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Abstract In this paper an accurate method to construct the bidiagonal factorization of col-
location and Wronskian matrices of Jacobi polynomials is obtained and used to compute
with high relative accuracy their eigenvalues, singular values and inverses. The particular
cases of collocation and Wronskian matrices of Legendre polynomials, Gegenbauer polyno-
mials, Chebyshev polynomials of the first and second kind and rational Jacobi polynomials
are considered. Numerical examples are included.
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1 Introduction

Jacobi polynomials J,S"‘*ﬁ ) (x) (see Section 3) form a class of classical orthogonal polynomi-
als, which includes many important families of orthogonal polynomials such as Legendre
and Chebyshev polynomials (see Section 5). In fact, Jacobi polynomials are orthogonal with
respect to the weight (1 —x)*(1 +x)# on the interval [—1, 1] and present many useful ap-
plications. For instance, to approximation theory, to Gaussian quadrature to numerically
compute integrals, to differential equations or to physical applications (cf. [2], [13]).

Let us recall that, given a system of functions (uy, . .. ,u,), its collocation matrix at points
X1 <+ < Xpy1 18 given by (uj—1(x;))1<i j<nt1. This paper deals with the accurate computa-
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tion when using collocation and Wronskian matrices (see Section 3) of Jacobi polynomials
on (1,e0). As shown in this paper, for these matrices many algebraic computations (such as
the computation of the inverse, of all the eigenvalues and singular values, or the solutions of
some linear systems) can be performed with high relative accuracy (HRA, see Section 2). Up
to now, this has been obtained only for a few classes of structured matrices. Among them we
can mention the collocation matrices of Bernstein polynomials [16], of Laguerre polynomi-
als [3] and of Bessel functions [4] as well as the Wronskian matrices of the monomials and
of exponential polynomials [15]. In fact, this last paper was the unique paper guaranteeing
HRA for some Wronskian matrices.

Crucial facts to derive our results have been to prove the strict total positivity (see Sec-
tion 2) of the collocation matrices of Jacobi polynomials on (1,e0) and the total positivity
of their Wronskian matrices. Then the bidiagonal factorization with HRA has been obtained
for these matrices and the algorithms presented in [12] can be used for the algebraic com-
putations mentioned above with HRA.

As mentioned before, accurate computations with collocation matrices of other interest-
ing bases of orthogonal polynomials, such as Laguerre polynomials or Bessel polynomials,
have been already achieved (see [3] and [4]). The analysis of the domain where the corre-
sponding collocation or Wroskian matrices, or closely related matrices, are totally positive
helps to obtain their bidiagonal factorization and the solution of algebraic problems with
HRA for the parameters in this domain. We shall see that for the collocation or Wronskian
matrices of Jacobi bases, this domain lies outside the interval where the polynomials are
orthogonal and have their zeros.

The paper is organized as follows. Section 2 presents some basic concepts and results
related to the bidiagonal factorization of totally positive matrices and with HRA. In Section
3, the strict total positivity and bidiagonal factorization of the collocation matrices of Jacobi
polynomials on (1,0) are obtained. In Section 4, the total positivity and bidiagonal factor-
ization of the corresponding Wronskian matrices are derived. Section 5 particularizes the
results for some well known families of Jacobi polynomials: Legendre polynomials, Gegen-
bauer polynomials, Chebyshev polynomials of the first and second kind and rational Jacobi
polynomials. Section 6 presents numerical examples confirming the theoretical results for
the computation of eigenvalues, singular values, inverses, and the solution of linear systems
with some matrices used in this paper.

2 Notations and auxiliary results

As usual, given an n-times continuously differentiable function f and x in its parameter
domain, f’(x) denotes the first derivative of f at x and, for any i <n, f (@) (x) denotes the
i-th derivative of f at x. Let us recall that for a given basis (u, ...,u,) of a space of n-times
continuously differentiable functions, defined on a real interval I and x € I, the Wronskian
matrix at x is defined by

W (ug, -, un) (%) = (u >(x))i,j:l,m,n+l~

A matrix is totally positive: TP (respectively, strictly totally positive: STP) if all its
minors are nonnegative (respectively, positive). Two recent books on these matrices are [6,
18], where many applications of these matrices are presented, as well as in [1].

Neville elimination is an alternative procedure to Gaussian elimination and has been
used to characterize TP and STP matrices. Given a nonsingular matrix A = (a;,j)1<i,j<n+1,
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Neville elimination computes a matricial sequence

AN =4 5 A o A+ (1)
(k+1
ij
k first columns and is computed from A%®) = (al(‘kj)) 1<i,j<n+1 bY:

such that, for 1 <k <n, AkFD) — (a ))15,-1]'91“ has zeros below its main diagonal in the

05?, if 1 <i<k,
w
a,(f?rl) = al(,k]? - a‘(’]i-,)k a'(f)l,j’ ifk+1<i,j<n+1and az@l,k £0, @)
Lk
agf(j)’ if k+1§i§n+landa[(f)1k:0,

At the end of the Neville elimination, an upper triangular matrix
U:=A0tD 3)
is obtained. In this process, the element
piji=al), 1<j<i<n+l, @)

is called the (i, j) pivot and, in particular, p;; is a diagonal pivot of the Neville elimination
of A. If all the pivots are nonzero then Neville elimination can be carried out without row
exchanges. In this case, by Lemma 2.6 of [7],

pi1=a1, 1<i<n+1,
o derAli—j+1,. 0L, ]
T detAfi—j+ 1, i1 1]

Dij 1<j<i<n+l1, 5)
where, given increasing sequences of integers a and f3, A[ct| 3] denotes the submatrix of A
containing rows of places & and columns of places 3.
Moreover,
Dy, e )
mij = { /ai=y ;= PijlPi-1,j; ?f “l(f)l-,/ 70, . 1<j<i<n+l, (©6)
0, if ¢, ; =0,
is called the (i, j) multiplier of the Neville elimination of A.
Neville elimination has been used to characterize TP and STP matrices (see [7-9]). The
following characterization can be derived from Corollary 5.5 of [7].

Theorem 1 Let A be a nonsingular matrix. Then A is TP if and only if the Neville elimina-
tion of A and U, where U is the upper triangular matrix in (3), can be performed without
row exchanges and all the pivots of both Neville eliminations are nonnegative.

By Theorem 4.2 and the arguments of p.116 of [9], a nonsingular TP matrix A =
(@i j)1<i,j<n+1 admits a factorization of the form

A:FnFn—l"’FIDGI"'Gn—]Gm (7)

where F; and G; are the TP, lower and upper triangular bidiagonal matrices given by
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F = . Gr'= _ , (8
! miyrn 1 ' miyn 1 @

miy2n 1 Misan 1

My tnt1—i 1 My 1 np1—i 1

and D =diag(p1.1,p22,- -, Pnt1,nt1) has positive diagonal entries. The diagonal entries p; ;
of D are the diagonal pivots of the Neville elimination of A and the elements m; ; and 7; ;
are nonnegative and coincide with the multipliers of the Neville elimination of A and A7,
respectively. If, in addition, the entries m;;, m; ; satisfy

m,'j:O = mhj:O, Vh>i

and
1’71,']':0 = n~1,-k:0, Yk > j,
then the decomposition (7) is unique. We shall denote the bidiagonal decomposition (7) of
a TP matrix A as BD(A) (see [11]).
Given BD(A), using the results in [7-9], a bidiagonal decomposition of A~! can be
computed as
A" =GiGy+-GD'F, - BF, ©)
where F; and G;, i = 1,...,n, are the lower and upper triangular bidiagonal matrices of the
form of F; and G;, respectively, but replacing the off-diagonal entries {mj;1.1,...,Myy1041-i}
and {11, - ns1nr1—-i} BY {—mig1,- .., =g} and { =i, ..., —1p1,}, respec-
tively.
Let us observe that if A is a nonsingular and TP matrix, then A7 is also nonsingular and
TP. Moreover, the bidiagonal decomposition of A” can be computed as

AT =GI'GY | ...GIDF! ---F |F!, (10)

where F; and G;, i = 1,...,n, are the lower and upper triangular bidiagonal matrices given
in the bidiagonal factorization BD(A), that is,

BD(AT) = BD(A)".

Finally, let us recall that a real value x is obtained with high relative accuracy (HRA) if
the relative error of the computed value ¥ satisfies

[lx— %]

< Ku,

[l
where K is a positive constant independent of the arithmetic precision and u is the unit
round-off. HRA implies that the relative errors of the computations are of the order of the
machine precision. An algorithm can be computed with HRA when it only uses products,
quotients, sums of numbers of the same sign, subtractions of numbers of opposite sign or
subtraction of initial data (cf. [5], [10]).

In [11] it was shown that if BD(A), the bidiagonal factorization (7) of a nonsingular TP
matrix A, is computed with HRA then we can also compute with HRA its eigenvalues and
singular values, the matrix A~ and even the solution of Ax = b for vectors b with alternating
signs.



Accurate computations with collocation and Wronskian matrices of Jacobi polynomials 5

3 Total positivity and factorizations of collocation matrices of Jacobi polynomials

Given «, 3 € R, the basis of Jacobi polynomials of the space P" of polynomials of degree
less than or equal to n is (J(()O"ﬁ)7 . 7J,sm’ﬁ)) with

J(@p) Floa+i+1) & (/i a+B+4+k+U -1\
I (x) = —l’F(a—i—ﬁ—i—l—l—l Z NCETES) 7 ,i=0,...,n.
(11)

Let us recall that Jacobi polynomials are orthogonal on the interval [—1, 1] with respect to
the weight (1 —x)%(1+x)>5.
Let us consider the lower triangular matrix A = (a;;)1<i j<a+1 given by

otk a+B+itk—1), if i>],
4= g (e T (a4 B it k—1) iz
0, if i<j.
It can be checked that
P PN = A, .. va)T, (13)
where (vo, ..., V,) is the basis of P" such that
x—1\' .
vi(x) == 5 , i=0,...,n (14)

The following result provides the multipliers and the diagonal pivots of the Neville elim-
ination of the change of basis matrix A described in (12) and proves that this matrix is non-
singular and TP.

Theorem 2 Let A = (a;j)1<i j<n+1 be the lower triangular matrix defined in (12). Then the
multipliers m; j and diagonal pivots p;; of the Neville elimination of A are given by

a+i—1 _ a+B+2i—

mil =, mi,j-:mmi,jflv I<j<i<n+1,1<i<n+1,

i—1
(15)

I<i<n+l.

i—1 .
a+B+2i—r—1
pi ] @5F )

a P (i—r) ’
Moreover, for any a, B > —1, A is nonsingular and TP.

Proof Let AW = (ag»() Ji>ij=n+1, k=2,...,n+1, be the matrices obtained after k — 1 steps
of the Neville elimination of A. First, let us see by induction on k that

:J

k—1 i—1 Jj—k
* (a+B+2i—r—1) .
%= Ge k 3 i llla—+r)£l(a—%ﬁ-+l%—r 1), (16)

r=1
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for 1 < j <i<n+1.For k=2, taking into account that ag.zj) =a;;— %ai_lﬁj, we have

a,@,) =ajj— LHGFLJ'

’ i—1

_Wﬁ (c+7) :H? a+B+i+r—1)(a+Bl+_lj+j 2 a+zl'3—+1i_l)
MHH )] j‘”ﬁ”“‘)((j_1<)im;<€+12>i_2))
:(j_z)!l(i_j)!(““?jlzl :I_i(x+rﬁa+ﬁ+i+r—l), 1<j<i<n+l.

Therefore formula (16) holds for kK = 2. Let us now suppose that (16) holds for some k €
(HU ® 9 @

{2,...,n}. Taking into account thata; ; ~ =a; ; — a@ a;_y ;> we have
k=1 :
(k1) _ k, 1 (a+B+2i—r—1) 1a ®)
az,j 7] I,H a+[3+21_r 3)( +1i )1 1,j°

Then, by defining

a+B+itj—k—1 a+B+i—1 _(—k(a+p+2i—k-1)

C):= =
: i—j i—k (i—)(i—k) ’
we can write
j—k—1
(k+1) 1 (Ot+l3+2l7r )l 1 J
a ;= — a+r a+p+i+r—1)C
5J (j*k) (l*]*l H (lfr) r:J( ) L4 ( B ) 1
k i—1 Jj—k—1
(a+B+2i—r—1) .
oa+r o+p+i+r—1),
= Go ,H ,g (e | RN VCRY: )

and formula (16) also holds for k+ 1.
Now, by (4) and (16), we can easily deduce that the pivots p; ; of the Neville elimination
of A satisfy

1 J
ENIF

1 i—1
a+p+2i—r—1 ..
( ﬁ(l_lr) r )l—I(OH—r)7 1<j<i<n+l, a7
r=j

Il
-

and, for the particular case i = j,

H(a+B+2i—r—1)
i = - , 1<i< 1. 1
Di, rI;I1 i—n i<n+ (18)

Let us observe that, by formula (17), the pivots of the Neville elimination of A are
nonzero and so, this elimination can be performed without row exchanges. Besides, since A
is lower triangular with nonzero diagonal entries, A is nonsingular and the obtained matrix
U (see (3)) is diagonal and so, the Neville elimination of UT does not perform any operation.
Then, by Theorem 1, we can conclude that A is nonsingular and TP for any o, 3 > —1.
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Finally, using (6) and (18), the multipliers m; ; can be written as

~

(i—1— ) o+i-1)" (a+B+2i—r—1)(i—r—1)

mi j =

(i— ) =1 (a+B+2i—r=3)(i—-r) ’
and we can deduce that
a+i—1
m,»,lzfill, l<i<ntl, (19)
i—
a 2i—j
m;_’j:Lmi’j,l, l<j<i<n+l1. O

o+p+2i—j-2

Corollary 1 Let A = (a;j)1<i,j<nt1 be the lower triangular matrix defined by (12). Then,
for any a,B > —1, the matrix A admits a factorization of the form

A=FF,_---FD, (20)

where F;, i = 1,...,n, is the lower triangular, bidiagonal matrix given by (8) and D =
diag (p1,1,p22,- - Pn+1.n+1)- The entries m; j and p;; can be obtained from (15).

Let us observe that the factorization (20) corresponds to BD(A), the bidiagonal factorization
(7) of A. Furthermore, for any o, 3 > —1, BD(A) can be computed with HRA, since it does
not require subtractions (except of the initial data).

Remark 1 1t is well known that the monomial basis (1,z,...,#") of P" is STP on (0,0).
Moreover, given a sequence of positive parameters 0 < #p < --- < t,,, the bidiagonal factor-
ization (7) of the corresponding STP collocation matrix can be described by

i1
I (=) .

= mii=tj, 1<j<i<n+l1
L] ’ L] Al = = )
[T, (tie1 — tik)

i—1
pii=[]Gti—n), 1<i<n+1 1)
k=1

(see [10] or Theorem 3 of [14]). Consequently, the basis (vo,...,v,) defined in (14) is also
STP on (1,e0). Furthermore, given 1 < x; < --- < x,41, by considering #; := (x; — 1)/2,
i=1,...,n+1, and using the bidiagonal factorization (21) for the collocation matrix of
the monomial basis at 0 < #; < --- < f,,41, it can be easily deduced that the bidiagonal
decomposition (7) of the collocation matrix of (v, ...,v,) atx; < --- < X,41 is given by:

=l
i._M7 mii=xj—1)/2, 1<j<i<n+l,
J J J J J
[T (xic1 —xi)
1 i—1
pi,i:FkUl(xka), 1<i<n+l. (22)

The following result proves that, for any a, 8 > —1, the collocation matrix of the basis
(11) of Jacobi polynomials at 1 <x; < --- < X1,

My = (1%

B
J—1 (x')>1§i,j§n+1’ (23)

is STP.
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Theorem 3 Given o, > —1, the corresponding basis of Jacobi polynomials defined in
(11) is STP on (1,00).

Proof Given a sequence of parameters 1 <xj < --- < x,1, by formula (13), the collocation
matrix (23) of the Jacobi polynomial basis satisfies

M; =MAT, (24)

where M is the collocation matrix at 1 < x| < --+ < x,41 of the basis (vg,...,v,) defined in
(14) and A is the lower triangular matrix defined by (12).

Clearly, by Remark 1, M is a STP matrix. On the other hand, by Theorem 2, given
a,B > —1, the lower triangular matrix A defined by (12) is nonsingular and TP. So, AT is
also a nonsingular and TP matrix. As a direct consequence of these facts and taking into
account that, by Theorem 3.1 of [1], the product of a STP matrix and a nonsingular TP
matrix is a STP matrix, we can conclude that the collocation matrix (23) is STP. a

Remark 2 By Section 4 of [10], we can transpose the bidiagonal decomposition (20) of the
lower triangular and TP matrix A to obtain the corresponding bidiagonal decompositon of A”
(see (10)). Clearly, since BD(A) can be computed with HRA, BD(AT) can be also computed
with HRA. Moreover, the collocation matrix of the basis (v, . ..,v,) defined in (14) at nodes
1 <x; <...<xu411s STP and its corresponding bidiagonal decomposition can be obtained
with HRA (see (22)). If the bidiagonal decompositions of two nonsingular, TP matrices
can be computed with HRA, using Algorithm 5.1 of [11], we can also obtain with HRA
the bidiagonal decomposition of the nonsingular and TP product matrix. Consequently, we
can derive with HRA the bidiagonal matrices (8) of the bidiagonal factorization (7) of the
collocation matrices of Jacobi polynomials and thus, we can also compute with HRA its
inverse matrix, its eigenvalues and singular values as well as the solutions of some linear
systems.

In Section 6, Algorithm 2 provides the bidiagonal decomposition of the collocation ma-
trix (23) of the basis of Jacobi polynomials. Moreover, Section 6 illustrates accurate results
obtained when computing algebraic problems using this algorithm and the algorithms pre-
sented in [11] and [12].

4 Total positivity and factorizations of Wronskian matrices of Jacobi polynomials

Given x € R, let W(J(()OC’B)7 e ,(,a'ﬁ))(x) be the Wronskian matrix at x of the basis (11) of
Jacobi polynomials. Using formula (13), it can be checked that

WP P () = W (v, va) (AT, (25)

where W (vy, . ..,v,)(x) is the Wronskian matrix of the basis (vo,...,v,) given in (14) and A
is the lower triangular matrix defined by (12).

In Corollary 1 of [15] it was proved that the Wronskian matrix at any positive real value
of the monomial basis (1,x,...,x") of the space of polynomials P" is TP on (0,). It was
also shown that this Wronskian matrix and its inverse can be computed with HRA. Now we
are going to extend these results to the basis (¢, ...,¢,) given by

bi(x) = (ax+b)', xcR, i=0,...,n, (26)

where a,b € R with a > 0. First let us prove the following auxiliary result.
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Lemma 1 The basis (Co, . ..,¢,) defined in (26) satisfies

Dy 1 (i-1) ax+b i
— 0 (x)—m2171 (x)+ all' 6171

(x), 1<i,j<n (27)

Proof We prove the result by induction on i. Since £;(x) = (ax+b){;_; (x), we have
Ui(x) = alj 1 (x) + (ax+ b)) (x), x€R,

and so, formula (27) holds fori =1 and 1 < j <n. If (27) holds for i > 1, we can write

L i) a(i+1) ax+b (i)
a0 =g G g G,
and deduce that
1 E(Hl)(x) _ Lg(i) (x)+ ax+b (Hl)(x). O

atl(i4+1)17 C i) ! ati(i+ 1)1

Now, for a given x € R, k,n € N with k < n, let Uy, = (MEI}))IS[JS”+1 be the upper
triangular, bidiagonal matrix with unit diagonal entries, such that

W =0, i=1 k=1, Wl =axtb, i=k...n. (28)

The following result shows that the product matrix Uy ;, - - - Uy, coincides, up to a positive
scaling, with the Wronskian matrix of (¢, ¢,...,¢,) at x.

Proposition 1 For a given x e Randn € N, let
Un = Ul,n e Un,na

where Uy, k =1,...,n, are the upper triangular, bidiagonal matrices with unit diagonal
entries satisfying (28). Then U, = (u; j)1<i j<n+1 IS an upper triangular matrix and

1 (i-1) ..
= ——0 < < .
Ujj alil(l‘—l)!éj_l (x)v 1<ij<n+l (29)

Proof First, let us observe that U, is the product of upper triangular, bidiagonal matrices
and so, it is an upper triangular matrix. Now, we prove (29) by induction on n. Forn =1,

1ax+b

and (29) clearly holds. Let us observe that
Ups1:= Ul i1 Unit nit = Ut p1 U,

where Un+] = Uzﬁn_;,_] .. ~Un+1,n+1 satisfies U,l+|~: (ﬁi7.l')1Si7./'Sﬂ+2 with IZ,‘,I = IJ]},‘ = 5]4‘, that
is, 011 =1land 8;; =0fori=2,...,n+2,and Up41[2,...,n+2]2,...,n+2] =Ui - Upp.
Let us now suppose that (29) holds for n > 1. Then we have that

_ 1 (i-2) ¥
= gyt W 2EhjSat
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Taking into account that U, = U1,n+1l7n+1 and using Lemma 1, we deduce that U, =
(u,'vj) 1<i,j<n+2 satisfies

B B 1 i ax+b i—1
uij = i j+ (ax+Db)ip1,j = a2(i=2)! 2)!55_2)()() + aTG—1) 51_2)()6)
1 (i—1) .
:m£171 (x), 1§l,]§n+2. O

As a direct consequence of the previous result, we can provide the bidiagonal factoriza-
tion (7) of the Wronskian matrix of ({o,...,¥¢,).

Proposition 2 Letn € Nand ({o, ... ,¢,) be the basis given in (26). Then, for any x > —b/a,
the Wronskian matrix W (L, ..., 4n)(x) is TP and

al!
W(€07---7£n)(x) = . Ul,n"'Un,m (30)

n

a'n!

where Uy p, k = 1,...,n, are the upper triangular, bidiagonal matrices with unit diagonal
entries satisfying (28).

Let us observe that the bidiagonal factorization (7) of W (£, ...,£,)(x) is given by (30).
Clearly, this factorization can be computed with HRA for any x > —b/a and, consequently,
using (9), its inverse matrix can also be computed with HRA as stated in the following result.

Proposition 3 Let W be the Wronskian matrix at x > —b/a of the basis (L, ... ,L,) given in
(26). Then W~ can be computed with HRA.

Now, using Proposition 2, we can immediately deduce the following factorization of the
Wronskian matrix at x € R of the basis (vo,...,v,) in (14),

1
27]0!
1
—1!
W(vo,...,v)(x) := 2! Ut Up, 31
Lo
2711.
where Uy, = (M§5>)]§i,j§n+1, k=1,...,n, is the upper triangular, bidiagonal matrix with
unit diagonal entries satisfying
Wb =0, i=1 k=1, WM = x=1)/2, i=k..n (32)
Moreover, if x > 1, W(vo,...,v,)(x) is a nonsingular and TP matrix. Then, taking into ac-

count (25), the fact that A7 is a nonsingular and TP matrix (see Theorem 2) and that the
product of nonsingular TP matrices is a nonsingular and TP matrix (Theorem 3.1 of [1]),
we deduce the following result on the total positivity of the Wronskian matrices of Jacobi
polynomials.



Accurate computations with collocation and Wronskian matrices of Jacobi polynomials 11

Theorem 4 Letn € N and (Jéa'ﬂ), .. 7J,(llx'ﬁ)) be the Jacobi polynomial basis given in (11).

For any o, > —1, the Wronskian matrix W(J(()a’ﬁ), e 7J,(Loc’ﬁ))(x) at x > 1 is nonsingular
and TP.

Remark 3 Taking into account (10), we can obtain the bidiagonal decomposition (20) of
the matrix AT in (25). Clearly, since BD(A) can be computed with HRA, BD(AT) can be
also computed with HRA. On the other hand, the Wronskian matrix of the basis (vy,...,v,)
defined in (14) is nonsingular and TP at any x > 1. Moreover, its corresponding bidiagonal
decomposition (22) can be obtained with HRA. By Algorithm 5.1 of [11], if the bidiago-
nal decompositions of two nonsingular and TP matrices can be computed with HRA, then
the bidiagonal decomposition of the product matrix can be also obtained with HRA. Conse-
quently, the Wronskian matrix of the basis (11) of Jacobi polynomials can be computed with
HRA and thus, we can compute with HRA its inverse matrix, its eigenvalues and singular
values and the solutions of some linear systems.

In Section 6, Algorithm 3 provides the bidiagonal decomposition (7) of the Wronskian
matrix (25) of the basis of Jacobi polynomials. Section 6 shows accurate results obtained
when computing the mentioned algebraic problems using this algorithm and the algorithms
presented in [11] and [12].

5 Collocation and Wronskian matrices of well known orthogonal bases

In this section we are going to see that the results on properties and factorizations of col-
location and Wronskian matrices of Jacobi polynomials obtained in the previous sections
can be used to derive properties of collocation and Wronskian matrices of other well known
orthogonal bases.

The following auxiliary results can be easily checked and will be useful to derive the
bidiagonal decomposition of matrices obtained by scaling with a diagonal matrix a nonsin-
gular and TP matrix.

Lemma 2 Let F; and G, i = 1,...,n, be the lower and upper, respectively, triangular bidi-
agonal matrices described in (8) and A = diag(dy,da,...,dy+1) a nonsingular diagonal
matrix. Then

AF,=FA and GA=AG; i=1,...,n, (33)
where
1 1
01 01
. 0 1 o 01
T rigrn 1 Gi = P 1 ’ 9
rivan 1 Fivan 1
Fpgt =i 1 Fattati—i 1
with

d; ~ di
ri’j:r-l mi j, ri,j:r'l m j, 1<j<i<n+1.

i—1 i—1

As a consequence, we have the following result.
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Lemma 3 Let A= F,F,_---F1DG, ---G,_1G, be the bidiagonal decomposition (7) of a
nonsingular and TP matrix A. Then, given a nonsingular matrix A = diag (d,da, . ..,dn+1),
the bidiagonal decomposition (7) of AA and AA are given by

AA = FyF,i - FiDGy -Gy 1 Gy, (35)
AA = FyFy1---FiDG) -Gy 1 Gy, (36)
where 1/5, and @,-, i=1,...,n, are the lower and upper, respectively, triangular matrices

described in (34) and D=AD=DA.

Let us start by considering the basis (Ly, ..., L,) of Legendre polynomials defined by

Lix) =7, i=0,...,n, 37)

L

where (Jéo"o)7 e ,(,0"0>) is the basis of Jacobi polynomials given in (11) with & = 8 = 0.

From Theorem 3, Remark 2, Theorem 4 and Remark 3, we can deduce the following result.

Theorem 5 The basis (Lo, ...,L,) of Legendre polynomials, defined by (37), is STP on
(1,00). Given x; < -++ < Xp41, With x| > 1, the bidiagonal decomposition (7) of the cor-
responding collocation matrix can be obtained with HRA. Moreover, for any x > 1, the
Wronskian matrix W (Lo, ...,Ly)(x) is nonsingular and TP and its bidiagonal decomposi-
tion (7) can be obtained with HRA.

Given A € R, the basis of Gegenbauer polynomials of P" is (Gy,...,G,) with

F'(A+1/2) T(@i+24)  (a-1/22-1)2) .

A . ,

Gi (x) = 1_,(2&) F(l )V I/Z)Jl (.x), l—07...7n7 (38)
where (18171/2’171/2), . ,15171/2’171/2)) is the basis of Jacobi polynomials given in (11)

with &« = B = A — 1/2. By Theorem 3 and Remark 2, Lemma 3 and Remark 3, we can
deduce the following result.

Theorem 6 For any A > —1/2, the basis (Go, ..., G,) of Gegenbauer polynomials, defined
by (38), is STP on (1,00). Given xj < - -+ < Xpy1, with x; > 1, the bidiagonal decomposition
(7) of the corresponding collocation matrix can be obtained with HRA. Moreover, for any
x > 1, the Wronskian matrix W(Go, ...,Gy,)(x) is nonsingular and TP and its bidiagonal
decomposition (7) can be obtained with HRA.

The basis (Tp, ..., T,) of Chebyshev polynomials of the first kind is defined by

(-1/2,-1/2)
_Ji (x) .
T,(x) = m7 l—o,...ﬂ’l? (39)
1
where (J(()71/2,71/2)7 ... ,J,Sfl/z’*l/z)) is the basis of Jacobi polynomials given in (11) with

o = 8 = —1/2. Using again Theorem 3, Remark 2, Lemma 3 and Remark 3, we can deduce
the following result.

Theorem 7 The basis (Ty, ..., T,) of Chebyshev polynomials of the first kind, defined by
(39), is STP on (1,0). Given x| < -+ < Xy41, with x; > 1, the bidiagonal decomposition
(7) of the corresponding collocation matrix can be obtained with HRA. Moreover, for any
x > 1, the Wronskian matrix W(Ty, ..., T,)(x) is nonsingular and TP and its bidiagonal
decomposition (7) can be obtained with HRA.
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The basis (Up,...,U,) of second kind Chebyshev polynomials is defined by
—1/2,—1/2

JEVR)
S22 )

l

Ui(x) == (i+1) i=0,...,n, (40)

where (J(()l/z’l/2)7 e ,J,El/z’l/z)) is the basis of Jacobi polynomials given in (11) with o =

B = 1/2. Using again Theorem 3, Remark 2, Lemma 3 and Remark 3, we can deduce the
following result.

Theorem 8 The basis (Uy,...,U,) of Chebyshev polynomials of second kind, defined by
(40), is STP on (1,e0). Given x; < -+ < Xu41, with x| > 1, the bidiagonal decomposition
(7) of the corresponding collocation matrix can be obtained with HRA. Moreover, for any
x > 1, the Wronskian matrix W (U, ...,U,)(x) is nonsingular and TP and its bidiagonal
decomposition (7) can be obtained with HRA.

In [19], induced by Jacobi polynomials, a new orthogonal system of rational functions

was introduced. For given o, 8 € R, the system (R(()a'ﬁ ), .. ,R,(ﬁ’ﬁ >) of rational Jacobi func-
tions is defined by
(eB) (yy . gl (K1Y
Ri (X) .—Ji (m) y l—O,...ﬂ’l7 (41)

where (J(()a’ﬁ ), .. ,J,(la’ﬁ >) is the basis (11) of Jacobi polynomials. Using again Theorem 3,
Remark 2, Lemma 3 and Remark 3, we can deduce the following result.

Theorem 9 For any o, 3 > —1, the basis (R(()a’B),..., E,a'm) of rational Jacobi functions
given in (41) is STP on (—oo,—1). Given x1 < -+ < X1, with x,11 < —1, the bidiagonal
decomposition (7) of the corresponding collocation matrix can be obtained with HRA.

Similar results can be deduced by considering the rational counterparts of the basis of
Legendre, Gegenbauer and the first and second kind Chebyshev polynomials.

Section 6 will show accurate results obtained when computing the eigenvalues, singular
values, or the solutions of some linear systems associated with the collocation and Wron-
skian matrices of all the mentioned orthogonal bases, using their corresponding bidiagonal
decompositions and the algorithms presented in [11] and [12].

6 Numerical experiments

Given a nonsingular and TP matrix whose bidiagonal factorization (7) can be computed
with HRA, the functions TNEigenvalues, TNSingularValues, TNInverseExpand and
TNSolve, available in the library TNTool of [12], can be used to compute with HRA its
eigenvalues, its singular values, its inverse matrix and the solution of some linear systems,
respectively. The function TNProduct is also avaliable in the mentioned library. If the bidi-
agonal decomposition (7) of two nonsingular and TP matrices A and B can be computed
with HRA, TNProduct computes with HRA the bidiagonal decomposition (7) of AB.
Using Theorem 2, we have implemented the Matlab function TNBDA (see Algorithm
1) providing the bidiagonal decomposition (20) of the lower triangular matrix A given in
(12), for given o, > —1 and n € N. Using TNBDA and taking into account Remark 1 and
Theorem 3, we have also implemented the Matlab function TNBDJ (see Algorithm 2) for the

computation of the bidiagonal decomposition (7) of the collocation matrix at x = (xi);':f,
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with 1 < xj < -++ < x,11, of the Jacobi polynomial basis corresponding to given o, 8 > —1.
Furthermore, using TNBDA and taking into account Proposition 2, Theorem 4 and Remark 3,
we have implemented the Matlab function TNBDWJ (see Algorithm 3), which provides the
bidiagonal decomposition (7) of the Wronskian matrix at x > 1 of the Jacobi polynomial
basis corresponding to given o, f > —1.

Moreover, using TNBDJ (TNBDWJ, respectively) and taking into account Lemma 3, we
have also implemented the Matlab functions TNBDG, TNBDT1 and TNBDT2 (TNBDWG, TNBDWT1,
TNBDWT2, respectively) for the computation of the bidiagonal decomposition (7) of the col-
location matrix at xi,...,x,+ (of the Wronskian matrix at x > 1, respectively) of the bases
(38) of Gegenbauer polynomials at a given A > —1/2, the basis (39) of Chebyshev poly-
nomials of the first kind and the basis (40) of Chebyshev polynomials of the second kind,
respectively.

Algorithm 1: Computation of the bidiagonal decomposition (20) of the matrix A in (12)

function BDA = TNBDA(«, B,n+ 1)
BDA=zeros(n+1,n+1)

for i :=2 to n+1
o(‘+1—1

aux 1=

T
BDA(i, 1) := aux
for j :=2 to i-1
aux 1= aux - %
BDA(i, j) := aux
end j
end i
BDA(1,1) =1
fori:=2ton+1
aux:=1
for k :=1toi-1
aux := aux - %
BDA(i,i) := aux
end k
end i

In order to check the accuracy of the solution of the above mentioned algebraic prob-
lems, obtained using the functions in [12] with the bidiagonal factorization (7), we have
considered collocation matrices M, at x = (xi);’ill satisfying 1 <x; < ... < Xx,4 and Wron-
skian matrices Wy, at x =2 or x = 50, for (n+ 1)-dimensional Jacobi, Legendre, Gegenbauer
and Chebyshev of the first and second kind polynomial bases. Additionally, we have also
considered collocation matrices at sequences x = ((x; — 1)/(x; + 1)), 11 such that x; < xp <
.-+ < Xpt1 < —1 of their rational counterpart bases. For the considered collocation matrices,
we have obtained the bidiagonal decomposition (7) by using TNBDJ, TNBDG, TNBDT1 and
TNBDT2. For the considered Wronskian matrices, the factorization (7) has been obtained
with the Matlab functions TNBDWJ, TNBDWG, TNBDWT1 and TNBDWT2. The software with the
numerical experiments will be provided by the authors upon request.

Tables 1, 2, 3 and 4 illustrate the 2-norm condition number of the mentioned collo-
cation and Wronskian matrices that have been obtained with the Mathematica command

Norm[A,2]- Norm[Inverse[A],2]. Observe that the condition number of the matrices
considerably increases with their dimension. Due to this ill conditioning, traditional meth-
ods do not achieve accurate solutions when solving the mentioned algebraic problems. The
following numerical results confirm this fact and illustrate the high accuracy obtained when
using the functions in [12] with the bidiagonal factorizations (7) obtained in this paper.
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Algorithm 2: Computation of the bidiagonal decomposition of the collocation matrix of Jacobi polynomials

function BDJ = TNBDJ(ct, B,x,n+ 1)
BDA =TNBDA(o, B,n+1)

BDB = zeros(n+1,n+1)
fori:=2ton+1

BDB(i,1):=1
aux =1
for j :=2 to i-1
. Xi = Xi—j+1
aux = aux - ———
Xi—1 —Xi—j
BDB(i, j) := aux
end j
end i
for i=1ton

aux:=(x;—1)/2
for j :=i+1 to n+1
BDB(i, j) := aux
end j
end i
aux =1
BDB(1,1) =1
fori:=2ton+1
aux := aux/2
for k :=1 to i-1
aux := aux- (x; — xi)
BDB(i,i) := aux
end k
end i
BDJ= TNProduct(BDB,(BDA)")

Algorithm 3: Computation of the bidiagonal decomposition of the Wronskian matrix of Jacobi polynomials

function BDWJ = TNBDWJ (o, f3,x,n+ 1)
BDA = TNBDA(ct, B,n+1)
BDWB = zeros(n+1,n+1)
for i=1 to n+1

for j :=i+1 to n+1

BDWB(i, j) := (x—1) /2

end j
end i
BDWB(1,1):=1
fori:=2ton+l

BDWB(i,i):= (i—1)-BDWB(i—1,i—1)/2
end i
BDW.J = TNProduct(BDW B, (BDA)T)

6.1 Eigenvalues and singular values

Let us recall that all considered matrices are STP and so, all their eigenvalues are positive
and distinct (see Theorem 6.2 of [1]). On the other hand, the eigenvalues of the mentioned
Wronskian matrices are integers and so, they can be exactly determined.

We have compared the eigenvalues and singular values obtained when using the Matlab
commands eig and svd, respectively, and those computed using the bidiagonal decomposi-
tions (7) in this paper and the Matlab functions TNEigenValues and TNSingularValues,
respectively. In order to determine the accuracy of the approximations, we have also cal-
culated the eigenvalues and singular values of the matrices by using Mathematica with a
precision of 100 digits and computed the relative errors corresponding to the approxima-
tions, considering the eigenvalues and singular values provided by Mathematica as exact.
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Table 1 From left to right, condition number of collocation matrices at x; =

1+i/(n+1),i=1,...,n+1, of the Jacobi

(with a = 1, B = 2), Legendre, Gegenbauer (with A = 1) and Chebyshev of the first and second kind polynomial bases.

Table 2 From left to right, condition number of collocation matrices at x = ((x; —1)/(x;+1))7,

Jacobi Legendre Gegenbauer | Chebyshev 1st kind Chebyshev 2nd kind
n+1 K2 (My) K2 (My) K2 (My) K2 (My) 2 (My)
10 | 42x107 | 53x10 12x10™ 14x10™ 1.8x10™
15 5.1 x 10%! 9.2 x 10%! 2.1 x 102 3.2x 102 2.1x10%
20 8.2 x 10% 1.9 x 103 4.4 x10% 7.7 % 10%° 4.4 x10%
25 1.5x10% | 4.4x10% 1.0 x 10% 2.0 x 10% 1.0 x 10%

"1 such that x;

3+

i/(n+1) of the Jacobi (with & = 1, B = 2), Legendre, Gegenbauer (with A = 1) and Chebyshev of the first and second kind
rational bases.

Rational Jacobi | Rational Legendre | Rational Gegenbauer | Rational Chebyshev 1st kind Rational Chebyshev 2nd kind
n+1 K2(My) 2 (My) K2 (My) K2 (My) K2 (My)
10 1.7 x 107 1.5 x 1077 3.7x 107 4.1x 107 3.7x 107
15 1.7 x 1077 2.2 x 107 5.5x 1077 7.6 x 1077 5.5x 1077
20 2.4 x10% 3.9 x 107 1.0 x 10 1.6 x 10 1.0 x 1038
25 4.0 x 109 8.2x10Y 2.1x10% 3.8x10% 2.1x10%

Table 3 From left to right, condition number of Wronskian matrices at xo = 2 of the Jacobi (with a = 1, § = 2), Legendre,
Gegenbauer (with A = 1) and Chebyshev of the first and second kind polynomial bases.

Jacobi Legendre | Gegenbauer | Chebyshev Ist kind Chebyshev 2nd kind
n+1 K2(Wn) K2(Wn) K2(Whn) 12(Wn) 2(Wha)
10 2.1x10° 5.8 x 10° 2.4 %107 1.6 x 107 2.4 %107
15 1.4x10'° | 3.6x 10" 1.9x 10'¢ 1.2x10'° 1.9x 10'°
20 5.9 x 103 1.4 x 103 8.1x 10% 5.6 x 103 8.4 x 107
25 | 8,8x 10" | 2.0x 10 1.4 x10% 9.2 x 103! 1.4 x10%

Table 4 From left to right, condition number of Wronskian matrices at xy = 50 of the Jacobi (with & = 1, § = 2), Legendre,
Gegenbauer (with A = 1) and Chebyshev of the first and second kind polynomial bases.

Jacobi Legendre | Gegenbauer | Chebyshev Ist kind Chebyshev 2nd kind
n+l K2(Wn) K2 (Whn) K2(Wn) K2(Wn) K2(Wn)
10 5.8 x 1077 1.0 x 107 5.6 x 1077 2.8 x 1077 5.6 x 1077
15 7.1x10% | 1.2x10% 7.7 x 104 4.0 x 104 7.7 x 104
20 1.5x10% | 2.6x10% 1.9 x 10% 1.0 x 107 1.9 x 10%
25 | 9.4x10% | 1.6x10% 1.3 % 10% 7.2x10% 1.3 x 108

We have computed the relative error of the approximations a of the exact eigenvalue and
singular value @ by means of the formula e = |a — d|/|al.

Tables 5, 6, 7, 8 and 9 show the relative errors of the approximations to the lowest eigen-

value and the lowest singular value obtained with both methods. Observe that the eigenval-
ues and singular values obtained using the factorization (7) are very accurate for all consid-
ered n, whereas the approximations of the eigenvalues and singular values obtained with the
Matlab commands eig and svd are not very accurate when n increases.

6.2 Inverse matrix

We have also used the Matlab function TNInverseExpand (see Section 4 of [17]) with
the factorization (7) proposed in this paper in order to compute the inverse of the con-
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Table S From left to right, relative errors when computing the lowest eigenvalue of collocation matrices atx; = 1+i/(n+1),
i=1,...,n+1, of Jacobi (with ot = 1, B = 2), Legendre, Gegenbauer (with A = 1) and Chebyshev of the first and second
kind polynomial bases.

Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
n+l eig TNEV eig TNEV eig TNEV eig TNEV eig TNEV
10 151071 54x107™ [ 33x10°7  69x10°® | 1.2x10°°  49x107™ | 13x10° 1.0x10°° [ 9.6x10°7 3.0x10°™®
15 1.1x10712 22%x107% | 3.0x107%  35x107'® | 54x10713  23x10715 3.9 35x1071 | 1.3x1070  2.7x1071
20 12x1071" 24%x107% | 77x1072  1.1x107'® | 43x10712  1.2x10713 5.9x 108 53x 1071 1.3x10° 4.1x 1071
25 13x10710  84x107% | 1.9x1071%  25x107'® | 1.8x10710 1.7x10715 1.5x10° 9.9x 1071 1.9 x 10° 1.7x 10713

Table 6 From left to right, relative errors when computing the lowest singular value of collocation matrices at x; = 1 +
i/(n+1),i=1,...,n+ 1, of the Jacobi (with o = 1, B = 2), Legendre, Gegenbauer (with A = 1) and Chebyshev of the first
and second kind polynomial bases.

Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
n+1 svd TNSV svd TNSV svd TNSV svd TNSV svd TNSV
10 21x10° 1 25x10°™® [ 5.9%x107T 591077 [ 1.6x10°5  1.2x107T 13x10°  14x10°® [ 95x1077 12x10° P
15 1.9x10712 47x10710 | 3.7x10713  1.5x1075 | 82x1073  1.1x1071 4.6 3.8x 1071 | 14x107!  34x1078
20 1L.6x107"  25x10715 | 43x107! 14x1075 | 54x107"  7.8x107'¢ 1.5x 10° 4.7 x 10715 1.5x10° 1.2x 1071
25 12x107° 74x107'% | 63x107  69x107'% | 9.1x107'" 1.8x10° 1 6.6 x 10° 12x 107 8.5 x 10? 1.5x 10713

Table 7 From left to right, relative errors when computing the lowest eigenvalue of the collocation matrices at x =
(G —1)/(x;+ 1))} such that x; = =3 +i/(n+ 1) of the Jacobi (with & = 1, B = 2), Legendre, Gegenbauer (with A = 1)

i=1

and Chebyshev of the first and second kind rational bases.

Rational Jacobi Rational Legendre Rational Gegenbauer Rational Chebyshev 1st kind | Rational Chebyshev 2nd kind
n+l eig TNEV eig TNEV eig TNEV eig TNEV eig TNEV
10 5.8 x 1071 88x 1077 | 49x10°™  73x10°® | 8.6x107" 8.6x 1071 9.6x 10717 49x10°T® 8.7x 1071 2.6x 1071
15 8.0x 107  44x107'% | 1.3x107*  42x107'¢ | 3.1x107" 1.7x10°5% | 35x10° 1 4.8x10°15 1.9x 10714 2.4 %1071
20 1.8x10712  82x107'% | 1.7x10°"2 1.6x 10710 | 2.1x 10712 L1x 107" | 1.2x 10712 2.1x 1071 2.0x 10712 1.3x 1071
25 1.6x 10~ 83x 1071 | 7.4x 107! 20x 1071 | 34x10712 1.8x 10710 | 7.1x 10712 6.8 x 1071 4.7x 1072 4.1x1071

Table 8 From left to right, relative errors when computing the lowest singular value of the collocation matrices at x =
((xi = 1)/(xi+ 1))} such that x; = =3 +i/(n+ 1) of the Jacobi (with & = 1, B = 2), Legendre, Gegenbauer (with A = 1)
and Chebyshev of the first and second kind rational bases.

Rational Jacobi Rational Legendre Rational Gegenbauer Rational Chebyshev 1st kind | Rational Chebyshev 2nd kind
n+l svd TNSV svd TNSV svd TNSV svd TNSV svd TNSV
10 28x 1077 57x1071° [ 94x10°7  54x10°° [ 1.8x10°°  1.9x10°7 [ 2.8x10°" 8.1x 1071 2.0x 1077 6.1x 10710
15 7.0x 10714 1L.Ix10755 | 9.9x10715 9.7x 10718 32x107%  25%x1071 | 44x1078 4.9 %1071 1.4x 10714 3.8x 1071
20 39x10712 94x107"7 | 22x10712 1.8x 10713 3.3x 10712 1.3x 10716 1.5x 10712 1.5x 1071 3.0x 10712 7.0x 10716
25 39x10712 24x1075 | 23x107! 1.6x1071 | 2.5x 107! 3.9%x1071 2.7x 1071 8.9x 1071 2.2x 1071 3.9%x 107

sidered collocation and Wronskian matrices. We have also computed their approximations
with the Matlab command inv. In order to determine the accuracy of the approximations,
we have calculated the inverse of these matrices by using Mathematica with a precision of
100 digits and computed the relative errors corresponding to the approximations, consider-
ing the inverse matrix provided by Mathematica as exact. We have computed the relative
error of each approximation A~! of the exact inverse matrix A~! by means of the formula
e =A™ A7 /A7

Tables 10, 11 and 12 show the relative errors of the approximations to the inverse of
the collocation and Wronskian matrices obtained with both methods. For all considered
cases, the approximation of the inverse matrix obtained by means of TNInverseExpand
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Table 9 From left to right, relative errors when computing the lowest singular value of Wronskian matrices at x) = 2 of
the Jacobi (with o = 1, B = 2), Legendre, Gegenbauer (with A = 1) and Chebyshev of the first and second kind polynomial

bases.

Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
n+1 svd TNSV svd TNSV svd TNSV svd TNSV svd TNSV
10 351077 6.1x10°7 | 15x107°  79x10°7 | 42x107° 661077 | 63x107° 95x10°1® [ 45x10° 6.6x1017
15 20x1072  1.7x10710 | 6.7x1073  23x10717 | 26x1072  2.0x107'0 | 25x1072  89x1071 | 27x1072 24x1071¢
20 1.6 3.2x 10716 1.3 3.6x 10716 2.2 6.0x 10717 3.7 1.6x1071 | 7.8x 107" 6.0x 10717
25 2.1 3.8 x 10716 4.1 6.3x 10716 2.9 1.6 x 101© 4.2 6.0 x 10716 2.9 1.4 x 10713

and the factorization (7) is very accurate, providing much better results than those obtained
by Matlab using the command inv.

Table 10 From left to right, relative errors when computing the inverse of collocation matrices at x; = 1 +i/(n+ 1),
i=1,...,n+1,of the Jacobi (with ot = 1, B = 2), Legendre, Gegenbauer (with A = 1) and Chebyshev of the first and second
kind polynomial bases.

Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
n+1 inv TNInvExp inv TNInvExp inv TNInvExp inv TNInvExp inv TNInvExp
10 14x1071  38x10° [ 40x107T 8.2x 10710 151075 54x10°T 13x10%  48x107™ | 9.5x10- 1.6x 1071
15 20x10712 75x10710 | 3.7x10°3  3.6x107'% | 83x10°13 1.9x 10715 0.8 33x10°1 1.6 x 107! 32x107
20 3.3x10°1 1.7x10755 | 46x10°! 49x10710 | 58x10°! 1.8x 10716 1.0 4.6x 10715 1.0 2.8x 10713
25 1.4x107° 46x10710 | 63x10710  45x107'% | 92x107'0  62x107'° 1.0 9.9x 1071 1.0 3.8x10°1

Table 11 From left to right, relative errors when computing the inverse of the collocation matrices at x =
(5 = 1)/(x;i+ 1)) such that x; = —3 +i/(n+ 1) of the Jacobi (with & = 1, B = 2), Legendre, Gegenbauer (with A = 1)

i=1

and Chebyshev of the first and second kind polynomial bases.

Rational Jacobi

Rational Legendre

Rational Gegenbauer

Rational Chebyshev 1st kind

Rational Chebyshev 2nd kind

n+1 inv TNInvExp inv TNInvExp inv TNInvExp inv TNInvExp inv TNInvExp
10 4.1x107T 85x 1077 | 41x107T 1.9x1071® | 14x107™  29x107° [ 5.1x10°"7 3.9x 10710 5710717 3.0x10°T®
15 7.0x107%  22x107' | 1.0x107  3.0x107'% | 32x107"%  25%x107% | 44x107P 3.7x 10713 l4x10714 2.6x 10713
20 41x10712  7.0x107'% | 23x107"2  32x107'% | 33x1072  53x107'° | 1.5x10°12 29x10°1 3.0x 10712 8.2x 10716
25 14x107"  59x107'0 | 25x 107" L1x1075 | 2.1x107 " 1.0x 1075 | 2.8x 107! 7.8x10°1 2.5x 1071 2.4x10°1

Table 12 From left to right, relative errors when computing the inverse of Wronskian matrices at xo = 50 of the Jacobi
(with @ = 1, B = 2), Legendre, Gegenbauer (with A = 1) and Chebyshev of the first and second kind polynomial bases.

Jacobi Legendre Gegenbauer Chebyshev of the first kind | Chebyshev of the second kind
n+l inv TNInvExp inv TNInvExp inv TNInvExp inv TNInvExp inv TNInvExp
10 1.6x10°7  17x10°7 [ 1.4x10°%  1.8x107° | 1.1x10° B  75x10°7 [ 1.3x10°™  22x10°® [ 80x10° ™ 6.0 x 10710
15 7.8x 107" 45x107"7 | 22x107" 2.0x107'% | 22x 107" 41x107" | 59x107" 4.6x 10713 4.6x 1071 4.4x 10715
20 7.3x107° 14x107'® | 83x10™°  3.9x10°'¢ L.1x1078 12x10°5% | 6.6x1071°  33x107"5 | 6.7x1071° 1.9x 10713
25 2.4x107¢ 1.0x107' | 53%x107° 50x107'% | 8.0x1077 46x10°" 1.4x 1077 8.2x 1071 3.7x 1077 4.7x 10715
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6.3 Linear systems

We shall illustrate the accuracy of the solutions of linear systems computed by using the
bidiagonal factorization (7). We have obtained the solution of the linear systems using Math-
ematica with a precision of 100 digits and considered this solution exact. Then we have also
computed with Matlab two approximations, the first one using the previous functions and
the second one using the Matlab command \. We have computed the relative error of ev-
ery approximation ¢ = (¢1,...,Cy+1) of the solution ¢ of the linear system by means of the
formula e = ||c — é2/]|¢]|2-

Tables 13, 14 and 15 show the relative errors when solving the linear systems M,,c, = d,
and W,.c, =d, where d, = ((—1)""'d;) <j<yy1 and d;, i = 1,...,n+ 1, random integer val-
ues. The computed results confirm the accuracy of the proposed method that, clearly, keeps
the accuracy when the dimension of the problem increases. In contrast, when 7 increases the
condition number of the considered matrices considerably increases and that explains the
bad results obtained with the Matlab command \.

Table 13 From left to right, relative errors when solving Mpcn = dp with collocation matrices at x; = 1+i/(n+ 1),
i=1,...,n+1 of the Jacobi (with @ = 1, B = 2), Legendre, Gegenbauer (with A = 1) and Chebyshev of the first and second
kind polynomial bases.

Table 14 From left to right, relative errors when solving Mpcn = dy, with collocation matrices atx = ((x; — 1) /(x; + 1)1}

Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
n+1 M, \ d, TNsolve M, \d, TNsolve M, \d, TNsolve M, \d, TNsolve M, \d, TNsolve
10 14x1071  41x107 [ 6.6x107T 9.4x 10710 1.5x10°5  54x107T 13x10°  48x107™ | 9.5x10- 6.1x10°T
15 20x10712 65x10710 | 3.7x10°13 1.4x107'% | 83x10°13 1.9x10°5 | 8.2x107! 33x1071 1.6x 107! 3.0x 1071
20 3.3x 1071 1.2x10715 | 46x107! 3.9%x10716 | 5.8x 107! 1.8x 10716 1.0 4.6x 10715 1.0 2.7x 10713
25 1.4x107° 54x1071° | 63x10710  23x107'¢ | 92x10710  62x107'° 1.0 9.9x 1071 1.0 1.1x1071

ntl

such that x; = —3+i/(n+ 1) of the Jacobi (with & = 1, B = 2), Legendre, Gegenbauer (with A = 1) and Chebyshev of the
first and second kind rational bases.

Rational Jacobi Rational Legendre Rational Gegenbauer Rational Chebyshev 1st kind | Rational Chebyshev 2nd kind
n+l Ap\dy TNsolve An\dy TNsolve An\dy TNsolve Ap\d, TNsolve An\dp TNsolve
10 2.9x 107" LIx107 [ 7.9x107T 38x 1071 [ 12x10°  21x10° 1 | 55x10°"7 8.48x 10°1° 6.3x 107" 2.1x 1071
15 71x107%  19x107'% | 1.0x 107" 1.9x 10710 | 32x107  24x107"5 | 44x10°1 3.6x 10713 14x10714 2.8x10713
20 41x1072 43x107' | 23x1072  3.0x107'% | 33x107'2 3.7x107'® | 1.5x10°12 2.5%x10713 3.4x10712 5.6x 10710
25 14x107"  73x107'% | 25x 107! 12x10°5% | 2.8x 107! 1.7x10°5 | 2.8x 107! 7.3x10713 2.5%x 10711 2.7x10713

Table 15 From left to right, relative errors when solving Wye, = dy, at xo = 50 of the Jacobi (with o = 1, B = 2), Legendre,
Gegenbauer (with A = 1) and Chebyshev of the first and second kind polynomial bases.

Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
n+1 Wi\ dn TNsolve Wi\ dn TNsolve Wi\ dn TNsolve Wi\ dn TNsolve Wi\ dy TNsolve
10 30x10°  1TIx107® [ 43x10°™  23x10° 1 | 21x10°™  45x10°T 12x107™  2.6x107° [ 45x107°  6.6x107T
15 43x107'"" 95x107"7 | 58x107'2  2.8x107'% | 1.5x 107! 32x1075% | 59x107%  4.6x1075 | 27x1072  24x107'°
20 4.6x107° 1.5x 10716 6.3x107° 6.1x 10716 5.6x107° 1.3x10°1 23%x107° 26x1071% | 7.8x 107! 6.0x 10717
25 6.2x107° 1.4x 10716 4.4x107° 42x 10716 1.2x107¢ 7.8x 10716 2.1x1077 45x 10715 2.9 1.4x1071
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