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Abstract

In this paper we propose and analyze a second order accurate (in time) numerical scheme
for the square phase field crystal (SPFC) equation, a gradient flow modeling crystal dynamics
at the atomic scale in space but on diffusive scales in time. Its primary difference with the
standard phase field crystal model is an introduction of the 4-Laplacian term in the free energy
potential, which in turn leads to a much higher degree of nonlinearity. To make the numerical
scheme linear while preserving the nonlinear energy stability, we make use of the scalar auxiliary
variable (SAV) approach, in which a second order backward differentiation formula (BDF) is
applied in the temporal stencil. Meanwhile, a direct application of the SAV method faces
certain difficulties, due to the involvement of the 4-Laplacian term, combined with a derivation
of the lower bound of the nonlinear energy functional. In the proposed numerical method, an
appropriate decomposition for the physical energy functional is formulated, so that the nonlinear
energy part has a well-established global lower bound, and the rest terms lead to constant-
coefficient diffusion terms with positive eigenvalues. In turn, the numerical scheme could be very
efficiently implemented by constant-coefficient Poisson-like type solvers (via FFT), and energy
stability is established by introducing an auxiliary variable, and an optimal rate convergence
analysis is provided for the proposed SAV method. A few numerical experiments are also
presented, which confirm the efficiency and accuracy of the proposed scheme.

Key words. square phase field crystal equation, Fourier pseudo-spectral approximation, the
scalar auxiliary variable (SAV) method, second order BDF stencil, energy stability, optimal rate
convergence analysis
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1 Introduction

The phase field crystal (PFC) equation, originally proposed in [29], stands for a new model to
simulating crystal dynamics at the atomic scale in space but on diffusive scales in time. This model
naturally incorporates elastic and plastic deformations, multiple crystal orientations and defects,
and it has already been used to simulate a wide variety of microstructures, such as epitaxial thin film
growth [30], grain growth [54], eutectic solidification [31], and dislocation formation and motion [54],
etc. Also see a related review [48]. In more details, the phase variable describes a coarse-grained
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temporal average of the number density of atoms, which is related to dynamic density functional
theory [2, 46]. A significant advantage of this approach has been observed over other atomistic
methods, such as molecular dynamics methods where the time steps are constrained by atomic-
vibration time scales. In the PFC approach, the dimensionless energy is given by the following
form [29, 30, 55]

Epfc(φ) =

∫
Ω

{
1

4
φ4 +

1− ε
2

φ2 − |∇φ|2 +
1

2
(∆φ)2

}
dx, ε > 0, (1.1)

where Ω ⊂ RD, D = 2 or 3, φ : Ω → R is the atom density field, and the parameter ε represents
a deviation from the melting temperature with 0 < ε < 1. For simplicity, a periodic boundary
condition is imposed for φ; the analysis for the homogeneous Neumann boundary condition case
could be similarly extended. In turn, the standard PFC equation becomes the associated H−1

gradient flow:

∂tφ = ∆µ, µ := δφEpfc = φ3 + aφ+ 2∆φ+ ∆2φ, a = 1− ε.

For ε > 0, spatial oscillations could be observed in the solution of the PFC equation; typically in
2D, the peaks and valleys of φ are arranged in a hexagonal pattern. These solutions represent “solid
phase” solutions in the model. Meanwhile, “liquid phase” solutions, which are spatially uniform
and constant, may also be possible. In fact, these solutions even be in coexistence with the solid
phase solutions to describe a crystal in equilibrium with its melt; see the related discussions in [49].

On the other hand, alternate lattice structures, such as “square” symmetry crystal lattices,
are possible in 2D solutions. As mentioned in [30, 35], a different choice of nonlinear term in the
PFC model is needed to obtain a square symmetry crystal lattice rather than the usual hexagonal
structure. In particular, such a symmetry can be obtained [35] by replacing φ4 in (1.1) with |∇φ|4;
also see [60] for a related method. This results in the following energy functional

Espfc(φ) =

∫
Ω

{
a

2
φ2 +

1

4
|∇φ|4 − |∇φ|2 +

1

2
(∆φ)2

}
dx. (1.2)

In fact, there are essential similarities between this energy and the Aviles-Giga-type energy [1].
The square phase field crystal (SPFC) equation is given by the following dynamics

∂tφ = ∆µ , µ := δφEspfc = −∇ ·
(
|∇φ|2∇φ

)
+ aφ+ 2∆φ+ ∆2φ. (1.3)

We will assume for simplicity that a = 1 − ε > 0. For the standard PFC model and its modified
version, there have been extensive numerical works [3, 4, 26, 42, 56, 57, 59, 64], etc. In terms of the
nonlinearity, the only difference between the standard PFC and SPFC equations is the replacement
of φ4 by |∇φ|4 in the free energy functional, while the analysis and numerical approximation of
the later one are much more challenging, especially when using pseudo-spectral approximations of
spatial derivatives. Very limited numerical results have been available for the SPFC equation in the
existing literature. For instance, some simulation results are reported for a closely related equation
in [35]. A modified backward differentiation formula (BDF) scheme was presented in a more recent
work [18], in which the energy stability (in the original phase variable) and the convergence analysis
have been theoretically justified.

Meanwhile, most existing works of energy stable schemes for a gradient flow containing |∇φ|4
energy potential are based on an implicit treatment of the 4-Laplacian part; see the related
works [18, 32, 33, 34, 50, 56], etc. In particular, the preconditioned steepest descent (PSD) nonlinear
iteration has been proposed in [33] for the 4-Laplacian solver in both the L2 and H−1 gradient flow,
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due to its convex structure, so that the computational cost is decomposed of certain Poisson-like
solvers at each iteration stage. Extensive numerical experiments have implied that, approximately
10 to 15 iteration stages are needed for such a PSD algorithm in most practical numerical simula-
tions of physical examples. As a result, the computational cost of implicit nonlinear 4-Laplacian
solvers is approximately 10 to 15 times of a linear scheme for the corresponding physical system .

On the other hand, a theoretical justification of linear schemes for the gradient flows containing
4-Laplacian energy potential turns out to be a challenging issue. The scalar auxiliary variable (SAV)
approach for various gradient flows has attracted more and more attentions in recent years [23,
51, 52, 53]. To overcome the difficulty associated with the nonlinearity, the energy functional is
split into two parts: a nonlinear energy functional with a uniform lower bound, combined with a
quadratic surface diffusion energy with constant-coefficients. In turn, the elevated nonlinear energy
part (which contains a global constant to make its value positive) is rewritten as a quadratic term,
not in terms of the original physical variable, but in terms of an artificially-introduced auxiliary
variable. As a result, linear schemes could be derived for the gradient flow reformulated in the
quadratic nonlinear energy and the surface diffusion energy, so that both the unique solvability
and modified energy stability could be theoretically justified for the linear schemes. Also notice
that such an energy estimate is in terms of the reformulated energy functional, not in terms of the
original energy functional.

However, a direct application of the SAV method to the SPFC equation faces certain technical
difficulties. It is observed that, the concave diffusion energy −‖∇φ‖2 corresponds to a linear part
in the chemical potential, while such a functional does not have a global lower bound. In addition,
its combination with two quadratic convex energy parts, namely, a2‖φ‖

2 and 1
2‖∆φ‖

2, does not have
a global lower bound, either. As a result, if the concave diffusion energy is placed into the linear
diffusion energy part, the SAV method would not be effectively derived. In this article, we come up
with an alternate split, which places the concave diffusion energy −‖∇φ‖2 into the nonlinear energy
functional part. In additional, a combination of the 4-Laplacian energy 1

4‖∇φ‖
4
L4 and the concave

energy −‖∇φ‖2 has a well-established global lower bound, −|Ω|, so that the nonlinear energy
part is well-defined, and the linear surface diffusion energy only contains two terms with positive
eigenvalues. Based on such an energy split, the PDE system is reformulated, and the SAV scheme
could be derived via the second order BDF2 temporal discretization. Similar to the epitaxial thin
film growth and other related gradient flow models, an explicit extrapolation is applied to obtain
a second order approximation to the nonlinear chemical potential and nonlinear energy functional
value. The resulting numerical system could be very efficiently solved; only a few Poisson-like
solvers, via the FFT-based algorithms, are needed at each time step, since only constant-coefficient
equations are involved in the numerical scheme.

An unconditional energy stability could be proved via a careful estimate. Again, such a stability
estimate is in terms of the reformulated energy functional, not in terms of the original energy
functional. In the spatial discretization, we use Fourier pseudo-spectral approximation for its
ability to capture more detailed structures with a reduced computational cost. Summation-by-
parts formulas enable us to derive unique solvability and energy stability for the fully discrete
numerical scheme. As a result of this discrete energy stability, a uniform-in-time discrete H2

bound for the numerical solution becomes available. In addition to this uniform H2 bound for the
numerical solution (of the phase variable), a higher order H3 estimate could also be derived, with
the help of various discrete Sobolev inequality in the Fourier pseudo-spectral space. With such an
H3 bound at hand, we are able to control a discrete gradient of the nonlinear chemical potential
error function, in the Fourier pseudo-spectral space. In addition, one nonlinear error inner product
could be cancelled between the error evolutionary equations for the original phase variable and
the one for the introduced auxiliary variable. These preliminary estimates enable one to obtain
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an optimal rate (O(∆t2 + hm)) convergence analysis for the proposed numerical scheme in the
energy norm, i.e., in the `∞(0, T ;H2

N )∩ `2(0, T ;H5
N ) norm. In particular, the aliasing error control

techniques have to be applied in the nonlinear error estimate associated with the 4-Laplacian term.
The outline of the paper is given as follows. In Section 2 we present the numerical scheme. First

we review the Fourier pseudo-spectral approximation in space and recall an aliasing error control
technique. Then we formulate the proposed numerical scheme, and prove its unique solvability.
Subsequently, the energy stability analyses is provided in Section 3, and an optimal rate convergence
analysis is established in Section 4. Some numerical results are presented in Section 5. Finally,
some concluding remarks are made in Section 6.

2 The numerical scheme

2.1 Review of Fourier pseudo-spectral approximations

The Fourier pseudo-spectral method is also referred as the Fourier collocation spectral method.
It is closely related to the Fourier spectral method, but complements the basis by an additional
pseudo-spectral basis, which allows to represent functions on a quadrature grid. This simplifies
the evaluation of certain operators, and can considerably speed up the calculation when using fast
algorithms such as the fast Fourier transform (FFT); see the related descriptions in [5, 10, 11, 13,
15, 16, 17, 19, 20, 37, 38, 41, 62, 63], etc.

To simplify the notation in our pseudo-spectral analysis, we assume that the domain is given
by Ω = (0, 1)3, Nx = Ny = Nz =: N ∈ N and N · h = 1. We further assume that N is odd:

N = 2K + 1, for some K ∈ N.

The analyses for more general cases are a bit more tedious, but can be carried out without essential
difficulty. The spatial variables are evaluated on the standard 3D numerical grid ΩN , which is
defined by grid points (xi, yj , zk), with xi = ih, yj = jh, zk = kh, 0 ≤ i, j, k ≤ 2K + 1. This
description for three-dimensional mesh (d = 3) can here and elsewhere be trivially modified for the
two-dimensional case (d = 2).

We define the grid function space

GN :=
{
f : Z3 → R

∣∣ f is ΩN -periodic
}
. (2.1)

Given any periodic grid functions f, g ∈ GN , the `2 inner product and norm are defined as

〈f, g〉 := h3
N−1∑
i,j,k=0

fi,j,k · gi,j,k, ‖f‖2 :=
√
〈f, f〉. (2.2)

The zero-mean grid function subspace is denoted G̊N :=
{
f ∈ GN

∣∣ 〈f, 1〉 =: f = 0
}

. For f ∈ GN ,
we have the discrete Fourier expansion

fi,j,k =
K∑

`,m,n=−K
f̂N`,m,n exp (2πi(`xi +myj + nzk)) , (2.3)

where the discrete Fourier coefficients are given by

f̂N`,m,n := h3
N−1∑
i,j,k=0

fi,j,k exp (−2πi (`xi +mxj + nzk)) . (2.4)
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The collocation Fourier spectral first and second order derivatives of f are defined as

Dxfi,j,k :=
K∑

`,m,n=−K
(2πi`) f̂N`,m,n exp (2πi(`xi +myj + nzk)) , (2.5)

D2
xfi,j,k :=

K∑
`,m,n=−K

(
−4π2`2

)
f̂N`,m,n exp (2πi(`xi +myj + nzk)) . (2.6)

The differentiation operators in the y and z directions, Dy, D2
y, Dz and D2

z can be defined in the
same fashion. In turn, the discrete Laplacian, gradient and divergence operators are given by

∆Nf :=
(
D2
x +D2

y +D2
z

)
f, ∇Nf :=

 DxfDyf
Dzf

 , ∇N ·

 f1

f2

f3

 := Dxf1 +Dyf2 +Dzf3, (2.7)

at the point-wise level. It is straightforward to verify that

∇N · ∇Nf = ∆Nf. (2.8)

See the derivations in the related references [5, 6, 36].

Definition 2.1. Suppose that the grid function f ∈ GN has the discrete Fourier expansion (2.3).
Its spectral extension into the trigonometric polynomial space PK (the space of trigonometric poly-
nomials of degree at most K) is defined as

fS(x, y, z) =

K∑
`,m,n=−K

f̂N`,m,n exp (2πi(`x+my + nz)) . (2.9)

We write SN (f) = fS and denote SN : GN → PK the spectral interpolation operator. Suppose
g ∈ Cper(Ω,R). We define the grid projection QN : Cper(Ω,R)→ GN via

QN (g)i,j,k := g(xi, yj , zk), (2.10)

The resultant grid function may, of course, be expressed as a discrete Fourier expansion:

QN (g)i,j,k =
K∑

`,m,n=−K
Q̂N (g)

N

`,m,n exp (2πi(`xi +myj + nzk)) .

We define the de-aliasing operator RN : Cper(Ω,R)→ PK via RN := SN (QN ). In other words,

RN (g)(x, y, z) =

K∑
`,m,n=−K

Q̂N (g)
N

`,m,n exp (2πi(`x+my + nz)) . (2.11)

Finally, for any g ∈ L2(Ω,R), we define the (standard) Fourier projection operator PN : L2(Ω,R)→
PK via

PN (g)(x, y, z) =

K∑
`,m,n=−K

ĝ`,m,n exp (2πi(`x+my + nz)) ,

where

ĝ`,m,n =

∫
Ω
g(x, y, z) exp (−2πi (`x+my + nz)) dx,

are the (standard) Fourier coefficients.
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To overcome a key difficulty associated with the Hm bound of the nonlinear term obtained
by collocation interpolation, the following lemma is introduced. The case of r = 0 was proven in
earlier works [27, 28], and the case of r ≥ 1 was analyzed in a recent article [38].

Lemma 2.2. Suppose that m and K are non-negative integers, and, as before, assume that N =
2K + 1. For any ϕ ∈ PmK in Rd, we have the estimate

‖RN (ϕ)‖Hr ≤ m
d
2 ‖ϕ‖Hr , (2.12)

for any non-negative integer r.

In addition, we introduce the discrete fractional operator (−∆N )γ (with γ > 0):

(−∆N )γfi,j,k :=

K∑
`,m,n=−K

λγ`,m,nf̂
N
`,m,n exp (2πi(`xi +myj + nzk)) , λ`,m,n = 4π2(`2 +m2 + n2).

(2.13)
for a grid function f with the discrete Fourier expansion as (2.3). Similarly, for a grid function
f ∈ G̊N of (discrete) mean zero, a discrete version of the operator (−∆)−γ may be defined as

(−∆N )−γfi,j,k :=
K∑

`,m,n=−K
(`,m,n)6=0

λ−γ`,m,nf̂
N
`,m,n exp (2πi(`xi +myj + nzk)) . (2.14)

We notice that the right hand side of (2.14) is a periodic grid function of zero mean, i.e, (−∆N )−γf ∈
G̊N . Furthermore, to facilitate the analysis in later sections, we introduce an operator LN as
LNf := (aI + ∆2

N )f , for any f ∈ GN . The following fractional operator is similarly defined:

L
1
2
Nfi,j,k :=

K∑
`,m,n=−K

(
a+ λ2

`,m,n

) 1
2
f̂N`,m,n exp (2πi(`xi +myj + nzk)) , (2.15)

based on the fact that, the Fourier eigenvalue of the operator LN (for the frequency mode (`,m, n))
is given by a+ λ2

`,m,n.
The following summation-by-parts formulas are valid (see the related discussions in [8, 14, 37,

38]): for any periodic grid functions f, g ∈ GN ,

〈f,∆Ng〉 = −〈∇Nf,∇Ng〉 ,
〈
f,∆2

Ng
〉

= 〈∆Nf,∆Ng〉 ,
〈
f,∆3

Ng
〉

= −〈∇N∆Nf,∇N∆Ng〉 .
(2.16)

Similarly, the following identity could be derived in the same manner:

〈f, LNg〉 = 〈L
1
2
Nf, L

1
2
Ng〉, ∀f, g ∈ GN . (2.17)

Since the SPFC equation (1.3) is an H−1 gradient flow, we need a discrete version of the norm
‖ · ‖H−1 defined on G̊N . For any f, g ∈ G̊N , we define

〈f, g〉−1,N :=
〈
f, (−∆N )−1g

〉
=
〈

(−∆N )−
1
2 f, (−∆N )−

1
2 g
〉
, (2.18)

so that the ‖ · ‖−1,N norm could be introduced as

‖f‖−1,N :=
√
〈f, f〉−1,N = ‖(−∆N )−

1
2 f‖2. (2.19)
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In addition to the standard `2 norm, we also introduce the `p, 1 ≤ p <∞, and `∞ norms for a
grid function f ∈ GN :

‖f‖∞ := max
i,j,k
|fi,j,k|, ‖f‖p :=

(
h3

N−1∑
i,j,k=0

|fi,j,k|p
) 1

p
, 1 ≤ p <∞. (2.20)

The discrete H1 and H2 norms are introduced as

‖f‖2H1
N

= ‖f‖22 + ‖∇Nf‖22, ‖f‖2H2
N

= ‖f‖2H1
N

+ ‖∆Nf‖22. (2.21)

For any periodic grid function φ ∈ GN , the discrete SPFC energy is defined as

EN (φ) :=
1

4
‖∇Nφ‖44 +

a

2
‖φ‖22 − ‖∇Nφ‖22 +

1

2
‖∆Nφ‖22 . (2.22)

The following result corresponds to a discrete Sobolev embedding from H2
N to W 1,6

N in the
pseudo-spectral space. Similar discrete embedding estimates, in the lower order ones, could be
found in Lemma 2.1 of [20]; also see the related results [33, 34] in the finite difference version. A
direct calculation is not able to derive these inequalities; instead, a discrete Fourier analysis has to
be applied in the derivation; the details of the proof has been provided in a recent work [18]. .

Proposition 2.3. [18] For any periodic grid function f , we have

‖∇Nf‖6 ≤ C‖∆Nf‖2, for some constant C only dependent on Ω. (2.23)

The following discrete elliptic regularity estimate will be used in the later stability analysis; its
proof will be provided in Appendix A.

Proposition 2.4. For any periodic grid function f , we have

‖∇N∆Nf‖2 ≤ Ĉ0‖∆3
Nf‖2, for some Ĉ0 only dependent on Ω. (2.24)

2.2 The fully discrete numerical scheme

The SPFC energy (1.2) is decomposed into two parts:

Espfc(φ) = E1(φ) +
1

2
(φ,Lφ), E1(φ) =

∫
Ω

{
1

4
|∇φ|4 − |∇φ|2 + 2

}
dx, Lφ = aφ+ ∆2φ. (2.25)

In particular, due to the point-wise quadratic inequality

1

4
|∇φ|4 − |∇φ|2 + 1 ≥ 0, (2.26)

we conclude that E1(φ) have a well-established lower bound:

E1(φ) ≥ |Ω|. (2.27)

In turn, the nonlinear chemical potential becomes

N(φ) := δφδE1 = −∇ · (|∇φ|2∇φ) + 2∆φ. (2.28)

Therefore, with an introduction of a scalar auxiliary variable

r :=
√
E1(φ), (2.29)
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the original SPFC equation (1.3) could be rewritten as the following system:φt = ∆
(

r√
E1(φ)

N(φ) + Lφ
)
,

rt = 1

2
√
E1(φ)

∫
Ω N(φ)φt dx.

(2.30)

Based on this reformulation, the fully discrete second order SAV scheme is proposed as follows,
with Fourier pseudo-spectral spatial approximation:

3
2
φn+1−2φn+ 1

2
φn−1

∆t = ∆N

(
rn+1√

E1,N (φ̂n+1)
NN (φ̂n+1) + LNφ

n+1
)
, (2.31a)

3
2
rn+1−2rn+ 1

2
rn−1

∆t = 1

2
√
E1,N (φ̂n+1)

〈NN (φ̂n+1),
3
2
φn+1−2φn+ 1

2
φn−1

∆t 〉, (2.31b)
(2.31)

in which NN (φ) := −∇N · (|∇Nφ|2∇Nφ) + 2∆Nφ, LNφ = aφ + ∆2
Nφ, and a second order explicit

extrapolation is applied to obtain φ̂n+1 = 2φn − φn−1. The discrete nonlinear energy functional is
introduced as E1,N (φ) := 1

4‖∇Nφ‖
4
4 − ‖∇Nφ‖22 + 2|Ω|, similar to the notation in (2.22).

Since (2.31) is a two-step numerical method, a “ghost” point extrapolation for φ−1 is useful.
To preserve the second order accuracy in time, we apply the following approximation:

φ−1 = φ0 −∆t∆Nµ
0, µ0 := −∇N · (|∇Nφ0|2∇Nφ0) + aφ0 + 2∆Nφ

0 + ∆2
Nφ

0. (2.32)

A careful Taylor expansion indicates an O(∆t2 + hm) accuracy for such an approximation:

‖φ−1 − Φ−1‖2 ≤ C(∆t2 + hm), in which Φ is the exact solution for (1.3) . (2.33)

In turn, we take r0 :=
√
E1,N (φ0), r−1 :=

√
E1,N (φ−1)

2.3 Unique solvability and efficient numerical solver for the proposed scheme

In this section we analyze the unique solvability of the proposed SAV scheme (2.31). From (2.31a),
one can get(3

2
I −∆t∆NLN

)
φn+1 = ∆t∆N

( rn+1√
E1,N (φ̂n+1)

NN (φ̂n+1)
)

+ 2φn − 1

2
φn−1. (2.34)

Define AN = 3
2I −∆t∆NLN , so that the following identity is valid:

φn+1 = ∆t
rn+1√

E1,N (φ̂n+1)
A−1
N ∆NNN (φ̂n+1) +A−1

N (2φn − 1

2
φn−1).

From (2.31b), we see that

rn+1 =
4

3
rn − 1

3
rn−1 +

1

3
√
E1,N (φ̂n+1)

〈NN (φ̂n+1),
3

2
φn+1 − 2φn +

1

2
φn−1〉. (2.35)

A substitution of (2.35) into (2.34) gives(3

2
I −∆t∆NLN

)
φn+1 − ∆NNN (φ̂n+1)

2E1,N (φ̂n+1)
∆t〈NN (φ̂n+1), φn+1〉

=
∆t∆NNN (φ̂n+1)√

E1,N (φ̂n+1)

(4

3
rn − 1

3
rn−1 +

1

3
√
E1,N (φ̂n+1)

〈NN (φ̂n+1),−2φn +
1

2
φn−1〉

)
+ 2φn − 1

2
φn−1.
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Let gnN denotes the right-hand of the above equation, then it becomes

ANφ
n+1 − ∆NNN (φ̂n+1)

2E1,N (φ̂n+1)
∆t〈NN (φ̂n+1), φn+1〉 = gnN .

Multiplying both sides by A−1
N implies that

φn+1 − 1

2E1,N (φ̂n+1)
∆t〈NN (φ̂n+1), φn+1〉 ·A−1

N ∆NNN (φ̂n+1) = A−1
N gnN . (2.36)

Denote LHS = 〈NN (φ̂n+1), φn+1〉, a scalar value. Taking a discrete inner product with (2.36) by
NN (φ̂n+1) leads to

〈NN (φ̂n+1), φn+1〉 − ∆t

2E1,N (φ̂n+1)
· LHS · 〈NN (φ̂n+1), A−1

N ∆NNN (φ̂n+1)〉 = 〈NN (φ̂n+1), A−1
N gnN 〉.

Then we arrive at(
1− ∆t

2E1,N (φ̂n+1)
· 〈NN (φ̂n+1), A−1

N ∆NNN (φ̂n+1)〉
)
· LHS = 〈NN (φ̂n+1), A−1

N gnN 〉. (2.37)

In addition, we notice that

〈NN (φ̂n+1), A−1
N ∆NNN (φ̂n+1)) ≤ 0, (2.38)

since all the eigenvalues of the symmetric operator A−1
N ∆N are non-positive. As a direct con-

sequence, the coefficient on the left hand side of (2.37) is positive, so that the value of LHS is
uniquely solvable. Going back (2.36), the numerical solution φn+1 is uniquely determined:

φn+1 =
∆t

2E1,N (φ̂n+1)
· LHS ·A−1

N ∆NNN (φ̂n+1) +A−1
N gnN . (2.39)

Furthermore, a substitution of φn+1 into (2.35) gives the numerical value of rn+1.

Theorem 2.5. Given φn, φn−1 ∈ GN , two scalar values rn, rn−1, with φn = φn−1, there exists a
unique solution φn+1 ∈ GN for the numerical schemes (2.31). The scheme is mass conservative,

i.e., φk ≡ φ0 := β0, for any k ≥ 0, provided that φ−1 = φ0 = β0.

Proof. The unique solvability comes from the derived identities (2.35), (2.37) and (2.39). In ad-
dition, the mass conservation property is a direct consequence of a summation of (2.31a) over Ω,
which is turn leads to

φn+1 =
4

3
φn − 1

3
φn−1 +

2

3
∆N

( rn+1√
E1,N (φ̂n+1)

NN (φ̂n+1) + LNφn+1
)

=
4

3
φn − 1

3
φn−1, (2.40)

with the fact that ∆Nf = 0, ∀f ∈ GN , has been applied. An application of induction implies that
φk = β0, for any k ≥ 0, provided that φ−1 = φ0 = β0. This completes the proof of Theorem 2.5.
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3 Unconditional energy stability and the uniform H3 estimate

3.1 Modified energy stability for the proposed numerical scheme

Theorem 3.1. For k ≥ 1, define the discrete modified energy

EN (φk+1, φk, rk+1, rk) :=
1

4
(‖L

1
2
Nφ

k+1‖22 + ‖L
1
2
N (2φk+1 − φk)‖22) +

1

2
(|rk+1|2 + |2rk+1 − rk|2). (3.1)

Solution of the numerical scheme (2.31) satisfies the following dissipation properties

EN (φk+1, φk, rk+1, rk) ≤ EN (φk, φk−1, rk, rk−1). (3.2)

Proof. We begin with a rewritten form of the numerical scheme (2.31):

3
2
φn+1−2φn+ 1

2
φn−1

∆t = ∆Nµ
n+1
N , (3.3a)

µn+1
N = LNφ

n+1 + rn+1√
E1,N (φ̂n+1)

NN (φ̂n+1), (3.3b)

3
2
rn+1−2rn+ 1

2
rn−1

∆t = 1

2
√
E1,N (φ̂n+1)

〈NN (φ̂n+1),
3
2
φn+1−2φn+ 1

2
φn−1

∆t 〉. (3.3c)

(3.3)

Subsequently, taking discrete inner product with (3.3a) by µn+1
N , with (3.3b) by −(3

2φ
n+1 −

2φn + 1
2φ

n−1), with (3.3c) by 2rn+1, we have

〈3
2
φn+1 − 2φn +

1

2
φn−1, µn+1

N 〉 = ∆t〈∆Nµ
n+1
N , µn+1

N 〉 = −∆t‖∇Nµn+1
N ‖22, (3.4)

−〈3
2
φn+1 − 2φn +

1

2
φn−1, µn+1

N 〉 = −〈LNφn+1,
3

2
φn+1 − 2φn +

1

2
φn−1〉

+
rn+1√

E1,N (φ̂n+1)
〈−NN (φ̂n+1),

3

2
φn+1 − 2φn +

1

2
φn−1〉,(3.5)

2rn+1(
3

2
rn+1 − 2rn +

1

2
rn−1) =

rn+1√
E1,N (φ̂n+1)

〈NN (φ̂n+1),
3

2
φn+1 − 2φn +

1

2
φn−1〉. (3.6)

In turn, by adding (3.4), (3.5) and (3.6), we obtain

〈LNφn+1,
3

2
φn+1 − 2φn +

1

2
φn−1〉+ 2rn+1(

3

2
rn+1 − 2rn +

1

2
rn−1) = −∆t‖∇Nµn+1

N ‖22. (3.7)

Meanwhile, the derivation of the following two identities are straightforward:

〈LNφn+1,
3

2
φn+1 − 2φn +

1

2
φn−1〉 = 〈L

1
2
Nφ

n+1, L
1
2
N (

3

2
φn+1 − 2φn +

1

2
φn−1)〉

=
1

4
(‖L

1
2
Nφ

n+1‖22 − ‖L
1
2
Nφ

n‖22 + ‖L
1
2
N (2φn+1 − φn)‖22 − ‖L

1
2
N (2φn − φn−1)‖22

+‖L
1
2
N (φn+1 − 2φn + φn−1)‖22), (3.8)

2rn+1(
3

2
rn+1 − 2rn +

1

2
rn−1)

=
1

2
(|rn+1|2 − |rn|2 + |2rn+1 − rn|2 − |2rn − rn−1|2 + |rn+1 − 2rn + rn−1|2), (3.9)
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in which identity (2.17) has been applied in the first step of (3.8). Going back (3.7), we arrive at

EN (φn+1, φn, rn+1, rn)− EN (φn, φn−1, rn, rn−1)

= −1

4
‖L

1
2
N (φn+1 − 2φn + φn−1)‖22 −

1

2
|rn+1 − 2rn + rn−1|2 −∆t‖∇Nµn+1

N ‖22 ≤ 0. (3.10)

This completes the proof of Theorem 3.1.

As a direct consequence of the energy stability, a uniform-in-time H2
N bound for the numerical

solution is derived as follows.

Corollary 3.2. Suppose that the initial data are sufficiently regular so that

1

4
(‖L

1
2
Nφ

0‖22 + ‖L
1
2
N (2φ0 − φ−1)‖22) +

1

2
(|r0|2 + |2r0 − r−1|2) ≤ C̃0, (3.11)

for some C̃0 that is independent of h. Then we have the following uniform-in-time H2
N bound for

the numerical solution:
‖φm‖H2

N
≤ C̃1, ∀m ≥ 1, (3.12)

where C̃1 > 0 depends on Ω and C̃0, but is independent of h, ∆t and the time step tm.

Proof. As a result of (3.2), the following energy bound is available:

1

4
‖L

1
2
Nφ

m‖22 ≤ EN (φm, φm−1, rm, rm−1) ≤ EN (φ0, φ−1, r0, r−1)

=
1

4
(‖L

1
2
Nφ

0‖22 + ‖L
1
2
N (2φ0 − φ−1)‖22) +

1

2
(|r0|2 + |2r0 − r−1|2) ≤ C̃0, (3.13)

for any m ≥ 1. On the other hand, the eigenvalue expansion (2.15) implies the following fact

‖L
1
2
Nf‖

2
2 = a‖f‖22 + ‖∆Nf‖22, ∀f ∈ GN . (3.14)

Then we arrive at

‖φm‖22 + ‖∆Nφ
m‖22 ≤

4C̃0

a
, ∀m ≥ 1. (3.15)

And also, the following estimate is available:

‖∇Nφm‖22 = −〈φm,∆Nφ
m〉 ≤ ‖φm‖2 · ‖∆Nφ

m‖2 ≤
1

2
(‖φm‖22 + ‖∆Nφ

m‖22) ≤ 2C̃0

a
. (3.16)

Therefore, the following bound is obvious

‖φm‖H2
N

=
(
‖φm‖22 + ‖∇Nφm‖22 + ‖∆Nφ

m‖22
) 1

2 ≤
(6C̃0

a

) 1
2

:= C̃1, ∀m ≥ 1. (3.17)

This completes the proof of Corollary 3.2.

Remark 3.3. It is obvious that the modified energy functional (3.1) is the second order approxi-
mation to the original discrete energy (2.22), under certain regularity assumption for the numerical
solution. Meanwhile, such a modified discrete energy is in terms of a scalar auxiliary variable r,
combined with the linear surface diffusion energy part, not fully in terms of the original phase vari-
able φ, as formulated in (2.22). Although a direct bound of the original energy functional is not
available in terms of the initial data, a uniform-in-time H2

N bound for the numerical solution could
be derived, up to a constant multiple, as demonstrated in Corollary 3.2.
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Remark 3.4. For various gradient flow equations, the second order numerical scheme using the
BDF temporal stencil has attracted many attentions in recent years. For these BDF-type method
applied to the original phase variables, an artificial Douglas-Dupont regularization term has to be
added to ensure the energy stability; see the related works [34, 40, 43, 47, 61] for the epitaxial
thin film growth and Cahn-Hilliard equations, respectively. On the other hand, for an SAV-based
numerical algorithm, such an artificial regularization is not needed, since the concave diffusion term
has already been included in the scalar quadrant part.

Remark 3.5. As a combination of the uniform in time H2
N bound (3.12) and the discrete Sobolev

embedding inequality (2.23), we arrive at a uniform in time W 1,6
N estimate for the numerical solu-

tion:
‖∇Nφm‖6 ≤ CC̃1, ∀ m ≥ 1. (3.18)

And also, the modified energy inequality (3.13) indicates that

1

2
|rm|2 ≤ C̃0, so that rm ≤ (2C̃0)

1
2 , ∀m ≥ 1. (3.19)

These estimates will be useful in the higher order stability analysis presented below.

Meanwhile, the established energy stability estimate (3.2) is in terms of the modified energy
functional (3.1). On the other hand, for the original discrete energy (2.22), the following estimate
is available, with the help of the uniform-in-time H2

N bound (3.12), established in Corollary 3.2.

Proposition 3.6. Suppose that the initial data are sufficiently regular (3.11) is satisfied, for some
C̃0 that is independent of h. Then we have the following uniform-in-time bound for the original
energy functional:

EN (φm) ≤ C̃∗1 , ∀m ≥ 1, (3.20)

where C̃∗1 > 0 depends on Ω and C̃0, but is independent of h, ∆t and the time step tm.

Proof. By the definition of the ‖ · ‖H2
N

norm (2.21), we see that

a

2
‖φm‖22 +

1

2
‖∆Nφ

m‖22 ≤
1

2
‖φm‖2H2

N
≤ 1

2
C̃2

1 , since 0 ≤ a ≤ 1, (3.21)

‖∇Nφm‖4 ≤ C‖∇Nφm‖6 ≤ C̆1‖∆Nφ
m‖2, (3.22)

so that
1

4
‖∇Nφm‖44 ≤

1

4
C̆4

1‖∆Nφ
m‖42 ≤

1

4
C̆4

1 C̃
4
1 , (3.23)

for any m ≥ 1, in which the uniform-in-time H2
N bound (3.12) has been extensively applied. Also

notice that the discrete Hölder inequality, as well as the Sobolev embedding (2.23), have been
applied in the derivation of (3.22). Then we arrive at

EN (φm) =
1

4
‖∇Nφm‖44 +

a

2
‖φm‖22 − ‖∇Nφm‖22 +

1

2
‖∆Nφ

m‖22

≤ 1

4
‖∇Nφm‖44 +

a

2
‖φm‖22 +

1

2
‖∆Nφ

m‖22 ≤
1

4
C̆4

1 C̃
4
1 +

1

2
C̃2

1 := C̃∗1 , (3.24)

for any m ≥ 1. Notice that C̃∗1 only depends on Ω and the initial data, henceforth on Ω and C̃0,
and independent on h, ∆t and final time. This completes the proof of Proposition 3.6.
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Remark 3.7. For the proposed SAV scheme (2.31), the uniform energy bound C̃∗1 in (3.20) depends
on the uniform-in-time H2

N bound C̃1 established in (3.12). Since C̃1 could be represented as a

constant multiple of C̃
1
2
0 (as given by (3.17)), while C̃0 is bounded by the initial energy plus a fixed

constant, we conclude that the original energy bound C̃∗1 turns out to be dependent on the original
energy in a quadratic way, as revealed by (3.24). In contrast, the following uniform-in-time bound
has been derived in a recent work [18] for the SPFC equation:

EN (φm) ≤ EN (φ0). (3.25)

Of course, it is a much sharper estimate for the original energy functional than the one estab-
lished for the SAV approach, namely (3.24). This difference is based on the fact that, an auxiliary
variable (2.29) has been introduced in the SAV algorithm, so that only the dissipation for the refor-
mulated energy functional (3.1) is preserved, as established in (3.2). In comparison, the primitive
variable formulation of the SPFC equation was discussed in [18], which in turn leads to a direct
bound of the original energy functional (3.25).

In fact, there have been a great deal of efforts to enforce the stability estimate for the original
energy functional in the SAV numerical approach. For example, in two recent works [21, 22], a
Lagrange multiplier approach has been introduced, so that the dissipation law for the original energy
functional becomes available, if the proposed numerical system is solvable. Meanwhile, due to the
nonlinear nature of the Lagrange multiplier approach of the SAV method presented in [21, 22], more
detailed investigations of the unique solvability analysis have to be undertaken. An application of
such an approach to the SPFC equation will also be considered in the future works.

3.2 The `∞(0, T ;H3) bound estimate for the numerical solution

Theorem 3.8. For the numerical solution (2.31), the following estimate is available:

‖φmS ‖H3 ≤ Q(3), ∀m ≥ 1, (3.26)

in which φmS stands for the spectral interpolation of the numerical solution φm, as given by for-
mula (2.9). The constant Q(3) only depends on the initial H3 data and the domain, and it is
independent on ∆t, h and T .

Proof. Taking a discrete inner product with (2.31a) by −2∆3
Nφ

n+1, we obtain

1

∆t
〈3
2
φn+1 − 2φn +

1

2
φn−1,−2∆3

Nφ
n+1〉+ 2〈∆NLNφ

n+1,∆3
Nφ

n+1〉

= −2
rn+1√

E1,N (φ̂n+1)
〈∆NNN (φ̂n+1),∆3

Nφ
n+1〉. (3.27)

The temporal stencil term could be analyzed in the same way as in (3.8):

〈3
2
φn+1 − 2φn +

1

2
φn−1,−2∆3

Nφ
n+1〉 = 〈∇N∆N (

3

2
φn+1 − 2φn +

1

2
φn−1), 2∇N∆Nφ

n+1〉

=
1

2
(‖∇N∆Nφ

n+1‖22 − ‖∇N∆Nφ
n‖22 + ‖∇N∆N (2φn+1 − φn)‖22 − ‖∇N∆N (2φn − φn−1)‖22

+‖∇N∆N (φn+1 − 2φn + φn−1)‖22). (3.28)

The surface diffusion part could be handled in a more straightforward way:

〈∆NLNφ
n+1,∆3

Nφ
n+1〉 = a〈∆Nφ

n+1,∆3
Nφ

n+1〉+ 〈∆3
Nφ

n+1,∆3
Nφ

n+1〉
= a‖∆2

Nφ
n+1‖22 + ‖∆3

Nφ
n+1‖22. (3.29)

13



For the right hand side nonlinear inner product, we begin with the following observations:

E1,N (φ̂n+1) ≥ |Ω|, |rm| ≤ (2C̃0)
1
2 , (by (3.19)). (3.30)

These two bounds imply that
rn+1√

E1,N (φ̂n+1)
≤
(2C̃0

|Ω|

) 1
2
. (3.31)

For the nonlinear inner product, the following expansion is recalled

∆NNN (φ̂n+1) = −∆N∇N · (|∇N φ̂n+1|2∇N φ̂n+1) + 2∆2
N φ̂

n+1. (3.32)

The linear part could be controlled in a standard fashion:

−2
rn+1√

E1,N (φ̂n+1)
〈2∆2

N φ̂
n+1,∆3

Nφ
n+1〉 ≤ 4

(2C̃0

|Ω|

) 1
2 ‖∆2

N φ̂
n+1‖2 · ‖∆3

Nφ
n+1‖2

≤ 16C̃0

|Ω|
‖∆2

N φ̂
n+1‖22 +

1

2
‖∆3

Nφ
n+1‖22. (3.33)

For the nonlinear 4-Laplacian part, the following grid function is introduced:

q̂n+1 := |∇N φ̂n+1|2∇N φ̂n+1. (3.34)

This in turn implies that

‖∆N∇N · (|∇N φ̂n+1|2∇N φ̂n+1)‖2 = ‖∆(∇ · q̂n+1
S )‖L2 , (3.35)

in which q̂n+1
S is the spectral interpolation of q̂n+1, given by formula (2.9). Moreover, since q̂n+1 is

the point-wise interpolation of the continuous function

ϕq̂n+1 := |∇φ̂n+1
S |2∇φ̂n+1

S , with φ̂n+1
S = 2φnS − φn−1

S , (3.36)

we see that q̂n+1
S = RN (ϕq̂n+1). In turn, by making use of the aliasing error control inequality

stated in Lemma 2.2, we conclude that

‖∆(∇ · q̂n+1
S )‖L2 ≤ ‖q̂n+1

S ‖H3 = ‖RN (ϕq̂n+1)‖H3 ≤ 3
3
2 ‖ϕq̂n+1‖H3 , since ϕq̂n+1 ∈ P3K . (3.37)

Meanwhile, for ϕq̂n+1 given by (3.36), a detailed expansion and repeated applications of Hölder
inequality indicate that

‖ϕq̂n+1‖H3 ≤ C(‖ϕq̂n+1‖+ ‖∇∆ϕq̂n+1‖) = C(‖|∇φ̂n+1
S |2∇φ̂n+1

S ‖+ ‖∇∆(|∇φ̂n+1
S |2∇φ̂n+1

S )‖)

≤ C
(
‖∇φ̂n+1

S ‖2L∞ · ‖∇φ̂n+1
S ‖H3 + ‖∇∇φ̂n+1

S ‖3L6

+‖∇φ̂n+1
S ‖L∞ · ‖∇∇φ̂n+1

S ‖L∞ · ‖∇φ̂n+1
S ‖H2

)
, (3.38)
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in which the following estimates have been applied

‖|∇φ̂n+1
S |2∇φ̂n+1

S ‖ ≤ ‖∇φ̂n+1
S ‖2L∞ · ‖∇φ̂n+1

S ‖ ≤ ‖∇φ̂n+1
S ‖2L∞ · ‖∇φ̂n+1

S ‖H3 ,

∆(|∇φ̂n+1
S |2∇φ̂n+1

S ) = 3|∇φ̂n+1
S |2∇∆φ̂n+1

S + 6(∇φ̂n+1
S )(∇∇φ̂n+1

S )(∇∇φ̂n+1
S ),

∇∆(|∇φ̂n+1
S |2∇φ̂n+1

S ) = 3|∇φ̂n+1
S |2(∇∇∆φ̂n+1

S ) + 6((∇φ̂n+1
S )(∇∇φ̂n+1

S ))⊗ (∇∆φ̂n+1
S )

+ 6(∇∇φ̂n+1
S )⊗ (∇∇φ̂n+1

S )(∇∇φ̂n+1
S ) + 12(∇φ̂n+1

S )(∇∇∇φ̂n+1
S )(∇∇φ̂n+1

S ),

‖|∇φ̂n+1
S |2(∇∇∆φ̂n+1

S )‖ ≤ ‖∇φ̂n+1
S ‖2L∞ · ‖∇∇∆φ̂n+1

S ‖ ≤ ‖∇φ̂n+1
S ‖2L∞ · ‖∇φ̂n+1

S ‖H3 ,

‖((∇φ̂n+1
S )(∇∇φ̂n+1

S ))⊗ (∇∆φ̂n+1
S )‖ ≤ C‖∇φ̂n+1

S ‖L∞ · ‖∇∇φ̂n+1
S ‖L∞‖∇∆φ̂n+1

S ‖
≤ C‖∇φ̂n+1

S ‖L∞ · ‖∇∇φ̂n+1
S ‖L∞‖∇φ̂n+1

S ‖H2 ,

‖(∇∇φ̂n+1
S )⊗ (∇∇φ̂n+1

S )(∇∇φ̂n+1
S )‖ ≤ C‖∇∇φ̂n+1

S ‖3L6 ,

‖(∇φ̂n+1
S )(∇∇∇φ̂n+1

S )(∇∇φ̂n+1
S )‖ ≤ ‖∇φ̂n+1

S ‖L∞ · ‖∇∇∇φ̂n+1
S ‖ · ‖∇∇φ̂n+1

S ‖L∞

≤ C‖∇φ̂n+1
S ‖L∞ · ‖∇∇φ̂n+1

S ‖L∞ · ‖∇φ̂n+1
S ‖H2 .

Furthermore, the following 3-D Sobolev embedding and interpolation inequalities could be derived:

‖∇φ̂n+1
S ‖L∞ ≤ C(‖∆φ̂n+1

S ‖+ ‖∆φ̂n+1
S ‖

7
8 · ‖∆3φ̂n+1

S ‖
1
8 ) ≤ C(C̃1 + C̃

7
8
1 ‖∆

3φ̂n+1
S ‖

1
8 ), (3.39)

‖∇φ̂n+1
S ‖H3 ≤ C‖∆φ̂n+1

S ‖
1
2 · ‖∆3φ̂n+1

S ‖
1
2 ≤ CC̃

1
2
1 ‖∆

3φ̂n+1
S ‖

1
2 , (3.40)

‖∇∇φ̂n+1
S ‖L6 ≤ C‖∇∇φ̂n+1

S ‖H1 ≤ C‖∆φ̂n+1
S ‖

3
4 · ‖∆3φ̂n+1

S ‖
1
4 ≤ CC̃

3
4
1 ‖∆

3φ̂n+1
S ‖

1
4 , (3.41)

‖∇∇φ̂n+1
S ‖L∞ ≤ C(‖∇∆φ̂n+1

S ‖+ ‖∇∆φ̂n+1
S ‖

5
6 · ‖∆3φ̂n+1

S ‖
1
6 )

≤ C(‖∆φ̂n+1
S ‖

3
4 · ‖∆3φ̂n+1

S ‖
1
4 + (‖∆φ̂n+1

S ‖
3
4 · ‖∆3φ̂n+1

S ‖
1
4 )

5
6 · ‖∆3φ̂n+1

S ‖
1
6 )

≤ C(C̃
3
4
1 · ‖∆

3φ̂n+1
S ‖

1
4 + C̃

5
8
1 ‖∆

3φ̂n+1
S ‖

3
8 ), (3.42)

‖∇φ̂n+1
S ‖H2 ≤ C‖∆φ̂n+1

S ‖
3
4 · ‖∆3φ̂n+1

S ‖
1
4 ≤ CC̃

3
4
1 ‖∆

3φ̂n+1
S ‖

1
4 , (3.43)

in which the uniform in time H2 bound (3.12) of the numerical solution has been extensively used.
In turn, a substitution of the above estimates into (3.38) yields

‖ϕq̂n+1‖H3 ≤ C(C̃3
1 + C̃

9
4
1 ‖∆

3φ̂n+1
S ‖

3
4 ). (3.44)

Subsequently, its combination with (3.35) and (3.37) reveals that

‖∆N∇N · (|∇N φ̂n+1|2∇N φ̂n+1)‖2 ≤ C(C̃3
1 + C̃

9
4
1 ‖∆

3φ̂n+1
S ‖

3
4 )

≤ C(C̃3
1 + C̃

9
4
1 ‖∆

3
N φ̂

n+1‖
3
4 ), (3.45)

in which the fact that φ̂n+1
S ∈ PK has been applied in the last step. As a consequence, we arrive at

2
rn+1√

E1,N (φ̂n+1)
〈∆N∇N · (|∇N φ̂n+1|2∇N φ̂n+1),∆3

Nφ
n+1〉

≤ 2
(2C̃0

|Ω|

) 1
2 ‖∆N∇N · (|∇N φ̂n+1|2∇N φ̂n+1)‖2 · ‖∆3

Nφ
n+1‖2

≤ C(C̃3
1 + C̃

9
4
1 ‖∆

3
N φ̂

n+1‖
3
4 ) · ‖∆3

Nφ
n+1‖2 ≤ C(C̃6

1 + C̃
9
2
1 ‖∆

3
N φ̂

n+1‖
3
2 ) +

1

2
‖∆3

Nφ
n+1‖22.(3.46)
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A combination of (3.33) and (3.46) leads to

−2
rn+1√

E1,N (φ̂n+1)
〈∆NNN (φ̂n+1),∆3

Nφ
n+1〉

≤ 16C̃0

|Ω|
‖∆2

N φ̂
n+1‖22 + C(C̃6

1 + C̃
9
2
1 ‖∆

3
N φ̂

n+1‖
3
2 ) + ‖∆3

Nφ
n+1‖22. (3.47)

Finally, a substitution of (3.28), (3.29) and (3.47) into (3.27) results in

1

2∆t
(‖∇N∆Nφ

n+1‖22 − ‖∇N∆Nφ
n‖22 + ‖∇N∆N (2φn+1 − φn)‖22 − ‖∇N∆N (2φn − φn−1)‖22)

+2a‖∆2
Nφ

n+1‖22 + ‖∆3
Nφ

n+1‖22 ≤
16C̃0

|Ω|
‖∆2

N φ̂
n+1‖22 + C(C̃6

1 + C̃
9
2
1 ‖∆

3
N φ̂

n+1‖
3
2 ). (3.48)

Meanwhile, the following interpolation inequality and Cauchy inequality are available:

‖∆2
N φ̂

n+1‖2 ≤ ‖∆N φ̂
n+1‖

1
2
2 · ‖∆

3
N φ̂

n+1‖
1
2
2 ≤ (3C̃1)

1
2 ‖∆3

N φ̂
n+1‖

1
2
2 , (3.49)

‖∆3
N φ̂

n+1‖22 = ‖∆3
N (2φn − φn−1)‖22 = 4‖∆3

Nφ
n‖22 + ‖∆3

Nφ
n−1‖22 − 4〈∆3

Nφ
n,∆2

Nφ
n−1〉

≤ 4‖∆3
Nφ

n‖22 + ‖∆3
Nφ

n−1‖22 + 2(‖∆3
Nφ

n‖22 + ‖∆2
Nφ

n−1‖22)

≤ 6‖∆3
Nφ

n‖22 + 3‖∆3
Nφ

n−1‖22. (3.50)

Then we obtain the following estimates:

16C̃0

|Ω|
‖∆2

N φ̂
n+1‖22 ≤ 48C̃0C̃1

|Ω|
‖∆3

N φ̂
n+1‖2 ≤

482 · 9C̃2
0 C̃

2
1

|Ω|2
+

1

36
‖∆3

N φ̂
n+1‖22

≤ CC̃2
0 C̃

2
1

|Ω|2
+

1

6
‖∆3

Nφ
n‖22 +

1

12
‖∆3

Nφ
n−1‖22, (3.51)

CC̃
9
2
1 ‖∆

3
N φ̂

n+1‖
3
2 ≤ CC̃18

1 +
1

36
‖∆3

N φ̂
n+1‖2

≤ CC̃18
1 +

1

6
‖∆3

Nφ
n‖22 +

1

12
‖∆3

Nφ
n−1‖22, (3.52)

in which the Young’s inequality has been applied in the first step of (3.52). Going back (3.48), we
arrive at

1

2∆t
(‖∇N∆Nφ

n+1‖22 − ‖∇N∆Nφ
n‖22 + ‖∇N∆N (2φn+1 − φn)‖22 − ‖∇N∆N (2φn − φn−1)‖22)

+2a‖∆2
Nφ

n+1‖22 + ‖∆3
Nφ

n+1‖22 ≤
1

3
‖∆3

Nφ
n‖22 +

1

6
‖∆3

Nφ
n−1‖22 +

CC̃2
0 C̃

2
1

|Ω|2
+ C1(C̃18

1 + 1).(3.53)

Moreover, the following quantity is introduced:

Gn+1 :=
1

2
(‖∇N∆Nφ

n+1‖22 + ‖∇N∆N (2φn+1 − φn)‖22) +
2

3
∆t‖∆3

Nφ
n+1‖22 +

1

6
∆t‖∆3

Nφ
n‖22.(3.54)

By adding 1
3‖∆

3
Nφ

n‖22 on both sides of (3.53), we obtain the following inequality:

Gn+1 −Gn +
1

3
∆t‖∆3

Nφ
n+1‖22 +

1

6
∆t‖∆3

Nφ
n‖22 ≤M (0)∆t, M (0) =

CC̃2
0 C̃

2
1

|Ω|2
+ C1(C̃18

1 + 1).(3.55)
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In addition, the following elliptic regularity estimates are valid, with an application of (2.24) in
Proposition 2.4 (by taking C2 = Ĉ−2

0 ):

C2‖∇N∆Nφ
n+1‖22 ≤ ‖∆3

Nφ
n+1‖22, C2‖∇N∆Nφ

n‖22 ≤ ‖∆3
Nφ

n‖22, (3.56)

so that we arrive at

1

24
C2G

n+1 ≤ 1

3
‖∆3

Nφ
n+1‖22 +

1

6
‖∆3

Nφ
n‖22. (3.57)

Going back (3.55), we get

Gn+1 −Gn +
C2

24
∆tGn+1 ≤M (0)∆t. (3.58)

An application of induction argument implies that

Gn+1 ≤ (1 +
C2

24
∆t)−(n+1)G0 +

24M (0)

C2
. (3.59)

Of course, we could introduce a uniform in time quantity B∗3 := G0+ 24M(0)

C2
, so that ‖∇N∆Nφ

m‖2 ≤
2Gm ≤ 2B∗3 for any m ≥ 0. In turn, an application of elliptic regularity shows that

‖φmS ‖H3 ≤ C
(
|φm|+ ‖∇∆φm‖

)
≤ C(|β0|+ (2B∗3)1/2) := Q(3), ∀m ≥ 0. (3.60)

in which the uniform in time constant Q(3) depends on Ω and the initial H3 data. This finishes the
proof of Theorem 3.8.

Remark 3.9. Higher order Hm estimate (beyond the norm given by the physical energy) is available
for many gradient flows, due to the analytic property of the surface diffusion parabolic operator;
see the related discussions in [7]. There have also been quite a few works of uniform in time H2

estimate for certain energy stable numerical schemes for the Cahn-Hilliard equation [20, 39, 51],
beyond the H1 bound given by the energy estimate. Similar numerical estimates for also expected for
epitaxial thin film growth and SPFC flows, in which the H2 bound is given by the energy estimate,
while an H3 estimate could be derived with the help of higher order analysis, combined with Sobolev
inequalities. In fact, similar estimates have also been reported for 2-D incompressible Navier-Stokes
equations, in terms of the first, second and higher order temporal numerical approximations; see
the delated works [17, 37, 58], etc.

4 The optimal rate convergence analysis

Now we proceed into the convergence analysis for the proposed numerical scheme (2.31). Due to
the SAV structure of the algorithm, the error estimate has to be performed in the energy norm,
i.e., in the `∞(0, T ;H2

N ) ∩ `2(0, T ;H5
N ) for the phase variable. Similar techniques have also been

applied to the convergence estimate [44] for the SAV scheme applied to Cahn-Hilliard equation.
These ideas have also been reported for the corresponding analysis for the phase field flow coupled
with fluid motion [9, 12, 24, 25, 45]. With an initial data with sufficient regularity, we could assume
that the exact solution has regularity of class R:

Φ ∈ R := H3(0, T ;C0) ∩H2(0, T ;H4) ∩ L∞(0, T ;Hm+6). (4.1)

In particular, the following bound is available for the exact solution:

‖∂mt Φ‖L∞(0,T ;L∞) ≤ C∗, (1 ≤ m ≤ 3), ‖Φk‖Hm+6 ≤ C∗, ∀k ≥ 0. (4.2)
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Theorem 4.1. Given initial data Φ0 ∈ Hm+6
per (Ω), suppose the exact solution for SPFC equa-

tion (1.3) is of regularity class R. For ∆t and h are sufficiently small, we have

max
0≤n≤M

‖∆N (Φn − φn)‖2 + (∆t
M∑
k=1

‖∇N∆2
N (Φk − φk)‖22)1/2 ≤ C(∆t2 + hm), (4.3)

where C > 0 is independent of ∆t and h, and ∆t = T/M .

4.1 The consistency analysis

For Φ ∈ R, we construct an approximate scalar value of R as follows

Rn+1 :=
√
E1,N (Φn+1) , En+1

1,N (Φn+1) =
1

4
‖∇NΦn+1‖44 − ‖∇NΦn+1‖22 + 2|Ω|. (4.4)

A similar extrapolation Φ̂n+1 := 2Φn − Φn−1 is taken. In turn, a careful consistency analysis
indicates the following truncation error estimate:

3
2

Φn+1−2Φn+ 1
2

Φn−1

∆t = ∆N

(
Rn+1√

E1,N (Φ̂n+1)
NN (Φ̂n+1) + LNΦn+1

)
+ τn+1

φ , (4.5a)
3
2
Rn+1−2Rn+ 1

2
Rn−1

∆t = 1

2
√
E1,N (Φ̂n+1)

〈NN (Φ̂n+1),
3
2

Φn+1−2Φn+ 1
2

Φn−1

∆t 〉+ τn+1
r . (4.5b)

(4.5)

with ‖τn+1
φ ‖2, |τn+1

r | ≤ C(∆t2 + hm). The derivation of (4.5) is accomplished with the help of
the spectral approximation estimate and other related estimates; the details are left to interested
readers.

The numerical error function is defined at a point-wise level:

ek := Φk − φk, Ñk := NN (Φ̂k)−NN (φ̂k), ∀k ≥ 0. (4.6)

And also, the following scalar numerical errors are introduced

r̃k := Rk − rk, Ẽk1 := E1,N (Φ̂k)− E1,N (φ̂k), ∀k ≥ 0. (4.7)

In turn, subtracting the numerical scheme (2.31) from (4.5) gives

3
2
en+1−2en+ 1

2
en−1

∆t = ∆N

(
( r̃n+1√

E1,N (φ̂n+1)
−Bn+1Rn+1Ẽn+1

1 )NN (φ̂n+1) + Rn+1√
E1,N (Φ̂n+1)

Ñn+1

+LNe
n+1
)

+ τn+1
φ , (4.8a)

3
2
r̃n+1−2r̃n+ 1

2
r̃n−1

∆t = 1

2
√
E1,N (φ̂n+1)

〈NN (φ̂n+1),
3
2
en+1−2en+ 1

2
en−1

∆t 〉

+ 1

2
√
E1,N (φ̂n+1)

〈Ñn+1,
3
2

Φn+1−2Φn+ 1
2

Φn−1

∆t 〉

−1
2B

n+1Ẽn+1
1 〈NN (Φ̂n+1),

3
2

Φn+1−2Φn+ 1
2

Φn−1

∆t 〉+ τn+1
r , (4.8b)

with Bn+1 = 1√
E1,N (Φ̂n+1)

√
E1,N (φ̂n+1)(

√
E1,N (Φ̂n+1)+

√
E1,N (φ̂n+1))

. (4.8c)

(4.8)

4.2 A few preliminary estimates

The following estimates are needed in the later analysis.
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Lemma 4.2. We have

E1,N (φ̂n+1) ≥ |Ω|, E1,N (Φ̂n+1) ≥ |Ω|, 0 ≤ Bn+1 ≤ 1

2
|Ω|−

3
2 , (4.9)

|Ẽn+1
1 | ≤ C̃2‖∇N ên+1‖2, (4.10)

‖∇NNN (φ̂n+1)‖ ≤ C̃3, (4.11)

‖∇N Ñn+1‖ ≤ C̃4‖∇N∆N ê
n+1‖2, (4.12)

‖∇N∆Nf‖2 ≤ ‖∆Nf‖
2
3
2 · ‖∇N∆2

Nf‖
1
3
2 , ‖∇N∆2

Nf‖2 ≤ ‖∇NLNf‖2, ∀f ∈ GN , (4.13)

‖
3
2Φn+1 − 2Φn + 1

2Φn−1

∆t
‖−1,N , ‖

3
2Φn+1 − 2Φn + 1

2Φn−1

∆t
‖2 ≤ CC∗, (4.14)

in which ên+1 := Φ̂n+1 − φ̂n+1 = 2en − en−1, and C̃j are independent of ∆t and h, j = 2, 3, 4.

Proof. The lower bound for E1,N (φ̂n+1) and E1,N (Φ̂n+1) comes from their definition, and the esti-

mate 0 ≤ Bn+1 ≤ 2|Ω|−
3
2 is a direct result of its representation given by (4.8c).

Moreover, a detailed expansion for E1,N (φ̂n+1) and E1,N (Φ̂n+1) implies that

Ẽn+1
1 = E1,N (Φ̂n+1)− E1,N (φ̂n+1)

=
1

4
(‖∇N Φ̂n+1‖44 − ‖∇N φ̂n+1‖44)− (‖∇N Φ̂n+1‖22 − ‖∇N φ̂n+1‖22)

=
1

4
〈|∇N Φ̂n+1|2 + |∇N φ̂n+1|2,∇N (Φ̂n+1 + φ̂n+1) · ∇N ên+1〉

−〈∇N (Φ̂n+1 + φ̂n+1),∇N ên+1〉. (4.15)

For the first error expansion, an application of discrete Hölder inequality shows that

1

4

∣∣∣〈|∇N Φ̂n+1|2 + |∇N φ̂n+1|2,∇N (Φ̂n+1 + φ̂n+1) · ∇N ên+1〉
∣∣∣

≤ 1

4
(‖∇N Φ̂n+1‖26 + ‖∇N φ̂n+1‖26) · (‖∇N Φ̂n+1‖6 + ‖∇N φ̂n+1‖6) · ‖∇N ên+1‖2

≤ 1

4
((C∗)2 + CC̃2

1 ) · (C∗ + CC̃1) · ‖∇N ên+1‖2 ≤ C((C∗)3 + C̃3
1 )‖∇N ên+1‖2, (4.16)

in which the regularity assumption (4.2) for the exact solution and the discrete W 1,6 bound (3.18)
for the numerical solution have been applied. The second error expansion term in (4.15) could be
controled in an even simpler way:∣∣∣〈|∇N (Φ̂n+1 + φ̂n+1),∇N ên+1〉

∣∣∣ ≤ (‖∇N Φ̂n+1‖2 + ‖∇N φ̂n+1‖2) · ‖∇N ên+1‖2

≤ (C∗ + CC̃1)‖∇N ên+1‖2, (4.17)

with (4.2), (3.18), applied again. This comletes the proof of inequality (4.10), by setting C̃2 :=
C((C∗)3 + C̃3

1 + C∗ + C̃1).
To obtain a discrete `2 estimate for ∇NNN (φ̂n+1), we recall the grid function q̂n+1 introduced

in (3.34), so that the following identity is valid:

‖∇N∇N · (|∇N φ̂n+1|2∇N φ̂n+1)‖2 = ‖∇(∇ · q̂n+1
S )‖L2 , (4.18)

in which q̂n+1
S is the spectral interpolation of q̂n+1. Because of the the fact q̂n+1

S = RN (ϕq̂n+1), as
indicated by the point-wise interpolation given by (3.36), we make use of the aliasing error control
inequality in Lemma 2.2 and get

‖∇(∇ · q̂n+1
S )‖L2 ≤ ‖q̂n+1

S ‖H2 = ‖RN (ϕq̂n+1)‖H2 ≤ 3
3
2 ‖ϕq̂n+1‖H2 , (4.19)
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an inequality similar to (3.37). Moreover, a detailed expansion and repeated applications of Hölder
inequality lead to

‖ϕq̂n+1‖H2 ≤ C(‖ϕq̂n+1‖+ ‖∆ϕq̂n+1‖) = C(‖|∇φ̂n+1
S |2∇φ̂n+1

S ‖+ ‖∆(|∇φ̂n+1
S |2∇φ̂n+1

S )‖)

≤ C
(
‖∇φ̂n+1

S ‖2L∞ · ‖∇φ̂n+1
S ‖H2 + ‖∇φ̂n+1

S ‖L∞ · ‖∇∇φ̂n+1
S ‖2L4

)
≤ C‖∇φ̂n+1

S ‖3H2 ≤ C‖φ̂n+1
S ‖3H3 ≤ C(Q(3))3, (4.20)

in which the uniform in time H3 estimate (3.26) (for the numerical solution) has been applied in
the last step. Going back (4.19) and (4.18), we arrive at

‖∇N∇N · (|∇N φ̂n+1|2∇N φ̂n+1)‖2 ≤ C(Q(3))3. (4.21)

The other expansion term in ∇NNN (φ̂n+1) could be bounded in a more standard way:

‖2∇N∆N φ̂
n+1‖2 ≤ 2‖φ̂n+1

S ‖H3 ≤ 6Q(3). (4.22)

Therefore, a combination of (4.21) and (4.22) gives the inequality (4.11), by taking C̃3 = C(Q(3))3+
6Q(3).

Inequality (4.12) could be derived in a similar manner. Making a comparison between NN (Φ̂n+1)
and NN (φ̂n+1), we observe that Ñn+1 turns out to be the point-wise interpolation of the following
continuous function

Ñn+1
S = −∇ · (RN (ϕÑn+1) + 2∆ên+1

S , ϕÑn+1 := |∇Φ̂n+1
S |2∇Φ̂n+1

S − |∇φ̂n+1
S |2∇φ̂n+1

S , (4.23)

with Φ̂n+1
S = 2Φn

S − Φn−1
S , ên+1

S = 2enS − e
n−1
S . A similar expansion is available for ϕÑn+1 :

ϕÑn+1 = |∇Φ̂n+1
S |2∇ên+1

S + (∇(Φ̂n+1
S + φ̂n+1

S ) · ∇ên+1
S )∇φ̂n+1

S . (4.24)

Again, repeated applications of Hölder inequality gives the following estimates

‖ϕÑn+1‖ ≤ ‖|∇Φ̂n+1
S |2∇ên+1

S ‖+ ‖(∇(Φ̂n+1
S + φ̂n+1

S ) · ∇ên+1
S )∇φ̂n+1

S ‖
≤ ‖∇Φ̂n+1

S ‖2L∞ · ‖∇ên+1
S ‖+ (‖∇Φ̂n+1

S ‖L∞ + ‖∇φ̂n+1
S ‖L∞)‖∇ên+1

S ‖ · ‖∇φ̂n+1
S ‖L∞

≤ C(‖∇Φ̂n+1
S ‖2H2 + (‖∇Φ̂n+1

S ‖H2 + ‖∇φ̂n+1
S ‖H2)2)‖∇ên+1

S ‖,
∆(|∇Φ̂n+1

S |2∇ên+1
S ) = |∇Φ̂n+1

S |2(∇∆ên+1
S ) + 2(∇Φ̂n+1

S )(∇∇Φ̂n+1
S )(∇∇ên+1

S )

+ 2∆Φ̂n+1
S (∇∇Φ̂n+1

S )(∇ên+1
S ) + 2(∇Φ̂n+1

S · ∇∆Φ̂n+1
S )(∇ên+1

S ),

‖∆(|∇Φ̂n+1
S |2∇ên+1

S )‖ ≤ ‖∇Φ̂n+1
S ‖2L∞ · ‖∇∆ên+1

S ‖+ 2‖∇Φ̂n+1
S ‖L∞ · ‖∇∇Φ̂n+1

S ‖L4 · ‖∇∇ên+1
S ‖L4

+ C‖∆Φ̂n+1
S ‖L4 · ‖∇∇Φ̂n+1

S ‖L4 · ‖∇ên+1
S ‖L∞ + C‖∇Φ̂n+1

S ‖L∞ · ‖∇∆Φ̂n+1
S ‖ · ‖∇ên+1

S ‖L∞

≤ C‖∇Φ̂n+1
S ‖2H2 · ‖∇ên+1

S ‖H2 ,

‖∆((∇(Φ̂n+1
S + φ̂n+1

S ) · ∇ên+1
S )∇φ̂n+1

S )‖
≤ C(‖∇Φ̂n+1

S ‖2H2 + ‖∇φ̂n+1
S ‖2H2)‖∇ên+1

S ‖H2 , (by a similar analysis),

‖∆ϕÑn+1‖ ≤ C
(
‖∆(|∇Φ̂n+1

S |2∇ên+1
S )‖+ ‖∆((∇(Φ̂n+1

S + φ̂n+1
S ) · ∇ên+1

S )∇φ̂n+1
S )‖

)
≤ C(‖∇Φ̂n+1

S ‖H2 + ‖∇φ̂n+1
S ‖H2)2 · ‖∇ên+1

S ‖H2 ,

‖ϕÑn+1‖H2 ≤ C(‖ϕÑn+1‖+ ‖∆ϕÑn+1‖)
≤ C(‖∇Φ̂n+1

S ‖H2 + ‖∇φ̂n+1
S ‖H2)2 · ‖∇ên+1

S ‖H2

≤ C(‖∇Φ̂n+1
S ‖H2 + ‖∇φ̂n+1

S ‖H2)2 · ‖∇ên+1
S ‖H2

≤ C((C∗)2 + (Q(3))2)‖∇ên+1
S ‖H2 ,

(4.25)

20



with the uniform in time H3 estimate (3.26) and the regularity assumption (4.2) recalled. Also
notice that the 3-D Sobolev embedding, from H2 to L∞ and W 1,4, has also been repeatedly applied
in the derivation of (4.25). Since ϕÑn+1 ∈ P3K , we go back (4.23) and arrive at

‖∇N Ñn+1‖2 = ‖∇Ñn+1
S ‖ = ‖∇(−∇ · (RN (ϕÑn+1))) + 2∆ên+1

S ‖

≤ 3
3
2 ‖ϕÑn+1‖H2 + 2‖∆ên+1

S ‖ ≤ C((C∗)2 + (Q(3))2)‖∇ên+1
S ‖H2 + 2‖∇ên+1

S ‖H2

≤ C((C∗)2 + (Q(3))2 + 1)‖∇ên+1
S ‖H2

≤ C((C∗)2 + (Q(3))2 + 1)‖∇∆ên+1
S ‖

≤ C((C∗)2 + (Q(3))2 + 1)‖∇N∆N ê
n+1‖2, (4.26)

in which the elliptic regularity, ‖∇ên+1
S ‖H2 ≤ C‖∇∆ên+1

S ‖, has been applied in the fourth step,
due to the fact that

∫
Ω ∇ê

n+1
S dx = 0, and the last step comes from the fact that ên+1

S is the
spectral interpolation function of ên+1. This completes the proof of inequality (4.12), by setting
C̃4 = C((C∗)2 + (Q(3))2 + 1).

For the first inequality in (4.13), we see that an application of the summation by parts for-
mula (2.16) gives

‖∇N∆Nf‖22 = −〈∆Nf,∆
2
Nf〉 ≤ ‖∆Nf‖2 · ‖∆2

Nf‖2. (4.27)

Meanwhile, another summation by parts formula reveals that

‖∆2
Nf‖22 = −〈∇N∆Nf,∇N∆2

Nf〉 ≤ ‖∇N∆Nf‖2 · ‖∇N∆2
Nf‖2. (4.28)

Therefore, a combination of (4.27) and (4.28) leads to

‖∇N∆Nf‖ ≤ ‖∆Nf‖
1
2
2 · ‖∆

2
Nf‖

1
2
2 ≤ ‖∆Nf‖

1
2
2 · (‖∇N∆Nf‖

1
2
2 · ‖∇N∆2

Nf‖
1
2
2 )

1
2

= ‖∆Nf‖
1
2
2 · ‖∇N∆Nf‖

1
4
2 · ‖∇N∆2

Nf‖
1
4
2 , (4.29)

which in turn results in

‖∇N∆Nf‖
3
4 ≤ ‖∆Nf‖

1
2
2 · ‖∇N∆2

Nf‖
1
4
2 , i.e., ‖∇N∆Nf‖ ≤ ‖∆Nf‖

2
3
2 · ‖∇N∆2

Nf‖
1
3
2 . (4.30)

This finishes the proof of the first inequality in (4.13).
For the second inequality, we see that ∇N∆2

Nf and ∇NLN have the following discrete Fourier
expansions

∇N∆2
Nfi,j,k :=

K∑
`,m,n=−K

(
2`πi, 2mπi, 2nπi

)T
λ2
`,m,nf̂

N
`,m,n exp (2πi(`xi +myj + nzk)) , (4.31)

∇NLNfi,j,k :=

K∑
`,m,n=−K

(
2`πi, 2mπi, 2nπi

)T(
a+ λ2

`,m,n

)
f̂N`,m,n exp (2πi(`xi +myj + nzk)) ,(4.32)

for f given by (2.3). In turn, an application of the Parseval inequality implies that

‖∇N∆2
Nf‖22 =

K∑
`,m,n=−K

|λ`,m,n|5|f̂N`,m,n|2, (4.33)

‖∇NLNf‖22 =

K∑
`,m,n=−K

λ`,m,n

(
a+ λ2

`,m,n

)2
|f̂N`,m,n|2. (4.34)
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As a result, the second inequality in (4.13) comes from the fact that |λ2
`,m,n| ≤ |a+ λ2

`,m,n|.
The last inequality (4.14) is a direct consequence of the following estimates

‖Φn+1 − Φn

∆t
‖∞ ≤ C∗, ‖

Φn − Φn−1

∆t
‖∞ ≤ C∗, by (4.2) , (4.35)

combined with the fact that ‖ · ‖∞ is a norm stronger than ‖ · ‖2 and ‖ · ‖−1,N .

4.3 Proof of the convergence theorem

Now we proceed into the proof of Theorem 4.1.

Proof. Taking a discrete inner product of (4.8a) with (−∆N )−1(
3
2
en+1−2en+ 1

2
en−1

∆t ), with a repeated
application of summation by parts, we get

1

∆t
〈3
2
en+1 − 2en +

1

2
en−1, LNe

n+1〉+ ‖
3
2e
n+1 − 2en + 1

2e
n−1

∆t
‖2−1,N

=− 〈∇N (NLE1 +NLE2 +NLE3 − (∆N )−1τn+1
φ ),∇N (−∆N )−1(

3
2e
n+1 − 2en + 1

2e
n−1

∆t
)〉, (4.36)

NLE1 =
r̃n+1√

E1,N (φ̂n+1)
NN (φ̂n+1),

NLE2 = −Bn+1Rn+1Ẽn+1
1 NN (φ̂n+1), NLE3 =

Rn+1√
E1,N (Φ̂n+1)

Ñn+1.

The temporal stencil term could be analyzed in the same manner as (3.8):

〈3
2
en+1 − 2en +

1

2
en−1, LNe

n+1〉

=
1

4
(‖L

1
2
Ne

n+1‖22 − ‖L
1
2
Ne

n‖22 + ‖L
1
2
N (2en+1 − en)‖22 − ‖L

1
2
N (2en − en−1)‖22

+‖L
1
2
N (en+1 − 2en + en−1)‖22). (4.37)

A bound for the truncation error inner product term is standard:

〈∇N (∆N )−1τn+1
φ ,∇N (−∆N )−1(

3
2e
n+1 − 2en + 1

2e
n−1

∆t
)〉

≤ ‖τn+1
φ ‖−1,N · ‖

3
2e
n+1 − 2en + 1

2e
n−1

∆t
‖−1,N

≤ 2‖τn+1
φ ‖2−1,N +

1

8
‖

3
2e
n+1 − 2en + 1

2e
n−1

∆t
‖2−1,N . (4.38)

The first nonlinear inner product term could be rewritten as follows:

−〈∇NNLE1,∇N (−∆N )−1(
3
2e
n+1 − 2en + 1

2e
n−1

∆t
)〉

= −〈 r̃n+1√
E1,N (φ̂n+1)

NN (φ̂n+1),
3
2e
n+1 − 2en + 1

2e
n−1

∆t
〉. (4.39)
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For the second and third nonlinear inner product terms, we begin with the following estimates:

‖∇NNLE2‖2 = ‖Bn+1Rn+1Ẽn+1
1 ∇NNN (φ̂n+1)‖2 ≤ |Bn+1| · |Rn+1| · |Ẽn+1

1 | · ‖∇NNN (φ̂n+1)‖2

≤ 1

2
|Ω|−

3
2 · (C̃0 + 1)

1
2 · C̃2‖∇N ên+1‖2 · C̃3

= C̃5‖∇N ên+1‖2, with C̃5 =
1

2
C̃2C̃3(C̃0 + 1)

1
2 |Ω|−

3
2 , (4.40)

‖∇NNLE3‖2 = ‖Rn+1(E1,N (Φ̂n+1))−
1
2∇N Ñn+1‖2 ≤ |Rn+1| · |Ω|−

1
2 · ‖∇N Ñn+1‖2

≤ (C̃0 + 1)
1
2 |Ω|−

1
2 · C̃4‖∇N∆N ê

n+1‖2
= C̃6‖∇N∆N ê

n+1‖2, with C̃6 = C̃4(C̃0 + 1)
1
2 |Ω|−

1
2 , (4.41)

in which the preliminary estimates (4.9)-(4.12) in Lemma 4.2 have been extensively applied in

the derivation. We also notice that the inequality |Rn+1| ≤ (C̃0 + 1)
1
2 comes from the fact

that E(Φ(t)) ≤ E(Φ0) = C̃0 + hm, the pseudo-spectral approximation order, combined with the
inequalityE1,N (Φk) ≤ EN (Φk). And also, the following estimate for ‖∇NNLE1‖2 is derived below,
which will be needed in the later analysis:

‖∇NNLE1‖2 = ‖r̃n+1(E1,N (φ̂n+1))−
1
2∇NNN (φ̂n+1)‖2 ≤ |r̃n+1| · |Ω|−

1
2 · ‖∇NNN (φ̂n+1)‖2

≤ |Ω|−
1
2 · C̃3 · r̃n+1 = C̃7r̃

n+1, with C̃7 = C̃3|Ω|−
1
2 . (4.42)

As a consequence of (4.40), (4.41), the following inequalities are available:

−〈∇N (NLE2 +NLE3),∇N (−∆N )−1(
3
2e
n+1 − 2en + 1

2e
n−1

∆t
)〉

≤ (‖∇NNLE2‖2 + ‖∇NNLE3‖2) · ‖
3
2e
n+1 − 2en + 1

2e
n−1

∆t
‖−1,N

≤ 2(‖∇NNLE2‖22 + ‖∇NNLE3‖22) +
1

4
‖

3
2e
n+1 − 2en + 1

2e
n−1

∆t
‖2−1,N

≤ 2(C̃2
5‖∇N ên+1‖22 + C̃2

6‖∇N∆N ê
n+1‖22) +

1

4
‖

3
2e
n+1 − 2en + 1

2e
n−1

∆t
‖2−1,N

≤ C̃8‖∇N∆N ê
n+1‖22 +

1

4
‖

3
2e
n+1 − 2en + 1

2e
n−1

∆t
‖2−1,N , C̃8 = 2(C̃2

5C
2
3 + C̃2

6 ), (4.43)

in which C3 corresponds to the elliptic regularity, ‖∇Nf‖2 ≤ C3‖∇N∆Nf‖2, an inequality similar
to (3.56). Therefore, a substitution of (4.37)-(4.39) and (4.43) into (4.36) yields

1

4∆t
(‖L

1
2
Ne

n+1‖22 − ‖L
1
2
Ne

n‖22 + ‖L
1
2
N (2en+1 − en)‖22 − ‖L

1
2
N (2en − en−1)‖22)

+
5

8
‖

3
2e
n+1 − 2en + 1

2e
n−1

∆t
‖2−1,N ≤ −〈

r̃n+1√
E1,N (φ̂n+1)

NN (φ̂n+1),
3
2e
n+1 − 2en + 1

2e
n−1

∆t
〉

+C̃8‖∇N∆N ê
n+1‖22 + 2‖τn+1

φ ‖2−1,N . (4.44)

On the other hand, the original error evolutionary equation (4.8a) gives

∇N (−∆N )−1(
3
2e
n+1 − 2en + 1

2e
n−1

∆t
) = −∇N (LNe

n+1 +NLE1 +NLE2 +NLE3 − (∆N )−1τn+1
φ ).

(4.45)
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In turn, an application of quadratic inequality implies that

‖
3
2e
n+1 − 2en + 1

2e
n−1

∆t
‖2−1,N

≥ 1

2
‖∇NLNen+1‖22 − 2‖∇N (NLE1 +NLE2 +NLE3 − (∆N )−1τn+1

φ )‖22

≥ 1

2
‖∇NLNen+1‖22 − 4(‖∇N (NLE1 +NLE2 +NLE3)‖22 + ‖τn+1

φ ‖2−1,N )

≥ 1

2
‖∇NLNen+1‖22 − 12(‖∇NNLE1‖22 + ‖∇NNLE2‖22 + ‖∇NNLE3‖22)− 4‖τn+1

φ ‖2−1,N

≥ 1

2
‖∇NLNen+1‖22 − 12(C̃2

7 (r̃n+1)2 + (C̃2
5C

2
3 + C̃2

6 )‖∇N∆N ê
n+1‖22)− 4‖τn+1

φ ‖2−1,N , (4.46)

with the estimates (4.40)-(4.42) recalled. Going back (4.44), we arrive at

1

4∆t
(‖L

1
2
Ne

n+1‖22 − ‖L
1
2
Ne

n‖22 + ‖L
1
2
N (2en+1 − en)‖22 − ‖L

1
2
N (2en − en−1)‖22)

+
5

16
‖∇NLNen+1‖22

≤ −〈 r̃n+1√
E1,N (φ̂n+1)

NN (φ̂n+1),
3
2e
n+1 − 2en + 1

2e
n−1

∆t
〉

+12C̃2
7 (r̃n+1)2 + 7C̃8‖∇N∆N ê

n+1‖22 + 6‖τn+1
φ ‖2−1,N . (4.47)

Taking a discrete inner product of (4.8b) with 2r̃n+1 gives

1

∆t
(
3

2
r̃n+1 − 2r̃n +

1

2
r̃n−1) · 2r̃n+1 =

r̃n+1√
E1,N (φ̂n+1)

〈NN (φ̂n+1),
3
2e
n+1 − 2en + 1

2e
n−1

∆t
〉

+
r̃n+1√

E1,N (φ̂n+1)
〈Ñn+1,

3
2Φn+1 − 2Φn + 1

2Φn−1

∆t
〉

−Bn+1Ẽn+1
1 r̃n+1〈NN (Φ̂n+1),

3
2Φn+1 − 2Φn + 1

2Φn−1

∆t
〉+ 2τn+1

r · r̃n+1. (4.48)

The estimate for the temporal stencil term is similar to that of (3.9):

2r̃n+1(
3

2
r̃n+1 − 2r̃n +

1

2
r̃n−1)

=
1

2
(|r̃n+1|2 − |r̃n|2 + |2r̃n+1 − r̃n|2 − |2r̃n − r̃n−1|2 + |r̃n+1 − 2r̃n + r̃n−1|2). (4.49)

The inner product associated with the truncation error could be controlled via Cauchy inequality:

2τn+1
r · r̃n+1 ≤ |τn+1

r |2 + |r̃n+1|2. (4.50)

The first nonlinear inner product on the right hand side is kept. The second and third nonlinear
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inner product terms could be analyzed as follows

r̃n+1√
E1,N (φ̂n+1)

〈Ñn+1,
3
2Φn+1 − 2Φn + 1

2Φn−1

∆t
〉

≤ |r̃n+1| · |Ω|−
1
2 · ‖∇N Ñn+1‖2 · ‖

3
2Φn+1 − 2Φn + 1

2Φn−1

∆t
‖−1,N

≤ |r̃n+1| · |Ω|−
1
2 · C̃4‖∇N∆N ê

n+1‖2 · CC∗

≤ C̃9|r̃n+1| · ‖∇N∆N ê
n+1‖2 ≤

C̃9

2
(|r̃n+1|2 + ‖∇N∆N ê

n+1‖22), C̃9 = CC̃4C
∗|Ω|−

1
2 , (4.51)

−Bn+1Ẽn+1
1 r̃n+1〈NN (Φ̂n+1),

3
2Φn+1 − 2Φn + 1

2Φn−1

∆t
〉

≤ |Bn+1| · |Ẽn+1
1 | · |r̃n+1| · ‖∇NNN (Φ̂n+1)‖2 · ‖

3
2Φn+1 − 2Φn + 1

2Φn−1

∆t
‖−1,N

≤ 1

2
|Ω|−

3
2 · C̃2‖∇N ên+1‖2 · |r̃n+1| · C̃3 · CC∗

≤ C̃10|r̃n+1| · ‖∇N∆N ê
n+1‖2 ≤

C̃10

2
(|r̃n+1|2 + ‖∇N∆N ê

n+1‖22), C̃10 = CC̃2C̃3C3C
∗|Ω|−

3
2 ,(4.52)

with repeated application of the preliminary estimates (4.9)-(4.14) in Lemma 4.2. Subsequently, a
substitution of (4.49)-(4.52) into (4.48) yields

1

2∆t
(|r̃n+1|2 − |r̃n|2 + |2r̃n+1 − r̃n|2 − |2r̃n − r̃n−1|2 + |r̃n+1 − 2r̃n + r̃n−1|2)

≤ r̃n+1√
E1,N (φ̂n+1)

〈NN (φ̂n+1),
3
2e
n+1 − 2en + 1

2e
n−1

∆t
〉

+
C̃9 + C̃10

2
(|r̃n+1|2 + ‖∇N∆N ê

n+1‖22) + |r̃n+1|2 + |τn+1
r |2. (4.53)

Finally, a combination of (4.47) and (4.53) results in

1

4∆t
(‖L

1
2
Ne

n+1‖22 − ‖L
1
2
Ne

n‖22 + ‖L
1
2
N (2en+1 − en)‖22 − ‖L

1
2
N (2en − en−1)‖22)

+
5

16
‖∇NLNen+1‖22

+
1

2∆t
(|r̃n+1|2 − |r̃n|2 + |2r̃n+1 − r̃n|2 − |2r̃n − r̃n−1|2 + |r̃n+1 − 2r̃n + r̃n−1|2)

≤ C̃11|r̃n+1|2 + C̃12‖∇N∆N ê
n+1‖22 + 6‖τn+1

φ ‖2−1,N + |τn+1
r |2. (4.54)

with C̃11 = 12(C̃2
7 + C̃2

9 + C̃2
10) + 1, C̃12 = 7C̃8 + C̃9+C̃10

2 . In particular, we notice that the first
nonlinear error inner product terms have been cancelled; this subtle fact has played a crucial role
in the analysis. In addition, the following inequalities are observed:

‖∇N∆N ê
n+1‖22 = ‖∇N∆N (2en − en−1)‖22 ≤ 6‖∇N∆Ne

n‖22 + 3‖∇N∆Ne
n−1‖22, (4.55)

‖∇N∆Ne
k‖22 ≤ ‖∆Ne

k‖
4
3
2 · ‖∇N∆2

Ne
k‖

2
3
2 (by (4.13) )

≤ 4
√

3

3
C̃

1
2
12‖∆Ne

k‖22 +
1

36C̃12

‖∇N∆2
Ne

k‖22, k = n, n− 1, (4.56)
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in which Young’s inequality has been applied in the last step of (4.56). This in turn leads to

C̃12‖∇N∆N ê
n+1‖22 ≤ C̃12(6‖∇N∆Ne

n‖22 + 3‖∇N∆Ne
n−1‖22)

≤ 4
√

3C̃
3
2
12(2‖∆Ne

n‖22 + ‖∆Ne
n−1‖22)

+
1

6
‖∇N∆2

Ne
n‖22 +

1

12
‖∇N∆2

Ne
n−1‖22. (4.57)

Going back (4.54), we arrive at (by denoting C̃13 = 8
√

3C̃
3
2
12)

1

∆t
(Hn+1 −Hn) +

5

16
‖∇NLNen+1‖22

≤ C̃11|r̃n+1|2 + C̃13(‖∆Ne
n‖22 + ‖∆Ne

n−1‖22) +
1

6
‖∇N∆2

Ne
n‖22 +

1

12
‖∇N∆2

Ne
n−1‖22

+6‖τn+1
φ ‖2−1,N + ‖τn+1

r ‖22, (4.58)

with Hn+1 :=
1

4
(‖L

1
2
Ne

n+1‖22 + ‖L
1
2
N (2en+1 − en)‖22) +

1

2
(|r̃n+1|2 + |2r̃n+1 − r̃n|2).(4.59)

Moreover, the following inequalities are recalled

‖∆Ne
k‖22 ≤ ‖L

1
2
Ne

k‖22 ≤ 4Hk, |rk|2 ≤ 2Hk, ‖∇N∆2
Ne

k‖22 ≤ ‖∇NLNek‖22, (by (4.13)) , (4.60)

for k = n+ 1, n, n− 1. Then we obtain the following estimate

1

∆t
(Hn+1 −Hn) +

5

16
‖∇NLNen+1‖22

≤ (2C̃11 + 4C̃13)(Hn+1 +Hn +Hn−1) +
1

6
‖∇NLNen‖22 +

1

12
‖∇NLNen−1‖22

+6‖τn+1
φ ‖2−1,N + |τn+1

r |2. (4.61)

Therefore, with an application of discrete Gronwall inequality, and making use of the fact that
‖τn+1
φ ‖−1,N , ‖τn+1

r ‖ ≤ C(∆t2 + hm), we arrive at

Hn+1 +
1

16
∆t

n+1∑
j=1

‖∇NLNej‖22 ≤ Ĉ(∆t4 + h2m), (4.62)

with Ĉ independent on ∆t and h. In turn, the desired convergence estimate is available

‖∆Ne
n+1‖2 +

(
∆t

k+1∑
j=1

‖∇N∆2
Ne

j‖22
) 1

2 ≤ CĈ
1
2 (∆t2 + hm), (4.63)

in which the estimates (4.60) has been recalled. This completes the proof of Theorem 4.1.

Remark 4.3. In an earlier error analysis work [44] for the SAV scheme applied to the Cahn-
Hilliard flow, a linear refinement requirement for the time step size, ∆t ≤ Ch, has to be imposed
for the convergence estimate, since an inverse inequality has to be applied in the error estimate in
the energy norm. In contrast, we have derived a higher order H3 bound for the numerical solution,
which in turn leads to an unconditional convergence estimate (no scaling law constraint between ∆t
and h) for the proposed SAV scheme.
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Remark 4.4. With the help of the optimal rate convergence estimate in the `∞(0, T ;H2
N ) norm,

we are able to derive a sharper bound for the original energy functional. In more details, the error
estimate (4.3) leads to the following inequalities

‖∇Nφm‖44 − ‖∇NΦm‖44 ≤ 4(max(‖∇Nφm‖4, ‖∇NΦm‖4))3‖∇Nem‖4
≤ CC̃3

1‖∆Ne
m‖2 ≤ CC̃3

1 Ĉ(∆t2 + hm),

‖∆Nφ
m‖22 − ‖∆NΦm‖22 ≤ 2 max(‖∆Nφ

m‖2, ‖∆NΦm‖2)‖∆Ne
m‖2 ≤ CC̃1Ĉ(∆t2 + hm),

‖φm‖22 − ‖Φm‖22, ‖∇Nφm‖22 − ‖∇NΦm‖22 ≤ CC̃1Ĉ(∆t2 + hm), (similar analysis),

(4.64)

in which the discrete Sobolev inequality (2.23) and the uniform-in-time H2
N bound (3.12) have been

extensively applied. Then we get

|EN (φm)− EN (Φm)| ≤ C(C̃1 + C̃3
1 )Ĉ(∆t2 + hm),

EN (Φm)− EN (Φ(tm)) = O(hm), EN (Φ(tm))− E(Φ(tm)) = O(hm),

E(Φ(tm)) ≤ E(Φ(t0)) := C0, so that EN (φm) ≤ C0 + C(C̃3
1 + 1)Ĉ(∆t2 + hm) ≤ C0 + 1,

(4.65)

provided that ∆t and h are sufficiently small. Of course, it is a much sharper estimate than the
uniform-in-time bound (3.20), in which C̃∗1 depends on C̃0 in a quadratic way. On the other hand, it
is notice that the refined estimate (4.65) is local-in-time, since the convergence constant Ĉ depends
on the final time, while the rough bound (3.20) turns out to be a global quantity.

Remark 4.5. In a recent work [18], a modified BDF scheme is applied to the SPFC equation (1.3)
in the primitive formulation, the energy stability and optimal rate convergence estimates have been
provided as well. Due to the primitive formulation involved, the highly complicated 4-Laplacian term
has be to treated implicitly to ensure an unconditional energy stability. This leads to a nonlinear
system to be solved at each time step, and the corresponding computational cost for the nonlinear
system is approximately three times the linear SAV scheme proposed in this work, with the same
spatial and temporal resolution. As a result, the computational efficiency has been improved in this
SAV approach.

In addition, only the `∞(0, T ; `2)∩ `2(0, T ;H3
N ) error estimate has been performed in the exist-

ing work [18], in comparison with the `∞(0, T ;H2
N ) ∩ `2(0, T ;H5

N ) error estimate provided in this
article. In turn, the uniform-in-time H3

N bound of the numerical solution, as established in (3.26)
(Theorem 3.8), is not needed in [18]. Therefore, this article has provided further technical tools for
the theoretical analysis of higher order stability estimate and convergence analysis, in comparison
with [18].

5 Numerical results

5.1 Convergence test for the numerical scheme

In this subsection we perform some numerical experiments to verify the accuracy order of the
proposed SAV scheme. To test the convergence rate, we choose the following exact solution for
(1.3) on the square domain Ω = (0, 1)2:

φe(x, y, t) =
1

2π
sin(2πx) cos(2πy) cos(t). (5.1)

We set a = 0.975, and the final time is taken as T = 1.
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Figure 1: The discrete `2 and `∞ numerical errors vs. temporal resolution NT for NT = 100 : 100 :
1000, with a spatial resolution N = 128. The data lie roughly on curves CN−2

T , for appropriate
choices of C, confirming the full second-order accuracy of the scheme.

To make Φ satisfy the original PDE (1.3), we have to add an artificial, time-dependent forcing
term. Then the proposed third order BDF-type scheme (2.31) can be implemented to solve for the
original PDE. To explore the temporal accuracy, we fix the spatial resolution as N = 128 so that
the numerical error is dominated by the temporal ones. We compute solutions with a sequence of
time step sizes, ∆t = T

NT
, with NT = 100 to NT = 1000 in increments of 100, and the same final

time T = 1. Fig. 1 shows the discrete `2 norms of the errors between the numerical and exact
solutions, computed by the proposed numerical scheme (2.31). The fitted line displayed in Figure 1
shows an approximate slope of -2, which in turn verifies a nice second order temporal convergence
order, in both the discrete `2 and `∞ norms.

5.2 Numerical simulation of square symmetry patterns

The 4-Laplacian term in (1.3) gives preference to rotationally invariant patterns with square symme-
try. In this subsection, we perform two-dimensional numerical simulations showing the emergence
of these patterns. The rest of the parameters are given by a = 0.5 and Ω = (0, L)2, with L = 100.
The initial data for the simulations are given by

φ0
i,j = 0.05 · (2ri,j − 1), (5.2)

where the ri,j are uniformly distributed random numbers in [0, 1]. For the temporal step size ∆t,
we use increasing values of ∆t in the time evolution: ∆t = 0.01 on the time interval [0, 1000]
and ∆t = 0.02 on the time interval [1000, 21000]. Whenever a new time step size is applied, we
initiate the two-step numerical scheme by taking φ−1 = φ0, with the initial data φ0 given by the
final time output of the last time period. The time snapshots of the evolution by using the given
parameters are presented in Figures 2 (one nucleation site). These tests confirm the emergence of
the rotationally invariant square-symmetry patterns in the density field.

To illustrate the energy stability property of the proposed numerical scheme, we display the
energy evolution of the one nucleation site example, up to t = 1000, in The solid and dotted
plots stand for the time evolution of the original energy functional and the SAV-introduced energy
functional, given by formula (2.22) and Ĕ(φ, r) = a

2‖φ‖
2
2 + 1

2‖∆Nφ‖22 + |r|2, respectively. The plots
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overlap so that differences are indistinguishable, and the energy dissipation property is clearly
observed in the numerical simulation. This shows that the SAV approach is indeed an accurate
numerical approximation to the original physical model.

Our numerical experiments have also demonstrated that, the SAV numerical scheme works
well for the smooth gradient flows, such as the numerical example presented above, with a mild
amplitude of random initial perturbation. On the other hand, if a more singular perturbation
is included at the initial data, such a nucleation at the center (50, 50), with magnitude of 10,
a direct application of the SAV numerical scheme is not able to create a reasonable numerical
solution. Meanwhile, extensive numerical experiments have demonstrated that, a stabilized SAV
scheme, with an inclusion of artificial regularization in the form of −A∆t∆N (φn+1 − φn) (such as
the one in the existing work [18]), could overcome such a rough initial data difficulty and produce
much nicer numerical results. In general, we conclude that, for smooth gradient flows in which
there is no sharp gradient, the SAV scheme has greatly improved the computational efficiency.
For a challenging numerical example in which an initial singularity is included, the stabilized
SAV approach will overcome the subtle numerical difficulties and be able to enhance the scientific
computing performances.

6 Concluding remarks

In this article, we have proposed and analyzed an scalar auxiliary variable (SAV)-based numerical
scheme for the square phase field crystal (SPFC) equation, a gradient flow to model the crystal
growth. An appropriate decomposition for the physical energy functional is formulated, so that
the nonlinear energy part has a well-established global lower bound, and the rest terms lead to
constant-coefficient diffusion terms with positive eigenvalues. This overcomes a key difficulty in
the application of SAV idea to the SPFC model. In turn, the resulting numerical scheme could
be very efficiently implemented by constant-coefficient Poisson-like type solvers (via FFT), and
energy stability is established by introducing an auxiliary variable. As a result of this modified
energy stability, a uniform in time H2 bound is available for the numerical solution. In addition,
we are able to derive a uniform in time H3 bound for the numerical solution, with the help of
discrete Sobolev embedding techniques. Such an H3 bound for the numerical solution plays an
essential role in the optimal rate convergence analysis in the energy norm, i.e., the error estimate in
the `∞(0, T ;H2) ∩ `2(0, T ;H5) space. A few numerical experiments are presented to demonstrate
the efficiency and accuracy of the proposed scheme, including the numerical accuracy test and
numerical simulations of square symmetry patterns.
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A Proof of Proposition 2.4

Due to the periodic boundary condition for f and its cell-centered representation, it has a corre-
sponding discrete Fourier transformation, as the form given by (2.3):

fi,j,k =
K∑

`,m,n=−K
f̂N`,m,n exp (2πi(`xi +myj + nzk)) . (A.1)
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Then we make its extension to a continuous function:

fN (x, y, z) =
K∑

`,m,n=−K
f̂N`,m,n exp (2πi(`x+my + nz)) . (A.2)

We denote a discrete grid function, g := Dxf , at a point-wise level. Since f corresponds to fN ∈ BK
(the space of trigonometric polynomials of degree at most K), an application of Parseval identity
implies that

‖∇N∆Nf‖22 = ‖∇∆fN‖2 =
K∑

`,m,n=−K
λ6
`,m,n|f̂N`,m,n|2,

‖∆3
Nf‖22 = ‖∆3fN‖2 =

K∑
`,m,n=−K

λ12
`,m,n|f̂N`,m,n|2,

(A.3)

with λ`,m,n introduced in (2.13). Meanwhile, the elliptic regularity for the continuous function fN
indicates that

‖∇∆fN‖ ≤ Ĉ0‖∆3fN‖, for some Ĉ0 only dependent on Ω. (A.4)

Finally, the discrete elliptic regularity inequality (2.24) is a direct combination of (A.3) and (A.4).
This completes the proof of Proposition 2.4.
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t = 3000, 9000 t = 15000, 21000

Figure 2: Time snapshots of the evolution for squared phase field crystal model, with
random initial perturbation. The time sequence for the snapshots is set as t =
10, 20, 40, 80, 100, 200, 500, 1000, 3000, 9000, 15000 and 21000. The parameters are a = 0.5,Ω =
[0, 100]2.
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Figure 3: Semi-log plot of the temporal evolution the energy up to t = 1000. The solid and dotted
plots stand for the time evolution of the original energy functional and the SAV-introduced energy
functional, respectively. The plots overlap so that differences are indistinguishable.
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