The flux calculations and time-advancing schemes are carried out by the local Lax–Friedrichs flux and third-order strong-stability-preserving Runge–Kutta methods, respectively. The scalar and system of the hyperbolic conservation laws are demonstrated in numerical tests. In these tests, the proposed scheme improves the shock-capturing performance and inherits the good small-scale resolution of the TENO scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data are available from the corresponding author on reasonable request.

References

  1. Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160(2), 405–452 (2000)

    Article  MathSciNet  Google Scholar 

  2. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)

    Article  MathSciNet  Google Scholar 

  3. Cai, X., Qiu, J., Qiu, J.M.: A conservative semi-Lagrangian HWENO method for the Vlasov equation. J. Comput. Phys. 323, 95–114 (2016)

    Article  MathSciNet  Google Scholar 

  4. Cai, X., Zhu, J., Qiu, J.: Hermite WENO schemes with strong stability preserving multi-step temporal discretization methods for conservation laws. J. Comput. Math. 35(1), 19–40 (2017)

    Article  MathSciNet  Google Scholar 

  5. Capdeville, G.: A Hermite upwind WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 227(4), 2430–2454 (2008)

    Article  MathSciNet  Google Scholar 

  6. Fu, L.: A low-dissipation finite-volume method based on a new TENO shock-capturing scheme. Comput. Phys. Commun. 235, 25–39 (2019)

    Article  MathSciNet  Google Scholar 

  7. Fu, L.: A very-high-order TENO scheme for all-speed gas dynamics and turbulence. Comput. Phys. Commun. 244, 117–131 (2019)

    Article  MathSciNet  Google Scholar 

  8. Fu, L., Hu, X.Y., Adams, N.A.: A family of high-order targeted ENO schemes for compressible-fluid simulations. J. Comput. Phys. 305, 333–359 (2016)

    Article  MathSciNet  Google Scholar 

  9. Fu, L., Hu, X.Y., Adams, N.A.: Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws. J. Comput. Phys. 349, 97–121 (2017)

    Article  MathSciNet  Google Scholar 

  10. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  Google Scholar 

  11. Guo, W., Zhong, X., Qiu, J.M.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: Eigen-structure analysis based on Fourier approach. J. Comput. Phys. 235, 458–485 (2013)

    Article  MathSciNet  Google Scholar 

  12. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes. III. J. Comput. Phys. 131(1), 3–47 (1997)

    Article  Google Scholar 

  13. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207(2), 542–567 (2005)

    Article  Google Scholar 

  14. Hu, X.Y., Adams, N.A.: Scale separation for implicit large eddy simulation. In: Kontis, K. (ed.) 28th International Symposium on Shock Waves, pp. 225–230. Springer, Berlin (2012)

    Chapter  Google Scholar 

  15. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  16. Jung, C.Y., Nguyen, T.B.: Fine structures for the solutions of the two-dimensional Riemann problems by high-order WENO schemes. Adv. Comput. Math. 44(1), 147–174 (2018)

    Article  MathSciNet  Google Scholar 

  17. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33(3), 547–571 (1999)

    Article  MathSciNet  Google Scholar 

  18. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000)

    Article  MathSciNet  Google Scholar 

  19. Liu, H., Qiu, J.: Finite difference Hermite WENO schemes for hyperbolic conservation laws. J. Sci. Comput. 63(2), 548–572 (2015)

    Article  MathSciNet  Google Scholar 

  20. Liu, Y., Zhang, Y.T.: A robust reconstruction for unstructured WENO schemes. J. Sci. Comput. 54(2), 603–621 (2013)

    Article  MathSciNet  Google Scholar 

  21. Qiu, J., Shu, C.W.: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case. J. Comput. Phys. 193(1), 115–135 (2004)

    Article  MathSciNet  Google Scholar 

  22. Qiu, J., Shu, C.W.: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method II: two dimensional case. Comput. Fluids 34(6), 642–663 (2005)

    Article  MathSciNet  Google Scholar 

  23. Qiu, J., Shu, C.W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26(3), 907–929 (2005)

    Article  MathSciNet  Google Scholar 

  24. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. II. J. Comput. Phys. 83(1), 32–78 (1989)

    Article  MathSciNet  Google Scholar 

  25. Tao, Z., Li, F., Qiu, J.: High-order central Hermite WENO schemes on staggered meshes for hyperbolic conservation laws. J. Comput. Phys. 281, 148–176 (2015)

    Article  MathSciNet  Google Scholar 

  26. Tao, Z., Qiu, J.: Dimension-by-dimension moment-based central Hermite WENO schemes for directly solving Hamilton–Jacobi equations. Adv. Comput. Math. 43(5), 1023–1058 (2017)

    Article  MathSciNet  Google Scholar 

  27. Titarev, V., Toro, E.: Finite-volume WENO schemes for three-dimensional conservation laws. J. Comput. Phys. 201(1), 238–260 (2004)

    Article  MathSciNet  Google Scholar 

  28. Titarev, V., Tsoutsanis, P., Drikakis, D.: WENO schemes for mixed-element unstructured meshes. Commun. Comput. Phys. 8(3), 585 (2010)

    Article  MathSciNet  Google Scholar 

  29. Tsoutsanis, P., Titarev, V., Drikakis, D.: WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions. J. Comput. Phys. 230(4), 1585–1601 (2011)

    Article  MathSciNet  Google Scholar 

  30. Wolf, W.R., Azevedo, J.L.F.: High-order ENO and WENO schemes for unstructured grids. Int. J. Numer. Methods Fluids 55(10), 917–943 (2007)

    Article  MathSciNet  Google Scholar 

  31. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    Article  MathSciNet  Google Scholar 

  32. Zahran, Y.H., Abdalla, A.H.: Seventh order Hermite WENO scheme for hyperbolic conservation laws. Comput. Fluids 131, 66–80 (2016)

    Article  MathSciNet  Google Scholar 

  33. Zhao, Z., Chen, Y., Qiu, J.: A hybrid Hermite WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 405, 109175 (2020)

    Article  MathSciNet  Google Scholar 

  34. Zhao, Z., Qiu, J.: A Hermite WENO scheme with artificial linear weights for hyperbolic conservation laws. J. Comput. Phys. 417, 109583 (2020)

    Article  MathSciNet  Google Scholar 

  35. Zheng, F., Qiu, J.: Directly solving the Hamilton–Jacobi equations by Hermite WENO schemes. J. Comput. Phys. 307, 423–445 (2016)

    Article  MathSciNet  Google Scholar 

  36. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)

    Article  MathSciNet  Google Scholar 

  37. Zhu, J., Qiu, J.: A new type of finite volume WENO schemes for hyperbolic conservation laws. J. Sci. Comput. 73(2), 1338–1359 (2017)

    Article  MathSciNet  Google Scholar 

  38. Zhu, J., Qiu, J.: A new third order finite volume weighted essentially non-oscillatory scheme on tetrahedral meshes. J. Comput. Phys. 349, 220–232 (2017)

    Article  MathSciNet  Google Scholar 

  39. Zhu, J., Qiu, J.: New finite volume weighted essentially nonoscillatory schemes on triangular meshes. SIAM J. Sci. Comput. 40(2), A903–A928 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author wishes to thank Dr. Xiaofeng Cai, who provided essential support for this work. The authors gratefully acknowledge the support of the Program Pendidikan Magister Menuju Doktor untuk Sarjana Unggul (PMDSU) of the Ministry of Research, Technology and Higher Education of the Republic of Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanuar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was fully supported by Publikasi Terindeks Internasional (PUTI) Q1 of Universitas Indonesia, under Grant No. NKB-1412/UN2.RST/HKP.05.00/2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wibisono, I., Yanuar & Kosasih, E.A. Fifth-Order Hermite Targeted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws. J Sci Comput 87, 69 (2021). https://doi.org/10.1007/s10915-021-01485-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01485-0

Keywords

Mathematics Subject Classification

Navigation