
Journal of Scientific Computing (2021) 87:82
https://doi.org/10.1007/s10915-021-01498-9

Poly-Sinc Solution of Stochastic Elliptic Differential Equations

Maha Youssef1 · Roland Pulch1

Received: 21 May 2019 / Revised: 18 April 2020 / Accepted: 16 April 2021 / Published online: 30 April 2021
© The Author(s) 2021

Abstract
In this paper, we introduce a numerical solution of a stochastic partial differential equation
(SPDE) of elliptic type using polynomial chaos along side with polynomial approximation
at Sinc points. These Sinc points are defined by a conformal map and when mixed with the
polynomial interpolation, it yields an accurate approximation. The first step to solve SPDE
is to use stochastic Galerkin method in conjunction with polynomial chaos, which implies a
system of deterministic partial differential equations to be solved. The main difficulty is the
higher dimensionality of the resulting system of partial differential equations. The idea here
is to solve this system using a small number of collocation points in space. This collocation
technique is called Poly-Sinc and is used for the first time to solve high-dimensional systems
of partial differential equations. Two examples are presented, mainly using Legendre poly-
nomials for stochastic variables. These examples illustrate that we require to sample at few
points to get a representation of a model that is sufficiently accurate.

Keywords Poly-Sinc methods · Collocation method · Galerkin method · Stochastic
differential equations · Polynomial chaos · Legendre polynomials

Mathematics Subject Classification 65N35 · 65N12 · 65N30 · 65C20 · 35R60

1 Introduction

Inmany applications the values of the parameters of the problem are not exactly known. These
uncertainties inherent in the model yield uncertainties in the results of numerical simulations.
Stochasticmethods are oneway tomodel these uncertainties by using randomfields [1]. If the
physical system is described by a partial differential equation (PDE), then the combination
with the stochastic model results in a stochastic partial differential equation (SPDE). The
solution of the SPDE is again a random field, describing both the expected response and
quantifying its uncertainty. SPDEs can be interpreted mathematically in several ways.
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In the numerical framework, the stochastic regularity of the solution determines the con-
vergence rate of numerical approximations, and a variational theory for this was earlier
devised in [2]. The ultimate goal in the solution of SPDEs is usually the computation of
response statistics, i.e. a functional of the solution. Monte Carlo (MC) methods can be used
directly for this purpose, but they require a high computational effort [3,4]. Quasi Monte
Carlo (QMC) and variance reduction techniques [3] may reduce the computational effort
considerably without requiring much regularity. However, often we have high regularity in
the stochastic variables, and this is not exploited by QMC methods.

Alternatives to MC methods have been developed, for example, perturbation methods
[5], methods based on Neumann-series [6], or the spectral stochastic finite element method
(SSFEM) [7,8]. Stochastic Galerkin methods have been applied to various linear problems,
see [7,9,10]. Nonlinear problems with stochastic loads have been tackled in [11]. These
Galerkin methods yield an explicit functional relationship between the independent random
variables and the solution. In contrast with commonMCmethods, subsequent evaluations of
functional statistics like the mean and covariance are very cheap.

In this paper, we do not consider (classical) stochastic differential equations driven by
Wiener processes, cf. [12]. Alternatively, we investigate an elliptic PDE in space including
a random field as material parameters. The polynomial chaos approach and the stochastic
Galerkin method yield a deterministic system of PDEs in space [13]. We introduce a spatial
collocation technique based on polynomial approximation by Lagrange interpolation. For
the interpolation points we use a specific set of non-uniform points created by conformal
maps, called Sinc points. Later, we use a small number of Sinc points as collocation points
to compute a very accurate solution of the PDEs, see [14]. This technique is called Poly-Sinc
collocation that was used to solve a single elliptic PDE in [15]. Recently it has been used to
solve coupled system of parabolic equations [16]. In this paper, we use Poly-Sinc collocation
to solve a high-dimensional system of PDEs resulting from a Galerkin projection, which
shows that with a small degree of freedom we can get a highly accurate solution.

The paper is organized as follows: In Sect. 2, we introduce a model problem, the structure
of its polynomial chaos model and the stochastic Galerkin solution. In Sect. 3, we illustrate
the main theorem of Poly-Sinc approximation. In Sect. 4, we review a Poly-Sinc collocation
technique with the main collocation theorem. Finally, in Sect. 5, we investigate numerical
examples. We start with a simple example in one stochastic variable and then we discuss the
model with multiple stochastic variables from Sect. 2.

2 Stochastic Model Problem

In this paper, we are interested to solve the following stochastic partial differential equations:

L(u) ≡ −∇ · (a(x, y,�)∇u(x, y,�)) = f (x, y) in Q × � and

u = 0 on ∂Q × �,
(1)

where � = (ξ1, ξ2, . . . , ξK ) is a vector of stochastic parameters. These parameters are
independent and uniformly distributed in I = [−1, 1] and thus � : � −→ [−1, 1]K with
an event space �. Moreover the domain of the spatial variables x and y is Q = (0, 1)2 or
Q = (−1, 1)2. The function a(x, y,�) is defined as

a(x, y,�) = a0(x, y) + b0

K∑

k=1

ξkak(x, y), (2)
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where ak’s are functions in x and y only, b0 is a constant and, ξk’s are the random variables.
Without loss of generality, we consider a0 = 1 and b0 = 1/2. We assume that a(x, y,�) ≥
α > 0 for all (x, y) ∈ Q and all � ∈ [−1, 1]K . Thus the differential operator in (1) is
always uniformly elliptic. Equation (2) is a truncated form of a Karhunen-Loeve expansion
where the spatial functions ak can be eigenfunctions of a covariance operator and the random
variables ξk are uncorrelated, see [17]. Alternatively, we will define these spatial functions
ourselves. In addition, the random variables are independent in our case.

In the rest of the section, we introduce the main concepts used in the solution of (1) with
(2). Basically, we discuss the polynomial chaos in one- and multidimensional cases and the
stochastic Galerkin method.

2.1 Polynomial Chaos Expansion

Generalized Polynomial Chaos (gPC) is a particular set of polynomials in a given random
variable, with which an approximation of a random variable with finite second moments is
computed. This procedure is named Polynomial Chaos Expansion (PCE). This technique
exploits orthogonal properties of polynomials involved, to detect a representation of random
variables as series of functionals. Now, the function u can be expressed as an infinite series
of orthogonal basis functions �i with suitable coefficient functions ui as

u(x, y,�) =
∞∑

i=0

ui (x, y)�i (�). (3)

The expansion in (3) converges in themean square of the probability space. The truncation
form including m + 1 basis functions leads to

u(x, y,�) � ũ(x, y,�) =
m∑

i=0

ui (x, y)�i (�) (4)

with coefficients functions

ui (x, y) = 〈u(x, y,�), �i (�)〉 , i = 0, 1, . . . ,m.

A fundamental property of the basis functions is the orthogonality,

〈
�i (�), � j (�)

〉 =
∫

I K
�i (�)� j (�)W (�)d� = ci δi j , for all i, j, (5)

where ci are real positive numbers and δi j is theKronecker-delta. In general, the inner product
in (5) can be defined for different types of weighting function W ; however, it is possible to
prove that the optimal convergence rate of a gPC model can be achieved when the weighting
function W agrees to the joint probability density function (PDF) of the random variables
considered in a standard form [9,18]. In this framework, an optimal convergence rate means
that a small number of basis functions is sufficient to obtain an accurate PCmodel (4). Hence,
the choice of the basis functions depends only on the probability distribution of the random
variables �, and it is not influenced by the type of system under study. In particular, if the
random variables � are independent, their joint PDF corresponds to the product of the PDFs
of each random variable: in this case, the corresponding basis functions �i can be calculated
as product combinations (tensor product) of the orthogonal polynomials corresponding to
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each individual random variable [13,17,19,20]:

�i (�) = �i(�) :=
K∏

r=1

�
(r)
ir

(ξr ), i = (i1, . . . , iK ), (6)

where �
(r)
ir

represents the univariate basis polynomial of degree ir associated to the r th
random variable and with one-to-one correspondence between the integers i and the multi-
indices i. We assume degree(�i ) ≤ degree(�i+1) for each i . Now let

RP =
{

�i (�) :
K∑

r=1

ir ≤ P

}
, (7)

be the set of all multivariate polynomials up to total degree P . Furthermore, for random
variables with specific PDFs, the optimal basis functions are known and are formed by
the polynomials of the Wiener-Askey scheme [9]. For example, in the uniform probability
distribution, the basis functions are the Legendre polynomials.

Using (6) and (7), it is possible to show that the total number of basis functions m + 1 in
(4) is expressed as

m + 1 = (K + P)!
K !P! . (8)

The total degree of the PC (the maximum degree) P can be chosen relatively small to achieve
the desired accuracy in the solution.

In the case of the orthogonal polynomials, we can see that�0(�) = 1 and for orthonormal
polynomials

〈�i (�), �i (�)〉 = 1. (9)

Once a PC model in the form of (4) is obtained, stochastic moments like the mean E(u) and
the variance V (u) can be analytically calculated by the PC expansion coefficients, see [17].
The expected value reads as

E (u(x, y,�)) = u0(x, y).

The variance can be approximated by

V (u(x, y,�)) ≈
m∑

i=1

u2i (x, y).

It is clear now that, in order to obtain a PC model in (4) and the stochastic moments, the
coefficients functions ui (x, y) must be computed. The PC coefficient estimation depends on
the type of the resulting system from the chaos expansion, not only the PC truncation.

2.2 Stochastic Galerkin Method

To solve the problem in (1) and (2), a Galerkin method is used along side the PC. The main
idea is to assume that the solution of (1) and (2) is written as expansion in (4) and then use
the PC theory introduced in the previous section. This process transform the SPDE (1) and
(2) into a deterministic system of PDEs.
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To recover the coefficient functions ui (x, y) we apply the inner product of (1) with the
basis polynomial � j (�)

〈L(̃u) − f (x, y),� j (�)
〉 = 0 for j = 0, 1, . . . ,m. (10)

Substituting (4) in (1) we obtain

L(̃u) = −∇ ·
(

∇
m∑

i=0

ui (x, y)�i (�)

)
− 1

2

K∑

k=1

ξk∇ ·
(
ak∇

m∑

i=0

ui (x, y)�i (�)

)
.

Now applying the inner residual product in (10) and use the orthogonality property of the
multivariate basis �i ’s to get

− ∇2u j − 1

2

K∑

k=1

m∑

i=0

〈
ξk�i (�),� j (�)

〉 ∇ · (ak∇ui ) = Fj (11)

where Fj (x, y) = 〈
f (x, y),� j (�)

〉
forms an (m + 1) vector and the array

〈
ξk�i ,� j

〉
is a

triple tensor of dimension K × (m + 1) × (m + 1). (11) is a system of elliptic PDEs with
unknown variables ui (x, y), i = 0, 1, 2, . . . ,m. With large number of random variables K
(say K ≥ 5) the size of the system in (11) becomes huge due to (8). One of our targets in
the solution of the system in (11) is to use a collocation method to achieve a high accuracy
with small numbers of collocation points. The proposed method in this report is to use Sinc
points in a Lagrange interpolation.

2.3 Quadrature

The inner product (5) is defined by an integral. For the integration of polynomials analytic
methods are used. Alternatively, we can use highly accurate quadrature techniques to evaluate
the integrals exactly except for round-off errors.We omit the details of these techniques, since
they can be easily found in several textbooks. For example, descriptions of Gaussian quadra-
ture can be found in most texts on numerical analysis [21], while [22] contains descriptions
of Sinc quadratures over finite, semi-infinite, infinite intervals and contours.

3 Poly-Sinc Approximation

Anovel family of polynomial-like approximations that interpolate given Sinc data of the form{
(x j , u j )

}N
j=−M where the x j are Sinc points was derived in [22] and extended in [23]. The

interpolation to this data is of course accurate, provided that the function u with u j = u(x j )
belongs to a suitable space of functions. We also desire approximations of the derivative
of the function u. On the one hand, this approximation can be obtained straightforward by
a differentiation of the interpolant. On the other hand, this type of approximation of the
derivative may not be very accurate, as it can happen in the case of Chebyshev polynomial,
or Sinc approximation. The main purpose of this interpolation was to be able to get a more
accurate method of obtaining an approximation for the derivative of the function u and to
improve a wavelet or other method of approximation by a very simple procedure, see [23].
In [14,24,25], a complete theory of this approximation has been introduced where the error
analysis for the function approximation, quadrature and stability havebeen studied.Moreover,
this polynomial-like approximation (Poly-Sinc) has been used to solve singular boundary
value problems based on ordinary differential equations (ODEs) and PDEs [14,15,26,27].
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Let us first establish some mathematical notation which we shall require. LetZ denote the
set of all integers, R the real line, and C the complex plane {χ + i τ : χ ∈ R, τ ∈ R}. Given
a number d > 0, we define the strip Dd as

Dd = {z ∈ C : |Iz| < d} .

Let D ⊂ C be a simply connected domain having a boundary ∂D, and let a and b
denote two distinct points of ∂D. Let φ : D −→ Dd denote a conformal map such that
limz→a φ(z) = −∞ and limz→b φ(z) = ∞, and let us define the inverse conformal map by
ψ = φ−1, ψ : Dd −→ D. In addition, let 
 be an arc defined by


 = {z ∈ [a, b] : z = ψ(x), x ∈ R} .

For real numbers a and
 ⊆ R, a one-dimensional Poly-Sinc approximation for a function
u defined on an arc 
 using n = M + N + 1 Sinc points can be obtained by applying the
following Lagrange interpolation formula:

u(x) ≈ Pn(x) =
N∑

k=−M

bk(x) u(xk), x ∈ 
 (12)

where xk = ψ(kh) are Sinc points on 
 and bk(x) are Lagrange basis polynomials. These
polynomial basis are defined as follows

bk(x) = g(x)

(x − xk) g′(xk)
, g(x) =

N∏

j=−M

(
x − x j

)
.

Using the interpolation (12) in calculations generates an accurate approximation with an
exponentially decaying error rate which for h = (πd/N )1/2 and M = N , by

‖u(x) − Pn(x)‖ ≤ A

√
N

B2N exp

(
−π2N

1
2

2

)
, (13)

and

∥∥u′(x) − P ′
n(x)

∥∥ ≤ C

√
N

B2N exp

(
−π2N

1
2

2

)
, (14)

where ‖.‖ denotes the supremum norm on 
 and A > 0, C > 0, B > 1 are three constants,
independent of N . For the proof of (13) and (14), see [23].

If a and b are finite real numbers then φ(x) = log ((x − a)/(b − x)) and the Sinc points
are x j = (be jh + a)/(1 + e jh). For the full list of conformal maps and Sinc points, see
[22,23].

Another criterion to discuss the convergence and stability of the Poly-Sinc approxima-
tion is the Lebesgue constant. In [25] an estimate of the Lebesgue constant for Lagrange
approximation at Sinc points has been derived as

�n ≈ 1

π
log(n + 1) + 1.07618 (15)

where n = M+N+1 is the number of Sinc points in (12). The upper bound of Lebesgue con-
stant in (15) is better than the bounds using Chebyshev and Legendre points [25]. Besides the
advantage of exponential decaying of the error from using Sinc points as interpolation points
in Lagrange interpolation formula, especially in a finite interval, we can see that Lagrange
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approximation at Sinc points delivers approximation results closer to the conjectured optimal
approximation than using Chebyshev or Legendre points [25].

An extention of the one-dimensional Poly-Sinc approximation to the multi-dimensional
case has been introduced in [24]. Let X = (x1, . . . , xl) be a point in an l-dimensional domain
Q, then Poly-Sinc approximation of a function u(X) can be defined by a nested operator as

u(X) ≈ (Pnu)(X) =
N1∑

k1=−M1

N2∑

k2=−M2

. . .

Nl∑

kl=−Ml

u(Xkkk) bk1(x1)bk2(x2) · · · bkl (xl), (16)

where Xkkk = (x1,k1 , . . . , xl,kl ) with ki = −Mi , . . . , Ni and xi,ki are the Sinc points in one-
dimension.

Next, we assume Mi = Ni = N , i = 1, . . . , l and n = 2N + 1 is the number of Sinc
points in each dimension i = 1, 2, . . . , l. The convergence and stability of the approximation
(16) are discussed in [24] and [25]. For the upper bound of the error En , we have

En = ‖u(X) − (Pnu)(X)‖ ≤
l−1∑

i=0

(
Ci log

i N
) √

N

γ 2N
i

exp

(
−π2N

1
2

2

)
, (17)

where Ci > 0, γi > 1, i = 0, . . . , l − 1 are two sets of constants, independent of N .
The notation �n,l is used to denote the Lebesgue constant using n interpolation points in

each dimension i = 1, 2, . . . , l, i.e. nl Sinc points in total. If Pn(X) is defined as in (16),
then:

�n,l ≤
(
1

π
log(n + 1) + 1.07618

)l

. (18)

We can write the interpolation scheme in (12) and (16) in simple operator form, as

u(x) � B(x)U (19)

u(X) �
l⊙

i=1

Bi (X)U , (20)

where U is vector/matrix including data of the function u calculated at Sinc points.

4 Poly-Sinc CollocationMethod

In [15], a collocation method based on the use of bivariate Poly-Sinc interpolation defined
in (20) is introduced to solve elliptic equations defined on rectangular domains. In [26],
Poly-Sinc collocation domain decomposition method for elliptic boundary value problems
is investigated on complicated domains. In [27], a collocation method is introduced to solve
certain type of singular differential equations. The idea of the collocation method is to reduce
the boundary value problem to a system of algebraic equations which have to be solved
subsequently. To start let us introduce the following collocation theorem.

Theorem 1 Let u : Q → R be an analytic bounded function on the compact domain Q. Let

U = {
u(x j , yk)

}N
j,k=−N be a vector,where x j and yk are the Sinc points. If Ũ = {

ũ jk
}N
j,k=−N

is a vector satisfying
∥∥U − Ũ

∥∥∞ = max
j, k

∣∣u jk − ũ jk
∣∣ < δ,
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then
∥∥∥∥∥u(x, y) −

2⊙

i=1

Bi (x, y) Ũ

∥∥∥∥∥ < En + δ �n,2, (21)

where n = 2N + 1, En from (17), and �n,2 from (18).

Proof We apply triangle inequality
∥∥∥∥∥u(x, y) −

2⊙

i=1

Bi (x, y) Ũ

∥∥∥∥∥ ≤
∥∥∥∥∥u(x, y) −

2⊙

i=1

Bi (x, y)U

∥∥∥∥∥

+
∥∥∥∥∥

2⊙

i=1

Bi (x, y)U −
2⊙

i=1

Bi (x, y) Ũ

∥∥∥∥∥

≤ En + δ

∥∥∥∥∥

2⊙

i=1

Bi (x, y)

∥∥∥∥∥

≤ En + δ �n,2,

which is the statement of the theorem. �

This theorem guarantees an accurate final approximation of u on its domain of definition
provided that we know a good approximation to u at the Sinc points.

To set up the collocation scheme, let us consider the following partial differential operator,

Lu ≡ ux x + uy y = f (x, y), (x, y) ∈ Q, (22)

u(x, y) = uex (x, y), (x, y) ∈ ∂Q,

where Q = {a < x < b, c < y < d} and ux x = ∂2u
∂x2

, uy y = ∂2u
∂ y2

.
The first step in the collocation algorithm is to replace u(x, y) in Eq. (22) by the Poly-Sinc

approximation defined in (16). Next, we collocate the equation by replacing x and y by Sinc
points

xi = a + b ei h

1 + ei h
, i = −M, . . . , N

and

yq = c + d eq h

1 + eqh
, q = −M, . . . , N .

In this case, we have,

ux x (xi , yq) ≈
N∑

k=−M

N∑

j=−M

u jk B
′′
( j, h)(xi )B(k, h)(yq),

where

B( j, h)(xi ) = δ j i =
{
0 j �= i .

1 j = i,
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and B
′′
( j, h)(xi ) defines an n × n matrix, with n = M + N + 1

B
′′
( j, h)(xi ) = [b ji ] =

⎧
⎪⎪⎨

⎪⎪⎩

−2g′(xi )
(xi−x j )2g′(x j )

+ g′′(xi )
(xi−x j )g′(x j ) if j �= i

∑N
s=−M

∑N
l=−M
l,s �=i

1
(xi−xl )(xi−xs )

if j = i .

So,

Ux x = (
ux x (xi , yq)

)
i,q=−M,...,N = M1 U,

where M1 is a n2 × n2 matrix defined as,

M1 =

⎧
⎪⎨

⎪⎩

b ji k = q ∧ i, j, k, q = −M, . . . , N

0 k �= q ∧ i, j, k, q = −M, . . . , N ,

and where Ux x is collected in a vector of of length n2. Likewise, it holds that

Uy y = (
uy y(xi , yq)

)
i,q=−M,...,N = M2 U,

where M2 is defined in the same way as M1.
The differential equation (22) has been transformed to a system of n2 algebraic equations,

AU = F,

where U is the vector of length n2 including the unknowns uiq = u(xi , yq) and

A = M1 + M2.

The right hand side F is a vector of Length n2 and defined as

F = f (xi , yq), i, q = −M, . . . , N .

Now the PDE (22) was transformed to a system of n2 algebraic equations in n2 unknowns.
The boundary conditions are collocated separately to yield 4n algebraic equations. More
precisely,

u(a, y j ) = uex (a, y j )

u(b, y j ) = uex (b, y j )

u(xi , c) = uex (xi , c)

u(xi , d) = uex (xi , d),

where xi and y j are the Sinc points defined on (a, b) and (c, d), respectively. Adding
these 4n equations to the n2 × n2 algebraic system, produced from the collocation of the
PDE, yields a system of linear equations given by a rectangular matrix. Finally, solving this
least squares problem produces the desired numerical solution.

Notes:

• In our calculations, we multiplied the algebraic equations associated to the boundary
conditions by a factor τ = 103. This scaling emphasizes the boundary values and improve
the error behavior at the boundaries.

• The Poly-Sinc collocation technique is based on the collocation of the spatial variables
using Sinc points. This means that it is valid also for PDEs with space-dependent coef-
ficients. Moreover, it can be generalized to solve a system of PDEs.
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5 Numerical Results

In this section, we present the computational results. Mainly, we discuss two examples. The
first simple example includes one stochastic parameter. In the second example we solve the
model problem introduced in Sect. 2.

5.1 One Stochastic Variable

Consider the Poisson equation in two spatial dimensions with one random parameter. This
problem is described by the following SPDE

a(ξ)
(
uxx (x, y, ξ) + uyy(x, y, ξ)

) = f (x, y) on Q × �

u(x, y, ξ) = 0 on ∂Q × �, (23)

where Q = (−1, 1)2 is the spatial domain and � is an event space and ξ : � → [−1, 1] is
a random variable. The function a(ξ) = ξ + 2 is a linear function of a uniformly distributed
random variable ξ and f (x, y) = 1 for all (x, y) ∈ Q.

Now, we use the PC representation in (4) with m = 3 to have

u(x, y, ξ) =
3∑

i=0

ui (x, y)�i (ξ), (24)

where �i ’s are the univariate orthonormal Legendre polynomials defined on [−1, 1]. Sub-
stitution of (24) in the SPDE (23) yields the residual

R = (ξ + 2)
3∑

i=0

(
(ui )xx + (ui )yy

)
�i (ξ) − 1.

We then perform aGalerkin projection and use the orthogonality of Legendre polynomials,
which yields the system of elliptic PDEs

3∑

i=0

〈(ξ + 2)�i , �k〉Lui = 〈1,�k〉 for k = 0, 1, 2, 3, on Q

ui = 0 for i = 0, 1, 2, 3 on ∂Q, (25)

where Lui = (ui )xx + (ui )yy . It holds that 〈1,�k〉 = δ1k .
The computational results of this example are given in the following experiments.

Experiment 1 E(u) and V(u) In this experiment, we use Poly-Sinc collocation from Sect. 4 to
solve the system of PDEs in (25). In our computation, we use N = 5, i.e. 11× 11 of 2D grid
of Sinc points defined on the domain Q. As a result of the Poly-Sinc solution, the coefficient
functions ui (x, y) are obtained. In Fig. 1, the expectation E(u) = u0(x, y) and its contour
plot are represented while in Fig. 2, the variance calculations are presented.

Experiment 2 Coefficients functions As we mentioned above, to get an accurate result,
just a small number of orthogonal polynomials, �i , is needed. In our computations, we
used m = 3, i.e. The four coefficient orthonormal Legendre polynomials. The 4 coefficients
functions, ui (x, y), i = 0, . . . , 3, are given in Fig. 3. In addition, we verify that this number
is sufficient by showing that the coefficient functions ui tend to zero as m increases. The
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Fig. 1 The expectation, E(u), using m = 3 and Poly-Sinc with N = 5

Fig. 2 The variance, V (u), using m = 3 and Poly-Sinc with N = 5

results are given in Fig. 4. In Fig. 4, the dots represent the maximum of the coefficient
functions ui (x, y) on the spatial domain. We then use these maximum values in a least
square estimation to find the coefficients of the decaying rate function α exp(−βi), where α

and β are constants. In Fig. 4, the solid line represents the best fitting function with α = 0.135
and β = 1.2. This means that the coefficient functions ui (x, y) follow an exponentially decay
relation.

Experiment 3 Error To discuss the convergence of Poly-Sinc solution, we need a reference
(nearly exact) solution. For that, we create a discrete list of PDEs of the equation (23) at
a finite set of instances of ξ ∈ [−1, 1]. We choose 100 points of Gauss-Legendre nodes as
values of ξ ∈ [−1, 1] and create corresponding 100 PDEs. To solve each one of these 100
equations we use Mathematica Package NDSolve. NDSolve uses a combination of highly
accurate numeric schemes to solve initial and boundary value PDEs 1. We then calculate the
expectation and variance of the solutions of our set of boundary value problems of PDEs.
In Fig. 5, the errors in the calculations of E(u) and V (u) using m = 3 (with orthonormal

1 For more information about NDSolve, seeWolfram documentation center at https://reference.wolfram.com/
language/ref/NDSolve.html
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Fig. 3 Coefficients functions, ui (x, y), i = 0, . . . , 3

Fig. 4 Logarithmic plot of maximum of coefficient functions ui , i = 0, . . . , 3. The dots are the calculated
maximum and the solid line represent the exponential fitting function 0.135 e−1.2 i
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Fig. 5 Absolute error between the Poly-Sinc calculation and the calculations obtained from 100 solutions

Fig. 6 Absolute error in u for some discrete ξ ∈ {−0.757, 0, 0.757, 0.989}

Legendre polynomials) and Poly-Sinc and the references from the 100 PDEs are presented.
Using the spatial L2-norm error, calculating the error in both E(u) and V (u) delivers error
of order O(10−4) and O(10−6), respectively. In Fig. 6, the error between the solution of the
SPDE in (23), using the method in this paper, and the reference solution is presented. We
choose four instances of ξ .

Experiment 4 Comparison In this experiment we compare the Poly-Sinc solution with the
classical finite difference (FD) solution. In 5-point-star FD method [28], we use an 11× 11
meshing with constant step size for the spatial variables x and y, which is the same number
of Sinc points used in the Poly-Sinc solution. The error between finite difference solution and
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Fig. 7 Absolute error between the FD calculation and the calculations obtained from 100 solutions

(a) (b)

Fig. 8 Results for Poly-Sinc method (dots), FD method with uniform meshes (rhombus), Poly-Chebyshev
(squares) and, Poly-Legendre (triangles)

the reference exact solution is given in Fig. 7. Using the spatial L2-norm error, calculating
the error in both E(u) and V (u) delivering error of order O(10−2). These calculations
shows that for the same number of points, Poly-Sinc delivers better approximation for the
solution of the SPDE. In Fig. 8 we run the calculations for different numbers of Sinc points
n = 2N + 1 and use the same number of points in the FD method. In addition, we use
Chebyshev and Legengdre points as interpolation points in Lagrange polynomials (Poly-
Chebyshev and Poly-Legendre) and as collocation points to solve the system of the PDEs.
We then calculate the L2-norm errors. Figure 8 shows the decaying rates of the error, in both
mean and variance, using Poly-Sinc, FD method, Poly-Chebyshev, and Poly-Legendre. We
can see that the decaying rate of Poly-Sinc is better than the other methods. The comparison
between Sinc points and Chebyshev points confirms the results in [23] and [25] that while
increasing the number of interpolation points, Sinc points are creating less error and more
stable approximation than Chebyshev points. Moreover, in [29] it has been shown that the
entries of the Chebyshev differentiation matrix can be computed by explicit formulas. Some
of these formulas are numerically unstable (from practical point of view) as the number of
Chebyshev points increases. This might cause ill conditioned matrix or non-uniform error at
the boundaries. This error affecting the overall solution of the system of the PDEs.
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Fig. 9 The expectation, E(u), using K = 5, P = 3 and Poly-Sinc with N = 5

5.2 Multiple Stochastic Variables

We solve the model problem defined in Sect. 2 for five stochastic variables, cf. [30]. Consider
the SPDE defined in (1) with K = 5 in (2) and where,

a1(x, y) = 1

4
cos(2πx)

a2(x, y) = 1

4
cos(2π y)

a3(x, y) = 1

16
cos(4πx)

a4(x, y) = 1

16
cos(4π y)

a5(x, y) = 1

8
cos(2πx) cos(2π y).

� = {ξk}5k=1 is a set of independent random variables uniformly distributed in [−1, 1]
and Q = (0, 1). For this SPDE we run four experiments.

Experiment 5 E(u) and V(u) In this experiment, we perform the Galerkin method along side
the multivariate PC. For the PC parameters, we choose K = 5 and P = 3. Due to (8),
the number of multivariate Legendre polynomials is m + 1 = 56. As a result the three-
dimensional array

〈
ξk�i (�),� j (�)

〉
is of dimension 5×56×56. For the Poly-Sinc solution

of the resulting system of PDEs, we use N = 5, i.e. n = 11 Sinc points. In Figs. 9 and 10 the
expectation and variance plots are presented.

Experiment 6 Coefficients Functions Similar to the second experiment in Example 1, we
would like to study the accuracy of the polynomial expansion. In other words, study the
decaying rate, to zero, of these functions. In Fig. 11, the first six coefficients functions of
the Poly-Sinc solution are given. These six coefficient functions are associated to the basis
polynomials of degree zero and one. In Fig. 12, the logarithmic plot of the maximum of the
absolute value of the coefficient functions ui−1(x, y), i = 1, . . . , 56 on the spatial domain
is presented. We can see the fast decaying rate to zero.
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Fig. 10 The variance, V (u), using K = 5, P = 3 and Poly-Sinc with N = 5

Fig. 11 Coefficients functions ui (x, y), i = 0, 1, . . . , 5

Experiment 7 Error The idea of creating a set of (exact) instance solutions we used in the
previous example is not applicable here as we have a set of 5 random variables. For that
we need to find a different reference to check the accuracy of our solution. We use the Finite
Element (FE) solution with cell meshing 10−3 to solve the stochastic Galerkin system of
PDEs. The FE element method is a part of the package NDSolve“FEM” in Mathematica
11 that uses the rectangular meshing of the domain and Dirichlet boundary conditions 2. In
Fig. 13, the error for the expectation and variance is presented. Using the L2-norm error,
calculating the errors in both E(u) and V (u) delivers errors of orderO(10−4) andO(10−8),
respectively.

Experiment 8 Comparison In this experiment we compare the Poly-Sinc solution with the
5-point-star FD method. The reference solution is the Finite Element (FE) solution with

2 For more information about NDSolve “FEM”, see Wolfram documentation center at https://reference.
wolfram.com/language/FEMDocumentation/guide/FiniteElementMethodGuide.html
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Fig. 12 Logarithmic plot of maximum of coefficient functions ui−1(x, y) for i = 1, . . . , 56. The dotted lines
separate the degrees of basis polynomials

Fig. 13 Absolute error between the Poly-Sinc calculation and the FE

Fig. 14 Spatial L2-error. The red dots for Poly-Sinc calculations and the blue circles for FD method (Color
figure online)
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cell meshing 10−3. In Fig. 14 we run the calculations for different numbers of Sinc points
n = 2N + 1 and use the same number of points in FD. We then calculate the L2-norm error.
These calculations show that the decaying rate of the error, in both mean and variance, is
better in Poly-Sinc than the FD method. Moreover, the Poly-Sinc decaying rates of errors are
following qualitatively the exponential decaying rate in (21).

6 Conclusion

In this work we have formulated an efficient and accurate collocation scheme for solving a
system of elliptic PDEs resulting from an SPDE. The idea of the scheme is to use a small
number of collocation points to solve a large system of PDEs. We introduced the collocation
theorembased on the error rate and theLebesgue constant of the 2DPoly-Sinc approximation.
As applications,we discussed two examples, the first examplewith one randomvariablewhile
the other with five random variables. For each case the expectation, variance, and error are
discussed. The experiments show that using Poly-Sinc approximation to solve the system of
PDEs is an efficient method. The number of Sinc points needed to get this accuracy is small
and the error decays faster than in the classical techniques, as the finite difference method.
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