Skip to main content
Log in

A Rational Approximation Scheme for Computing Mittag-Leffler Function with Discrete Elliptic Operator as Input

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we propose a new scheme based on numerical quadrature to calculate the two-parameter Mittag-Leffler function with discrete elliptic operator \(-{\mathcal {L}}_h\) as input. Except pure mathematical interest from approximation theory, our consideration also arises from solving sub-diffusion equations numerically with time-independent diffusion coefficient. We obtain the scheme by applying Gauss-Legendre quadrature rule for the integral representation of the Mittag-Leffler function. Rigorous error analysis is carried out which shows that the scheme converges exponentially with the increase of quadrature nodes. The computational cost of the algorithm is solving K sparse linear systems with K the number of quadrature nodes. It is worth to point out that the scheme is completely parallel which can save much time if the dimension of \({\mathcal {L}}_h\) is very large. Some numerical tests are provided to verify the efficiency and robustness of our scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aceto, L., Novati, P.: Rational approximations to fractional powers of self-adjoint positive operators. Numerische Mathematik 143(1), 1–16 (2019)

    Article  MathSciNet  Google Scholar 

  2. Agarwal, R.P.: A propos d’une note de M. Pierre Humbert. CR Acad. Sci. Paris 236(21), 2031–2032 (1953)

    MathSciNet  MATH  Google Scholar 

  3. Bonito, A., Pasciak, J.E.: Numerical approximation of fractional powers of elliptic operators. Math. Comput. 84(295), 2083–2110 (2015)

    Article  MathSciNet  Google Scholar 

  4. Boyd, J..P.: Chebyshev Fourier Spectral Methods. Courier Corporation, USA (2001)

    MATH  Google Scholar 

  5. Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill, NewYork (1966)

    MATH  Google Scholar 

  6. Concezzi, M., Spigler, R.: Some analytical and numerical properties of the Mittag-Leffler functions. Fract. Calc. Appl. Anal 18, 64–94 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Davis, P..J.: Interpolation and Approximation. Courier Corporation, USA (1975)

    MATH  Google Scholar 

  8. Garrappa, R.: https://www.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-function, MATLAB Central File Exchange, Retrieved July 21 (2020)

  9. Garrappa, R.: https://ww2.mathworks.cn/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-arguments?s_tid=srchtitle, MATLAB Central File Exchange, Dec. 29, (2019)

  10. Garrappa, R.: Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J. Numer. Anal. 53(3), 1350–1369 (2015)

    Article  MathSciNet  Google Scholar 

  11. Garrappa, R., Popolizio, M.: Generalized exponential time differencing methods for fractional order problems. Comput. Math. Appl. 62(3), 876–890 (2011)

    Article  MathSciNet  Google Scholar 

  12. Garrappa, R., Popolizio, M.: Evaluation of generalized Mittag-Leffler functions on the real line. Adv. Comput. Math. 39(1), 205–225 (2013)

    Article  MathSciNet  Google Scholar 

  13. Garrappa, R., Popolizio, M.: Computing the matrix Mittag-Leffler function with applications to fractional calculus. J. Sci. Comput. 77(1), 129–153 (2018)

    Article  MathSciNet  Google Scholar 

  14. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V., et al.: Mittag-Leffler Functions, Related Topics and Applications, vol. 2. Springer, Berlin (2014)

    MATH  Google Scholar 

  15. Gorenflo, R., Loutchko, J., Luchko, Y.: Computation of the Mittag-Leffler function \({E}_{\alpha , \beta }(z)\) and its derivative. In: Fract. Calc. Appl. Anal. Citeseer (2002)

  16. Humbert, P.: Quelques résultats relatifs à la fonction de Mittag-Leffler. Comptes rendus hebdomadaires des seances de l academie des sciences 236(15), 1467–1468 (1953)

    MathSciNet  MATH  Google Scholar 

  17. Humbert, P., Agarwal, R.P.: Sur la fonction de Mittag-Leffler et quelques-unes de ses généralisations. Bull. Sci. Math 77(2), 180–185 (1953)

    MathSciNet  MATH  Google Scholar 

  18. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51(1), 445–466 (2013)

    Article  MathSciNet  Google Scholar 

  19. Jin, B., Lazarov, R., Zhou, Z.: Numerical methods for time-fractional diffusion with nonsmooth data: a concise overview. Comput. Methods Appl. Mech. Eng. 346, 332–358 (2019)

    Article  Google Scholar 

  20. Lee, S.T., Pang, H.K., Sun, H.W.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32(2), 774–792 (2010)

    Article  MathSciNet  Google Scholar 

  21. Lopez, L., Simoncini, V.: Analysis of projection methods for rational function approximation to the matrix exponential. SIAM J. Numer. Anal. 44(2), 613–635 (2006)

    Article  MathSciNet  Google Scholar 

  22. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  23. Mittag-Leffler, G.M.: Sur la nouvelle fonction \({E}_\alpha (x)\). CR Acad. Sci. Paris 137(2), 554–558 (1903)

    MATH  Google Scholar 

  24. Mittag-Leffler, G..M.: Sopra la funzione \({E}_\alpha (x)\). Rend. Accad. Lincei, ser 5(13), 3–5 (1904)

    MATH  Google Scholar 

  25. Mittag-Leffler, G.M.: Sur la representation analytiqie d’une fonction monogene cinquieme note. Acta Math 29(1), 101–181 (1905)

    Article  MathSciNet  Google Scholar 

  26. Moret, I., Novati, P.: RD-rational approximations of the matrix exponential. BIT Numer. Math 44(3), 595–615 (2004)

    Article  MathSciNet  Google Scholar 

  27. Moret, I., Novati, P.: On the convergence of Krylov subspace methods for matrix Mittag-Leffler functions. SIAM J. Numer. Anal. 49(5), 2144–2164 (2011)

    Article  MathSciNet  Google Scholar 

  28. Paris, R.: Exponential asymptotics of the Mittag–Leffler function. Proceedings of the Royal Society of London. Series A: Math., Phys. Eng. Sci. 458(2028), 3041–3052 (2002)

    Article  MathSciNet  Google Scholar 

  29. Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations to methods of their solution and some of their applications. Academic press, Amsterdam (1998)

    MATH  Google Scholar 

  30. Popolizio, M., Simoncini, V.: Acceleration techniques for approximating the matrix exponential operator. SIAM J. Matrix Anal. Appl. 30(2), 657–683 (2008)

    Article  MathSciNet  Google Scholar 

  31. Reddy, S.C., Weideman, J.: The accuracy of the Chebyshev differencing method for analytic functions. SIAM J. Numer. Anal 42(5), 2176–2187 (2005)

    Article  MathSciNet  Google Scholar 

  32. Seybold, H., Hilfer, R.: Numerical results for the generalized Mittag-Leffler function. Fract. Calculus Appl. Anal. 8(2), 127–139 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Seybold, H., Hilfer, R.: Numerical algorithm for calculating the generalized Mittag-Leffler function. SIAM J. Numer. Anal. 47(1), 69–88 (2008)

    Article  MathSciNet  Google Scholar 

  34. Trefethen, L.N.: Approximation theory and approximation practice, vol. 128. SIAM (2013)

  35. Wiman, A.: Über den Fundamentalsatz in der Teorie der Funktionen \({E}_a (x)\). Acta Mathematica 29(1), 191–201 (1905)

    Article  MathSciNet  Google Scholar 

  36. Wiman, A.: Über die Nullstellen der Funktionen \({E}_a (x)\). Acta Mathematica 29, 217–234 (1905)

    Article  MathSciNet  Google Scholar 

  37. Wong, R., Zhao, Y.Q.: Exponential asymptotics of the Mittag-Leffler function. Constructive Approximation 18(3), (2002)

  38. Zhang, Z.: Superconvergence points of polynomial spectral interpolation. SIAM J. Numer. Anal. 50(6), 2966–2985 (2012)

    Article  MathSciNet  Google Scholar 

  39. Zhao, X., Wang, L.L., Xie, Z.: Sharp error bounds for Jacobi expansions and Gegenbauer-Gauss quadrature of analytic functions. SIAM J. Numer. Anal 51(3), 1443–1469 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beiping Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is supported in part by Grants NSFC 11871092 and NSAF U1930402, and the first author is supported by project founded by China Postdoctoral Science Foundation(2020M682895).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, B., Zhang, Z. A Rational Approximation Scheme for Computing Mittag-Leffler Function with Discrete Elliptic Operator as Input. J Sci Comput 87, 75 (2021). https://doi.org/10.1007/s10915-021-01495-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01495-y

Keywords

Mathematics Subject Classification

Navigation