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Abstract In this paper an accurate method to construct the bidiagonal factorization of col-
location and Wronskian matrices of Jacobi polynomials is obtained and used to compute
with high relative accuracy their eigenvalues, singular values and inverses. The particular
cases of collocation and Wronskian matrices of Legendre polynomials, Gegenbauer polyno-
mials, Chebyshev polynomials of the first and second kind and rational Jacobi polynomials
are considered. Numerical examples are included.
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1 Introduction

Jacobi polynomials J(α,β )
n (x) (see Section 3) form a class of classical orthogonal polynomi-

als, which includes many important families of orthogonal polynomials such as Legendre
and Chebyshev polynomials (see Section 5). In fact, Jacobi polynomials are orthogonal with
respect to the weight (1− x)α(1+ x)β on the interval [−1,1] and present many useful ap-
plications. For instance, to approximation theory, to Gaussian quadrature to numerically
compute integrals, to differential equations or to physical applications (cf. [2], [13]).

Let us recall that, given a system of functions (u0, . . . ,un), its collocation matrix at points
x1 < · · ·< xn+1 is given by (u j−1(xi))1≤i, j≤n+1. This paper deals with the accurate computa-
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tion when using collocation and Wronskian matrices (see Section 3) of Jacobi polynomials
on (1,∞). As shown in this paper, for these matrices many algebraic computations (such as
the computation of the inverse, of all the eigenvalues and singular values, or the solutions of
some linear systems) can be performed with high relative accuracy (HRA, see Section 2). Up
to now, this has been obtained only for a few classes of structured matrices. Among them we
can mention the collocation matrices of Bernstein polynomials [16], of Laguerre polynomi-
als [3] and of Bessel functions [4] as well as the Wronskian matrices of the monomials and
of exponential polynomials [15]. In fact, this last paper was the unique paper guaranteeing
HRA for some Wronskian matrices.

Crucial facts to derive our results have been to prove the strict total positivity (see Sec-
tion 2) of the collocation matrices of Jacobi polynomials on (1,∞) and the total positivity
of their Wronskian matrices. Then the bidiagonal factorization with HRA has been obtained
for these matrices and the algorithms presented in [12] can be used for the algebraic com-
putations mentioned above with HRA.

As mentioned before, accurate computations with collocation matrices of other interest-
ing bases of orthogonal polynomials, such as Laguerre polynomials or Bessel polynomials,
have been already achieved (see [3] and [4]). The analysis of the domain where the corre-
sponding collocation or Wroskian matrices, or closely related matrices, are totally positive
helps to obtain their bidiagonal factorization and the solution of algebraic problems with
HRA for the parameters in this domain. We shall see that for the collocation or Wronskian
matrices of Jacobi bases, this domain lies outside the interval where the polynomials are
orthogonal and have their zeros.

The paper is organized as follows. Section 2 presents some basic concepts and results
related to the bidiagonal factorization of totally positive matrices and with HRA. In Section
3, the strict total positivity and bidiagonal factorization of the collocation matrices of Jacobi
polynomials on (1,∞) are obtained. In Section 4, the total positivity and bidiagonal factor-
ization of the corresponding Wronskian matrices are derived. Section 5 particularizes the
results for some well known families of Jacobi polynomials: Legendre polynomials, Gegen-
bauer polynomials, Chebyshev polynomials of the first and second kind and rational Jacobi
polynomials. Section 6 presents numerical examples confirming the theoretical results for
the computation of eigenvalues, singular values, inverses, and the solution of linear systems
with some matrices used in this paper.

2 Notations and auxiliary results

As usual, given an n-times continuously differentiable function f and x in its parameter
domain, f ′(x) denotes the first derivative of f at x and, for any i ≤ n, f (i)(x) denotes the
i-th derivative of f at x. Let us recall that for a given basis (u0, . . . ,un) of a space of n-times
continuously differentiable functions, defined on a real interval I and x ∈ I, the Wronskian
matrix at x is defined by

W (u0, . . . ,un)(x) := (u(i−1)
j−1 (x))i, j=1,...,n+1.

A matrix is totally positive: TP (respectively, strictly totally positive: STP) if all its
minors are nonnegative (respectively, positive). Two recent books on these matrices are [6,
18], where many applications of these matrices are presented, as well as in [1].

Neville elimination is an alternative procedure to Gaussian elimination and has been
used to characterize TP and STP matrices. Given a nonsingular matrix A = (ai, j)1≤i, j≤n+1,
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Neville elimination computes a matricial sequence

A(1) := A→ A(2)→ ·· · → A(n+1), (1)

such that, for 1≤ k≤ n, A(k+1) = (a(k+1)
i, j )1≤i, j≤n+1 has zeros below its main diagonal in the

k first columns and is computed from A(k) = (a(k)i, j )1≤i, j≤n+1 by:

a(k+1)
i, j :=


a(k)i, j , if 1≤ i≤ k,

a(k)i, j −
a(k)i,k

a(k)i−1,k

a(k)i−1, j, if k+1≤ i, j ≤ n+1 and a(k)i−1,k 6= 0,

a(k)i, j , if k+1≤ i≤ n+1 and a(k)i−1,k = 0.

(2)

At the end of the Neville elimination, an upper triangular matrix

U := A(n+1) (3)

is obtained. In this process, the element

pi, j := a( j)
i, j , 1≤ j ≤ i≤ n+1, (4)

is called the (i, j) pivot and, in particular, pi,i is a diagonal pivot of the Neville elimination
of A. If all the pivots are nonzero then Neville elimination can be carried out without row
exchanges. In this case, by Lemma 2.6 of [7],

pi,1 = ai,1, 1≤ i≤ n+1,

pi, j =
detA[i− j+1, . . . , i|1, . . . , j]

detA[i− j+1, . . . , i−1|1, . . . , j−1]
, 1 < j ≤ i≤ n+1, (5)

where, given increasing sequences of integers α and β , A[α|β ] denotes the submatrix of A
containing rows of places α and columns of places β .

Moreover,

mi, j :=

{
a( j)

i, j /a( j)
i−1, j = pi, j/pi−1, j, if a( j)

i−1, j 6= 0,

0, if a( j)
i−1, j = 0,

, 1≤ j < i≤ n+1, (6)

is called the (i, j) multiplier of the Neville elimination of A.
Neville elimination has been used to characterize TP and STP matrices (see [7–9]). The

following characterization can be derived from Corollary 5.5 of [7].

Theorem 1 Let A be a nonsingular matrix. Then A is TP if and only if the Neville elimina-
tion of A and UT , where U is the upper triangular matrix in (3), can be performed without
row exchanges and all the pivots of both Neville eliminations are nonnegative.

By Theorem 4.2 and the arguments of p.116 of [9], a nonsingular TP matrix A =
(ai, j)1≤i, j≤n+1 admits a factorization of the form

A = FnFn−1 · · ·F1DG1 · · ·Gn−1Gn, (7)

where Fi and Gi are the TP, lower and upper triangular bidiagonal matrices given by
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Fi =



1
0 1

. . .
. . .

0 1
mi+1,1 1

mi+2,2 1
. . .

. . .
mn+1,n+1−i 1


, GT

i =



1
0 1

. . .
. . .

0 1
m̃i+1,1 1

m̃i+2,2 1
. . .

. . .
m̃n+1,n+1−i 1


, (8)

and D = diag(p1,1, p2,2, . . . , pn+1,n+1) has positive diagonal entries. The diagonal entries pi,i
of D are the diagonal pivots of the Neville elimination of A and the elements mi, j and m̃i, j
are nonnegative and coincide with the multipliers of the Neville elimination of A and AT ,
respectively. If, in addition, the entries mi j, m̃i j satisfy

mi j = 0 ⇒ mh j = 0, ∀h > i

and
m̃i j = 0 ⇒ m̃ik = 0, ∀k > j,

then the decomposition (7) is unique. We shall denote the bidiagonal decomposition (7) of
a TP matrix A as BD(A) (see [11]).

Given BD(A), using the results in [7–9], a bidiagonal decomposition of A−1 can be
computed as

A−1 = G̃1G̃2 · · · G̃nD−1F̃n · · · F̃2F̃1, (9)

where F̃i and G̃i, i = 1, . . . ,n, are the lower and upper triangular bidiagonal matrices of the
form of Fi and Gi, respectively, but replacing the off-diagonal entries {mi+1,1, . . . ,mn+1,n+1−i}
and {m̃i+1,1, . . . , m̃n+1,n+1−i} by {−mi+1,i, . . . ,−mn+1,i} and {−m̃i+1,i, . . . ,−m̃n+1,i}, respec-
tively.

Let us observe that if A is a nonsingular and TP matrix, then AT is also nonsingular and
TP. Moreover, the bidiagonal decomposition of AT can be computed as

AT = GT
n GT

n−1 · · ·GT
1 DFT

1 · · ·FT
n−1FT

n , (10)

where Fi and Gi, i = 1, . . . ,n, are the lower and upper triangular bidiagonal matrices given
in the bidiagonal factorization BD(A), that is,

BD(AT ) = BD(A)T .

Finally, let us recall that a real value x is obtained with high relative accuracy (HRA) if
the relative error of the computed value x̃ satisfies

‖x− x̃‖
‖x‖

< Ku,

where K is a positive constant independent of the arithmetic precision and u is the unit
round-off. HRA implies that the relative errors of the computations are of the order of the
machine precision. An algorithm can be computed with HRA when it only uses products,
quotients, sums of numbers of the same sign, subtractions of numbers of opposite sign or
subtraction of initial data (cf. [5], [10]).

In [11] it was shown that if BD(A), the bidiagonal factorization (7) of a nonsingular TP
matrix A, is computed with HRA then we can also compute with HRA its eigenvalues and
singular values, the matrix A−1 and even the solution of Ax = b for vectors b with alternating
signs.
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3 Total positivity and factorizations of collocation matrices of Jacobi polynomials

Given α,β ∈ R, the basis of Jacobi polynomials of the space Pn of polynomials of degree
less than or equal to n is (J(α,β )

0 , . . . ,J(α,β )
n ) with

J(α,β )
i (x) :=

Γ (α + i+1)
i!Γ (α +β + i+1)

i

∑
k=0

(
i
k

)
Γ (α +β + i+ k+1)

Γ (α + k+1)

(
x−1

2

)k

, i = 0, . . . ,n.

(11)
Let us recall that Jacobi polynomials are orthogonal on the interval [−1,1] with respect to
the weight (1− x)α(1+ x)β .

Let us consider the lower triangular matrix A = (ai j)1≤i, j≤n+1 given by

ai, j :=

{
1

( j−1)!(i− j)! ∏
i−1
k= j(α + k)∏

j−1
k=1(α +β + i+ k−1), if i≥ j,

0, if i < j.
(12)

It can be checked that

(J(α,β )
0 , . . . ,J(α,β )

n )T = A(v0, . . . ,vn)
T , (13)

where (v0, . . . ,vn) is the basis of Pn such that

vi(x) :=
(

x−1
2

)i

, i = 0, . . . ,n. (14)

The following result provides the multipliers and the diagonal pivots of the Neville elim-
ination of the change of basis matrix A described in (12) and proves that this matrix is non-
singular and TP.

Theorem 2 Let A = (ai j)1≤i, j≤n+1 be the lower triangular matrix defined in (12). Then the
multipliers mi, j and diagonal pivots pi,i of the Neville elimination of A are given by

mi,1 :=
α + i−1

i−1
, mi, j :=

α +β +2i− j
α +β +2i− j−2

mi, j−1, 1 < j < i≤ n+1, 1 < i≤ n+1,

(15)

pi,i :=
i−1

∏
r=1

(α +β +2i− r−1)
(i− r)

, 1≤ i≤ n+1.

Moreover, for any α,β >−1, A is nonsingular and TP.

Proof Let A(k) := (a(k)i j )1≥i, j≥n+1, k = 2, . . . ,n+1, be the matrices obtained after k−1 steps
of the Neville elimination of A. First, let us see by induction on k that

a(k)i, j =
1

( j− k)!(i− j)!

k−1

∏
r=1

(α +β +2i− r−1)
(i− r)

i−1

∏
r= j

(α + r)
j−k

∏
r=1

(α +β + i+ r−1), (16)
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for 1≤ j < i≤ n+1. For k = 2, taking into account that a(2)i, j = ai, j−
ai,1

ai−1,1
ai−1, j, we have

a(2)i, j = ai, j−
α + i−1

i−1
ai−1, j

=
1

( j−1)!(i− j−1)!

i−1

∏
r= j

(α + r)
j−2

∏
r=1

(α +β + i+ r−1)
(

α +β + i+ j−2
i− j

− α +β + i−1
i−1

)

=
1

( j−1)!(i− j−1)!

i−1

∏
r= j

(α + r)
j−2

∏
r=1

(α +β + i+ r−1)
(
( j−1)(α +β +2i−2)

(i− j)(i−1)

)

=
1

( j−2)!(i− j)!
(α +β +2i−2)

(i−1)

i−1

∏
r= j

(α + r)
j−2

∏
r=1

(α +β + i+ r−1), 1≤ j < i≤ n+1.

Therefore formula (16) holds for k = 2. Let us now suppose that (16) holds for some k ∈

{2, . . . ,n}. Taking into account that a(k+1)
i, j = a(k)i, j −

a(k)i,k

a(k)i−1,k

a(k)i−1, j, we have

a(k+1)
i, j = a(k)i, j −

1
i−1

k−1

∏
r=1

(α +β +2i− r−1)
(α +β +2i− r−3)

(α + i−1)a(k)i−1, j.

Then, by defining

C1 :=
α +β + i+ j− k−1

i− j
− α +β + i−1

i− k
=

( j− k)(α +β +2i− k−1)
(i− j)(i− k)

,

we can write

a(k+1)
i, j =

1
( j− k)!(i− j−1)!

k−1

∏
r=1

(α +β +2i− r−1)
(i− r)

i−1

∏
r= j

(α + r)
j−k−1

∏
r=1

(α +β + i+ r−1)C1

=
1

( j− k−1)!(i− j)!

k

∏
r=1

(α +β +2i− r−1)
(i− r)

i−1

∏
r= j

(α + r)
j−k−1

∏
r=1

(α +β + i+ r−1),

and formula (16) also holds for k+1.
Now, by (4) and (16), we can easily deduce that the pivots pi, j of the Neville elimination

of A satisfy

pi, j =
1

(i− j)!

j−1

∏
r=1

(α +β +2i− r−1)
(i− r)

i−1

∏
r= j

(α + r), 1≤ j < i≤ n+1, (17)

and, for the particular case i = j,

pi,i =
i−1

∏
r=1

(α +β +2i− r−1)
(i− r)

, 1≤ i≤ n+1. (18)

Let us observe that, by formula (17), the pivots of the Neville elimination of A are
nonzero and so, this elimination can be performed without row exchanges. Besides, since A
is lower triangular with nonzero diagonal entries, A is nonsingular and the obtained matrix
U (see (3)) is diagonal and so, the Neville elimination of UT does not perform any operation.
Then, by Theorem 1, we can conclude that A is nonsingular and TP for any α,β >−1.
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Finally, using (6) and (18), the multipliers mi, j can be written as

mi, j =
(i−1− j)!(α + i−1)

(i− j)!

j−1

∏
r=1

(α +β +2i− r−1)(i− r−1)
(α +β +2i− r−3)(i− r)

,

and we can deduce that

mi,1 =
α + i−1

i−1
, 1 < i≤ n+1, (19)

mi, j =
α +β +2i− j

α +β +2i− j−2
mi, j−1, 1 < j < i≤ n+1. ut

Corollary 1 Let A = (ai j)1≤i, j≤n+1 be the lower triangular matrix defined by (12). Then,
for any α,β >−1, the matrix A admits a factorization of the form

A = FnFn−1 · · ·F1D, (20)

where Fi, i = 1, . . . ,n, is the lower triangular, bidiagonal matrix given by (8) and D =
diag(p1,1, p2,2, . . . , pn+1,n+1). The entries mi, j and pi,i can be obtained from (15).

Let us observe that the factorization (20) corresponds to BD(A), the bidiagonal factorization
(7) of A. Furthermore, for any α,β >−1, BD(A) can be computed with HRA, since it does
not require subtractions (except of the initial data).

Remark 1 It is well known that the monomial basis (1, t, . . . , tn) of Pn is STP on (0,∞).
Moreover, given a sequence of positive parameters 0 < t0 < · · · < tn, the bidiagonal factor-
ization (7) of the corresponding STP collocation matrix can be described by

mi, j =
∏

j−1
k=1(ti− ti−k)

∏
j
k=2(ti−1− ti−k)

, m̂i, j = t j, 1≤ j < i≤ n+1,

pi,i =
i−1

∏
k=1

(ti− tk), 1≤ i≤ n+1 (21)

(see [10] or Theorem 3 of [14]). Consequently, the basis (v0, . . . ,vn) defined in (14) is also
STP on (1,∞). Furthermore, given 1 < x1 < · · · < xn+1, by considering ti := (xi − 1)/2,
i = 1, . . . ,n+ 1, and using the bidiagonal factorization (21) for the collocation matrix of
the monomial basis at 0 < t1 < · · · < tn+1, it can be easily deduced that the bidiagonal
decomposition (7) of the collocation matrix of (v0, . . . ,vn) at x1 < · · ·< xn+1 is given by:

mi, j =
∏

j−1
k=1(xi− xi−k)

∏
j
k=2(xi−1− xi−k)

, m̂i, j = (x j−1)/2, 1≤ j < i≤ n+1,

pi,i =
1

2i−1

i−1

∏
k=1

(xi− xk), 1≤ i≤ n+1. (22)

The following result proves that, for any α,β >−1, the collocation matrix of the basis
(11) of Jacobi polynomials at 1 < x1 < · · ·< xn+1,

MJ :=
(

J(α,β )
j−1 (xi)

)
1≤i, j≤n+1

, (23)

is STP.
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Theorem 3 Given α,β > −1, the corresponding basis of Jacobi polynomials defined in
(11) is STP on (1,∞).

Proof Given a sequence of parameters 1 < x1 < · · ·< xn+1, by formula (13), the collocation
matrix (23) of the Jacobi polynomial basis satisfies

MJ = MAT , (24)

where M is the collocation matrix at 1 < x1 < · · ·< xn+1 of the basis (v0, . . . ,vn) defined in
(14) and A is the lower triangular matrix defined by (12).

Clearly, by Remark 1, M is a STP matrix. On the other hand, by Theorem 2, given
α,β > −1, the lower triangular matrix A defined by (12) is nonsingular and TP. So, AT is
also a nonsingular and TP matrix. As a direct consequence of these facts and taking into
account that, by Theorem 3.1 of [1], the product of a STP matrix and a nonsingular TP
matrix is a STP matrix, we can conclude that the collocation matrix (23) is STP. ut

Remark 2 By Section 4 of [10], we can transpose the bidiagonal decomposition (20) of the
lower triangular and TP matrix A to obtain the corresponding bidiagonal decompositon of AT

(see (10)). Clearly, since BD(A) can be computed with HRA, BD(AT ) can be also computed
with HRA. Moreover, the collocation matrix of the basis (v0, . . . ,vn) defined in (14) at nodes
1 < x1 < .. . < xn+1 is STP and its corresponding bidiagonal decomposition can be obtained
with HRA (see (22)). If the bidiagonal decompositions of two nonsingular, TP matrices
can be computed with HRA, using Algorithm 5.1 of [11], we can also obtain with HRA
the bidiagonal decomposition of the nonsingular and TP product matrix. Consequently, we
can derive with HRA the bidiagonal matrices (8) of the bidiagonal factorization (7) of the
collocation matrices of Jacobi polynomials and thus, we can also compute with HRA its
inverse matrix, its eigenvalues and singular values as well as the solutions of some linear
systems.

In Section 6, Algorithm 2 provides the bidiagonal decomposition of the collocation ma-
trix (23) of the basis of Jacobi polynomials. Moreover, Section 6 illustrates accurate results
obtained when computing algebraic problems using this algorithm and the algorithms pre-
sented in [11] and [12].

4 Total positivity and factorizations of Wronskian matrices of Jacobi polynomials

Given x ∈ R, let W (J(α,β )
0 , . . . ,J(α,β )

n )(x) be the Wronskian matrix at x of the basis (11) of
Jacobi polynomials. Using formula (13), it can be checked that

W (J(α,β )
0 , . . . ,J(α,β )

n )(x) =W (v0, . . . ,vn)(x)AT , (25)

where W (v0, . . . ,vn)(x) is the Wronskian matrix of the basis (v0, . . . ,vn) given in (14) and A
is the lower triangular matrix defined by (12).

In Corollary 1 of [15] it was proved that the Wronskian matrix at any positive real value
of the monomial basis (1,x, . . . ,xn) of the space of polynomials Pn is TP on (0,∞). It was
also shown that this Wronskian matrix and its inverse can be computed with HRA. Now we
are going to extend these results to the basis (`0, . . . , `n) given by

`i(x) = (ax+b)i, x ∈ R, i = 0, . . . ,n, (26)

where a,b ∈ R with a > 0. First let us prove the following auxiliary result.
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Lemma 1 The basis (`0, . . . , `n) defined in (26) satisfies

1
aii!

`
(i)
j (x) =

1
ai−1(i−1)!

`
(i−1)
j−1 (x)+

ax+b
aii!

`
(i)
j−1(x), 1≤ i, j ≤ n. (27)

Proof We prove the result by induction on i. Since ` j(x) = (ax+b)` j−1(x), we have

`′j(x) = a` j−1(x)+(ax+b)`′j−1(x), x ∈ R,

and so, formula (27) holds for i = 1 and 1≤ j ≤ n. If (27) holds for i > 1, we can write

1
aii!

`
(i+1)
j (x) =

a(i+1)
aii!

`
(i)
j−1(x)+

ax+b
aii!

`
(i+1)
j−1 (x),

and deduce that

1
ai+1(i+1)!

`
(i+1)
j (x) =

1
aii!

`
(i)
j−1(x)+

ax+b
ai+1(i+1)!

`
(i+1)
j−1 (x). ut

Now, for a given x ∈ R, k,n ∈ N with k ≤ n, let Uk,n = (u(k)i, j )1≤i, j≤n+1 be the upper
triangular, bidiagonal matrix with unit diagonal entries, such that

u(k)i,i+1 := 0, i = 1, . . . ,k−1, u(k)i,i+1 := ax+b, i = k, . . . ,n. (28)

The following result shows that the product matrix U1,n · · ·Un,n coincides, up to a positive
scaling, with the Wronskian matrix of (`0, `1, . . . , `n) at x.

Proposition 1 For a given x ∈ R and n ∈ N, let

Un :=U1,n · · ·Un,n,

where Uk,n, k = 1, . . . ,n, are the upper triangular, bidiagonal matrices with unit diagonal
entries satisfying (28). Then Un = (ui, j)1≤i, j≤n+1 is an upper triangular matrix and

ui, j =
1

ai−1(i−1)!
`
(i−1)
j−1 (x), 1≤ i, j ≤ n+1. (29)

Proof First, let us observe that Un is the product of upper triangular, bidiagonal matrices
and so, it is an upper triangular matrix. Now, we prove (29) by induction on n. For n = 1,

U1 =U1,1 =

(
1 ax+b
0 1

)
and (29) clearly holds. Let us observe that

Un+1 :=U1,n+1 · · ·Un+1,n+1 =U1,n+1Ũn+1,

where Ũn+1 :=U2,n+1 · · ·Un+1,n+1 satisfies Ũn+1 = (ũi, j)1≤i, j≤n+2 with ũi,1 = ũ1,i = δ1,i, that
is, δ1,1 = 1 and δ1,i = 0 for i = 2, . . . ,n+2, and Ũn+1[2, . . . ,n+2|2, . . . ,n+2] =U1,n · · ·Un,n.
Let us now suppose that (29) holds for n≥ 1. Then we have that

ũi, j =
1

ai−2(i−2)!
`
(i−2)
j−2 (x), 2≤ i, j ≤ n+2.
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Taking into account that Un+1 = U1,n+1Ũn+1 and using Lemma 1, we deduce that Un+1 =
(ui, j)1≤i, j≤n+2 satisfies

ui, j = ũi, j +(ax+b)ũi+1, j =
1

ai−2(i−2)!
`
(i−2)
j−2 (x)+

ax+b
ai−1(i−1)!

`
(i−1)
j−2 (x)

=
1

ai−1(i−1)!
`
(i−1)
j−1 (x), 1≤ i, j ≤ n+2. ut

As a direct consequence of the previous result, we can provide the bidiagonal factoriza-
tion (7) of the Wronskian matrix of (`0, . . . , `n).

Proposition 2 Let n∈N and (`0, . . . , `n) be the basis given in (26). Then, for any x >−b/a,
the Wronskian matrix W (`0, . . . , `n)(x) is TP and

W (`0, . . . , `n)(x) =


0!

a1 1!
. . .

an n!

U1,n · · ·Un,n, (30)

where Uk,n, k = 1, . . . ,n, are the upper triangular, bidiagonal matrices with unit diagonal
entries satisfying (28).

Let us observe that the bidiagonal factorization (7) of W (`0, . . . , `n)(x) is given by (30).
Clearly, this factorization can be computed with HRA for any x >−b/a and, consequently,
using (9), its inverse matrix can also be computed with HRA as stated in the following result.

Proposition 3 Let W be the Wronskian matrix at x >−b/a of the basis (`0, . . . , `n) given in
(26). Then W−1 can be computed with HRA.

Now, using Proposition 2, we can immediately deduce the following factorization of the
Wronskian matrix at x ∈ R of the basis (v0, . . . ,vn) in (14),

W (v0, . . . ,vn)(x) :=



1
20 0!

1
21 1!

. . .
1
2n n!


U1,n · · ·Un,n, (31)

where Uk,n = (u(k)i, j )1≤i, j≤n+1, k = 1, . . . ,n, is the upper triangular, bidiagonal matrix with
unit diagonal entries satisfying

u(k)i,i+1 := 0, i = 1, . . . ,k−1, u(k)i,i+1 := (x−1)/2, i = k, . . . ,n. (32)

Moreover, if x > 1, W (v0, . . . ,vn)(x) is a nonsingular and TP matrix. Then, taking into ac-
count (25), the fact that AT is a nonsingular and TP matrix (see Theorem 2) and that the
product of nonsingular TP matrices is a nonsingular and TP matrix (Theorem 3.1 of [1]),
we deduce the following result on the total positivity of the Wronskian matrices of Jacobi
polynomials.
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Theorem 4 Let n ∈ N and (J(α,β )
0 , . . . ,J(α,β )

n ) be the Jacobi polynomial basis given in (11).

For any α,β > −1, the Wronskian matrix W (J(α,β )
0 , . . . ,J(α,β )

n )(x) at x > 1 is nonsingular
and TP.

Remark 3 Taking into account (10), we can obtain the bidiagonal decomposition (20) of
the matrix AT in (25). Clearly, since BD(A) can be computed with HRA, BD(AT ) can be
also computed with HRA. On the other hand, the Wronskian matrix of the basis (v0, . . . ,vn)
defined in (14) is nonsingular and TP at any x > 1. Moreover, its corresponding bidiagonal
decomposition (22) can be obtained with HRA. By Algorithm 5.1 of [11], if the bidiago-
nal decompositions of two nonsingular and TP matrices can be computed with HRA, then
the bidiagonal decomposition of the product matrix can be also obtained with HRA. Conse-
quently, the Wronskian matrix of the basis (11) of Jacobi polynomials can be computed with
HRA and thus, we can compute with HRA its inverse matrix, its eigenvalues and singular
values and the solutions of some linear systems.

In Section 6, Algorithm 3 provides the bidiagonal decomposition (7) of the Wronskian
matrix (25) of the basis of Jacobi polynomials. Section 6 shows accurate results obtained
when computing the mentioned algebraic problems using this algorithm and the algorithms
presented in [11] and [12].

5 Collocation and Wronskian matrices of well known orthogonal bases

In this section we are going to see that the results on properties and factorizations of col-
location and Wronskian matrices of Jacobi polynomials obtained in the previous sections
can be used to derive properties of collocation and Wronskian matrices of other well known
orthogonal bases.

The following auxiliary results can be easily checked and will be useful to derive the
bidiagonal decomposition of matrices obtained by scaling with a diagonal matrix a nonsin-
gular and TP matrix.

Lemma 2 Let Fi and Gi, i = 1, . . . ,n, be the lower and upper, respectively, triangular bidi-
agonal matrices described in (8) and ∆ = diag(d1,d2, . . . ,dn+1) a nonsingular diagonal
matrix. Then

∆Fi = F̂i∆ and Gi∆ = ∆ Ĝi, i = 1, . . . ,n, (33)

where

F̂i =



1
0 1

. . .
. . .

0 1
ri+1,1 1

ri+2,2 1
. . .

. . .
rn+1,n+1−i 1


, ĜT

i =



1
0 1

. . .
. . .

0 1
r̃i+1,1 1

r̃i+2,2 1
. . .

. . .
r̃n+1,n+1−i 1


, (34)

with

ri, j =
di

di−1
mi, j, r̃i, j =

di

di−1
m̃i, j, 1≤ j < i≤ n+1.

As a consequence, we have the following result.
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Lemma 3 Let A = FnFn−1 · · ·F1DG1 · · ·Gn−1Gn be the bidiagonal decomposition (7) of a
nonsingular and TP matrix A. Then, given a nonsingular matrix ∆ = diag(d1,d2, . . . ,dn+1),
the bidiagonal decomposition (7) of ∆A and A∆ are given by

∆A = F̂nF̂n−1 · · · F̂1D̂G1 · · ·Gn−1Gn, (35)

A∆ = FnFn−1 · · ·F1D̂Ĝ1 · · · Ĝn−1Ĝn, (36)

where F̂i and Ĝi, i = 1, . . . ,n, are the lower and upper, respectively, triangular matrices
described in (34) and D̂ = ∆D = D∆ .

Let us start by considering the basis (L0, . . . ,Ln) of Legendre polynomials defined by

Li(x) := J(0,0)i (x), i = 0, . . . ,n, (37)

where (J(0,0)0 , . . . ,J(0,0)n ) is the basis of Jacobi polynomials given in (11) with α = β = 0.
From Theorem 3, Remark 2, Theorem 4 and Remark 3, we can deduce the following result.

Theorem 5 The basis (L0, . . . ,Ln) of Legendre polynomials, defined by (37), is STP on
(1,∞). Given x1 < · · · < xn+1, with x1 > 1, the bidiagonal decomposition (7) of the cor-
responding collocation matrix can be obtained with HRA. Moreover, for any x > 1, the
Wronskian matrix W (L0, . . . ,Ln)(x) is nonsingular and TP and its bidiagonal decomposi-
tion (7) can be obtained with HRA.

Given λ ∈ R, the basis of Gegenbauer polynomials of Pn is (G0, . . . ,Gn) with

Gλ
i (x) :=

Γ (λ +1/2)
Γ (2λ )

Γ (i+2λ )

Γ (i+λ +1/2)
J(λ−1/2,λ−1/2)

i (x), i = 0, . . . ,n, (38)

where (J(λ−1/2,λ−1/2)
0 , . . . ,J(λ−1/2,λ−1/2)

n ) is the basis of Jacobi polynomials given in (11)
with α = β = λ − 1/2. By Theorem 3 and Remark 2, Lemma 3 and Remark 3, we can
deduce the following result.

Theorem 6 For any λ >−1/2, the basis (G0, . . . ,Gn) of Gegenbauer polynomials, defined
by (38), is STP on (1,∞). Given x1 < · · ·< xn+1, with x1 > 1, the bidiagonal decomposition
(7) of the corresponding collocation matrix can be obtained with HRA. Moreover, for any
x > 1, the Wronskian matrix W (G0, . . . ,Gn)(x) is nonsingular and TP and its bidiagonal
decomposition (7) can be obtained with HRA.

The basis (T0, . . . ,Tn) of Chebyshev polynomials of the first kind is defined by

Ti(x) :=
J(−1/2,−1/2)

i (x)

J(−1/2,−1/2)
i (1)

, i = 0, . . . ,n, (39)

where (J(−1/2,−1/2)
0 , . . . ,J(−1/2,−1/2)

n ) is the basis of Jacobi polynomials given in (11) with
α = β =−1/2. Using again Theorem 3, Remark 2, Lemma 3 and Remark 3, we can deduce
the following result.

Theorem 7 The basis (T0, . . . ,Tn) of Chebyshev polynomials of the first kind, defined by
(39), is STP on (1,∞). Given x1 < · · · < xn+1, with x1 > 1, the bidiagonal decomposition
(7) of the corresponding collocation matrix can be obtained with HRA. Moreover, for any
x > 1, the Wronskian matrix W (T0, . . . ,Tn)(x) is nonsingular and TP and its bidiagonal
decomposition (7) can be obtained with HRA.
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The basis (U0, . . . ,Un) of second kind Chebyshev polynomials is defined by

Ui(x) := (i+1)
J(−1/2,−1/2)

i (x)

J(1/2,1/2)
i (1)

, i = 0, . . . ,n, (40)

where (J(1/2,1/2)
0 , . . . ,J(1/2,1/2)

n ) is the basis of Jacobi polynomials given in (11) with α =
β = 1/2. Using again Theorem 3, Remark 2, Lemma 3 and Remark 3, we can deduce the
following result.

Theorem 8 The basis (U0, . . . ,Un) of Chebyshev polynomials of second kind, defined by
(40), is STP on (1,∞). Given x1 < · · · < xn+1, with x1 > 1, the bidiagonal decomposition
(7) of the corresponding collocation matrix can be obtained with HRA. Moreover, for any
x > 1, the Wronskian matrix W (U0, . . . ,Un)(x) is nonsingular and TP and its bidiagonal
decomposition (7) can be obtained with HRA.

In [19], induced by Jacobi polynomials, a new orthogonal system of rational functions
was introduced. For given α,β ∈ R, the system (R(α,β )

0 , . . . ,R(α,β )
n ) of rational Jacobi func-

tions is defined by

R(α,β )
i (x) := J(α,β )

i

(
x−1
x+1

)
, i = 0, . . . ,n, (41)

where (J(α,β )
0 , . . . ,J(α,β )

n ) is the basis (11) of Jacobi polynomials. Using again Theorem 3,
Remark 2, Lemma 3 and Remark 3, we can deduce the following result.

Theorem 9 For any α,β > −1, the basis (R(α,β )
0 , . . . ,R(α,β )

n ) of rational Jacobi functions
given in (41) is STP on (−∞,−1). Given x1 < · · · < xn+1, with xn+1 < −1, the bidiagonal
decomposition (7) of the corresponding collocation matrix can be obtained with HRA.

Similar results can be deduced by considering the rational counterparts of the basis of
Legendre, Gegenbauer and the first and second kind Chebyshev polynomials.

Section 6 will show accurate results obtained when computing the eigenvalues, singular
values, or the solutions of some linear systems associated with the collocation and Wron-
skian matrices of all the mentioned orthogonal bases, using their corresponding bidiagonal
decompositions and the algorithms presented in [11] and [12].

6 Numerical experiments

Given a nonsingular and TP matrix whose bidiagonal factorization (7) can be computed
with HRA, the functions TNEigenvalues, TNSingularValues, TNInverseExpand and
TNSolve, available in the library TNTool of [12], can be used to compute with HRA its
eigenvalues, its singular values, its inverse matrix and the solution of some linear systems,
respectively. The function TNProduct is also avaliable in the mentioned library. If the bidi-
agonal decomposition (7) of two nonsingular and TP matrices A and B can be computed
with HRA, TNProduct computes with HRA the bidiagonal decomposition (7) of AB.

Using Theorem 2, we have implemented the Matlab function TNBDA (see Algorithm
1) providing the bidiagonal decomposition (20) of the lower triangular matrix A given in
(12), for given α,β > −1 and n ∈ N. Using TNBDA and taking into account Remark 1 and
Theorem 3, we have also implemented the Matlab function TNBDJ (see Algorithm 2) for the
computation of the bidiagonal decomposition (7) of the collocation matrix at x = (xi)

n+1
i=1 ,
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with 1 < x1 < · · ·< xn+1, of the Jacobi polynomial basis corresponding to given α,β >−1.
Furthermore, using TNBDA and taking into account Proposition 2, Theorem 4 and Remark 3,
we have implemented the Matlab function TNBDWJ (see Algorithm 3), which provides the
bidiagonal decomposition (7) of the Wronskian matrix at x > 1 of the Jacobi polynomial
basis corresponding to given α,β >−1.

Moreover, using TNBDJ (TNBDWJ, respectively) and taking into account Lemma 3, we
have also implemented the Matlab functions TNBDG, TNBDT1 and TNBDT2 (TNBDWG, TNBDWT1,
TNBDWT2, respectively) for the computation of the bidiagonal decomposition (7) of the col-
location matrix at x1, . . . ,xn+1 (of the Wronskian matrix at x > 1, respectively) of the bases
(38) of Gegenbauer polynomials at a given λ > −1/2, the basis (39) of Chebyshev poly-
nomials of the first kind and the basis (40) of Chebyshev polynomials of the second kind,
respectively.

Algorithm 1: Computation of the bidiagonal decomposition (20) of the matrix A in (12)

function BDA = TNBDA(α,β ,n+1)
BDA=zeros(n+1,n+1)
for i :=2 to n+1

aux := α+i−1
i−1

BDA(i,1) := aux
for j :=2 to i-1

aux := aux · α+β+2i− j
α+β+2i− j−2

BDA(i, j) := aux
end j

end i
BDA(1,1) = 1
for i :=2 to n+1

aux := 1
for k :=1 to i-1

aux := aux · α+β+2i−k−1
i−k

BDA(i, i) := aux
end k

end i

In order to check the accuracy of the solution of the above mentioned algebraic prob-
lems, obtained using the functions in [12] with the bidiagonal factorization (7), we have
considered collocation matrices Mn at x = (xi)

n+1
i=1 satisfying 1 < x1 < .. . < xn+1 and Wron-

skian matrices Wn at x= 2 or x= 50, for (n+1)-dimensional Jacobi, Legendre, Gegenbauer
and Chebyshev of the first and second kind polynomial bases. Additionally, we have also
considered collocation matrices at sequences x = ((xi−1)/(xi +1))n+1

i=1 such that x1 < x2 <
· · ·< xn+1 <−1 of their rational counterpart bases. For the considered collocation matrices,
we have obtained the bidiagonal decomposition (7) by using TNBDJ, TNBDG, TNBDT1 and
TNBDT2. For the considered Wronskian matrices, the factorization (7) has been obtained
with the Matlab functions TNBDWJ, TNBDWG, TNBDWT1 and TNBDWT2. The software with the
numerical experiments will be provided by the authors upon request.

Tables 1, 2, 3 and 4 illustrate the 2-norm condition number of the mentioned collo-
cation and Wronskian matrices that have been obtained with the Mathematica command
Norm[A,2]· Norm[Inverse[A],2]. Observe that the condition number of the matrices

considerably increases with their dimension. Due to this ill conditioning, traditional meth-
ods do not achieve accurate solutions when solving the mentioned algebraic problems. The
following numerical results confirm this fact and illustrate the high accuracy obtained when
using the functions in [12] with the bidiagonal factorizations (7) obtained in this paper.



Accurate computations with collocation and Wronskian matrices of Jacobi polynomials 15

Algorithm 2: Computation of the bidiagonal decomposition of the collocation matrix of Jacobi polynomials

function BDJ = TNBDJ(α,β ,x,n+1)
BDA =TNBDA(α,β ,n+1)
BDB = zeros(n+1,n+1)
for i :=2 to n+1
BDB(i,1) := 1
aux := 1

for j :=2 to i-1
aux := aux ·

xi− xi− j+1

xi−1− xi− j
BDB(i, j) := aux

end j
end i
for i=1 to n
aux := (xi−1)/2

for j :=i+1 to n+1
BDB(i, j) := aux

end j
end i
aux := 1
BDB(1,1) = 1
for i :=2 to n+1
aux := aux/2

for k :=1 to i-1
aux := aux · (xi− xk)
BDB(i, i) := aux

end k
end i
BDJ= TNProduct(BDB,(BDA)T )

Algorithm 3: Computation of the bidiagonal decomposition of the Wronskian matrix of Jacobi polynomials

function BDWJ = TNBDWJ(α,β ,x,n+1)
BDA = TNBDA(α,β ,n+1)
BDWB = zeros(n+1,n+1)
for i=1 to n+1

for j :=i+1 to n+1
BDWB(i, j) := (x−1)/2

end j
end i
BDWB(1,1) := 1
for i :=2 to n+1

BDWB(i, i) := (i−1) ·BDWB(i−1, i−1)/2
end i
BDWJ = TNProduct(BDWB,(BDA)T )

6.1 Eigenvalues and singular values

Let us recall that all considered matrices are STP and so, all their eigenvalues are positive
and distinct (see Theorem 6.2 of [1]). On the other hand, the eigenvalues of the mentioned
Wronskian matrices are integers and so, they can be exactly determined.

We have compared the eigenvalues and singular values obtained when using the Matlab
commands eig and svd, respectively, and those computed using the bidiagonal decomposi-
tions (7) in this paper and the Matlab functions TNEigenValues and TNSingularValues,
respectively. In order to determine the accuracy of the approximations, we have also cal-
culated the eigenvalues and singular values of the matrices by using Mathematica with a
precision of 100 digits and computed the relative errors corresponding to the approxima-
tions, considering the eigenvalues and singular values provided by Mathematica as exact.
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Table 1 From left to right, condition number of collocation matrices at xi = 1+ i/(n+ 1), i = 1, . . . ,n+ 1, of the Jacobi
(with α = 1, β = 2), Legendre, Gegenbauer (with λ = 1) and Chebyshev of the first and second kind polynomial bases.

Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
n+1 κ2(Mn) κ2(Mn) κ2(Mn) κ2(Mn) κ2(Mn)

10 4.2×1013 5.3×1013 1.2×1014 1.4×1014 1.8×1014

15 5.1×1021 9.2×1021 2.1×1022 3.2×1022 2.1×1022

20 8.2×1029 1.9×1030 4.4×1030 7.7×1030 4.4×1030

25 1.5×1038 4.4×1038 1.0×1039 2.0×1039 1.0×1039

Table 2 From left to right, condition number of collocation matrices at x = ((xi−1)/(xi +1))n+1
i=1 such that xi = −3+

i/(n+1) of the Jacobi (with α = 1, β = 2), Legendre, Gegenbauer (with λ = 1) and Chebyshev of the first and second kind
rational bases.

Rational Jacobi Rational Legendre Rational Gegenbauer Rational Chebyshev 1st kind Rational Chebyshev 2nd kind
n+1 κ2(Mn) κ2(Mn) κ2(Mn) κ2(Mn) κ2(Mn)

10 1.7×1017 1.5×1017 3.7×1017 4.1×1017 3.7×1017

15 1.7×1027 2.2×1027 5.5×1027 7.6×1027 5.5×1027

20 2.4×1037 3.9×1037 1.0×1038 1.6×1038 1.0×1038

25 4.0×1047 8.2×1047 2.1×1048 3.8×1048 2.1×1048

Table 3 From left to right, condition number of Wronskian matrices at x0 = 2 of the Jacobi (with α = 1, β = 2), Legendre,
Gegenbauer (with λ = 1) and Chebyshev of the first and second kind polynomial bases.

Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
n+1 κ2(Wn) κ2(Wn) κ2(Wn) κ2(Wn) κ2(Wn)

10 2.1×109 5.8×108 2.4×109 1.6×109 2.4×109

15 1.4×1016 3.6×1015 1.9×1016 1.2×1016 1.9×1016

20 5.9×1023 1.4×1023 8.1×1023 5.6×1023 8.4×1023

25 8,8×1031 2.0×1031 1.4×1032 9.2×1031 1.4×1032

Table 4 From left to right, condition number of Wronskian matrices at x0 = 50 of the Jacobi (with α = 1, β = 2), Legendre,
Gegenbauer (with λ = 1) and Chebyshev of the first and second kind polynomial bases.

Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
n+1 κ2(Wn) κ2(Wn) κ2(Wn) κ2(Wn) κ2(Wn)

10 5.8×1027 1.0×1027 5.6×1027 2.8×1027 5.6×1027

15 7.1×1040 1.2×1040 7.7×1040 4.0×1040 7.7×1040

20 1.5×1053 2.6×1052 1.9×1053 1.0×1053 1.9×1053

25 9.4×1064 1.6×1064 1.3×1065 7.2×1064 1.3×1065

We have computed the relative error of the approximations a of the exact eigenvalue and
singular value ã by means of the formula e = |a− ã|/|a|.

Tables 5, 6, 7, 8 and 9 show the relative errors of the approximations to the lowest eigen-
value and the lowest singular value obtained with both methods. Observe that the eigenval-
ues and singular values obtained using the factorization (7) are very accurate for all consid-
ered n, whereas the approximations of the eigenvalues and singular values obtained with the
Matlab commands eig and svd are not very accurate when n increases.

6.2 Inverse matrix

We have also used the Matlab function TNInverseExpand (see Section 4 of [17]) with
the factorization (7) proposed in this paper in order to compute the inverse of the con-
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Table 5 From left to right, relative errors when computing the lowest eigenvalue of collocation matrices at xi = 1+ i/(n+1),
i = 1, . . . ,n+ 1, of Jacobi (with α = 1, β = 2), Legendre, Gegenbauer (with λ = 1) and Chebyshev of the first and second
kind polynomial bases.

Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
n+1 eig TNEV eig TNEV eig TNEV eig TNEV eig TNEV

10 1.5×10−16 5.4×10−16 3.3×10−17 6.9×10−16 1.2×10−15 4.9×10−16 1.3×10−6 1.0×10−15 9.6×10−7 3.0×10−16

15 1.1×10−12 2.2×10−16 3.0×10−13 3.5×10−16 5.4×10−13 2.3×10−15 3.9 3.5×10−15 1.3×10−1 2.7×10−15

20 1.2×10−11 2.4×10−15 7.7×10−12 1.1×10−16 4.3×10−12 1.2×10−15 5.9×108 5.3×10−15 1.3×105 4.1×10−15

25 1.3×10−10 8.4×10−16 1.9×10−10 2.5×10−16 1.8×10−10 1.7×10−15 1.5×109 9.9×10−15 1.9×109 1.7×10−15

Table 6 From left to right, relative errors when computing the lowest singular value of collocation matrices at xi = 1+
i/(n+1), i = 1, . . . ,n+1, of the Jacobi (with α = 1, β = 2), Legendre, Gegenbauer (with λ = 1) and Chebyshev of the first
and second kind polynomial bases.

Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
n+1 svd TNSV svd TNSV svd TNSV svd TNSV svd TNSV

10 2.1×10−16 2.5×10−16 5.9×10−17 5.9×10−17 1.6×10−15 1.2×10−15 1.3×10−6 1.4×10−16 9.5×10−7 1.2×10−15

15 1.9×10−12 4.7×10−16 3.7×10−13 1.5×10−15 8.2×10−13 1.1×10−15 4.6 3.8×10−15 1.4×10−1 3.4×10−15

20 1.6×10−11 2.5×10−15 4.3×10−11 1.4×10−15 5.4×10−11 7.8×10−16 1.5×105 4.7×10−15 1.5×105 1.2×10−15

25 1.2×10−9 7.4×10−16 6.3×10−10 6.9×10−16 9.1×10−10 1.8×10−15 6.6×109 1.2×10−14 8.5×109 1.5×10−15

Table 7 From left to right, relative errors when computing the lowest eigenvalue of the collocation matrices at x =

((xi−1)/(xi +1))n+1
i=1 such that xi =−3+ i/(n+1) of the Jacobi (with α = 1, β = 2), Legendre, Gegenbauer (with λ = 1)

and Chebyshev of the first and second kind rational bases.

Rational Jacobi Rational Legendre Rational Gegenbauer Rational Chebyshev 1st kind Rational Chebyshev 2nd kind
n+1 eig TNEV eig TNEV eig TNEV eig TNEV eig TNEV

10 5.8×10−17 8.8×10−17 4.9×10−18 7.3×10−16 8.6×10−17 8.6×10−17 9.6×10−17 4.9×10−16 8.7×10−17 2.6×10−16

15 8.0×10−14 4.4×10−16 1.3×10−14 4.2×10−16 3.1×10−14 1.7×10−15 3.5×10−15 4.8×10−15 1.9×10−14 2.4×10−15

20 1.8×10−12 8.2×10−16 1.7×10−12 1.6×10−16 2.1×10−12 1.1×10−16 1.2×10−12 2.1×10−15 2.0×10−12 1.3×10−15

25 1.6×10−11 8.3×10−16 7.4×10−11 2.0×10−16 3.4×10−12 1.8×10−16 7.1×10−12 6.8×10−15 4.7×10−12 4.1×10−15

Table 8 From left to right, relative errors when computing the lowest singular value of the collocation matrices at x =

((xi−1)/(xi +1))n+1
i=1 such that xi =−3+ i/(n+1) of the Jacobi (with α = 1, β = 2), Legendre, Gegenbauer (with λ = 1)

and Chebyshev of the first and second kind rational bases.

Rational Jacobi Rational Legendre Rational Gegenbauer Rational Chebyshev 1st kind Rational Chebyshev 2nd kind
n+1 svd TNSV svd TNSV svd TNSV svd TNSV svd TNSV

10 2.8×10−17 5.7×10−16 9.4×10−17 5.4×10−16 1.8×10−16 1.9×10−17 2.8×10−17 8.1×10−16 2.0×10−17 6.1×10−16

15 7.0×10−14 1.1×10−15 9.9×10−15 9.7×10−18 3.2×10−14 2.5×10−15 4.4×10−15 4.9×10−15 1.4×10−14 3.8×10−15

20 3.9×10−12 9.4×10−17 2.2×10−12 1.8×10−15 3.3×10−12 1.3×10−16 1.5×10−12 1.5×10−15 3.0×10−12 7.0×10−16

25 3.9×10−12 2.4×10−15 2.3×10−11 1.6×10−15 2.5×10−11 3.9×10−15 2.7×10−11 8.9×10−15 2.2×10−11 3.9×10−15

sidered collocation and Wronskian matrices. We have also computed their approximations
with the Matlab command inv. In order to determine the accuracy of the approximations,
we have calculated the inverse of these matrices by using Mathematica with a precision of
100 digits and computed the relative errors corresponding to the approximations, consider-
ing the inverse matrix provided by Mathematica as exact. We have computed the relative
error of each approximation Ã−1 of the exact inverse matrix A−1 by means of the formula
e = ‖A−1− Ã−1‖2/‖A−1‖2.

Tables 10, 11 and 12 show the relative errors of the approximations to the inverse of
the collocation and Wronskian matrices obtained with both methods. For all considered
cases, the approximation of the inverse matrix obtained by means of TNInverseExpand
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Table 9 From left to right, relative errors when computing the lowest singular value of Wronskian matrices at x0 = 2 of
the Jacobi (with α = 1, β = 2), Legendre, Gegenbauer (with λ = 1) and Chebyshev of the first and second kind polynomial
bases.

Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
n+1 svd TNSV svd TNSV svd TNSV svd TNSV svd TNSV

10 3.5×10−9 6.1×10−17 1.5×10−9 7.9×10−17 4.2×10−9 6.6×10−17 6.3×10−9 9.5×10−16 4.5×10−9 6.6×10−17

15 2.0×10−2 1.7×10−16 6.7×10−3 2.3×10−17 2.6×10−2 2.0×10−16 2.5×10−2 8.9×10−16 2.7×10−2 2.4×10−16

20 1.6 3.2×10−16 1.3 3.6×10−16 2.2 6.0×10−17 3.7 1.6×10−16 7.8×10−1 6.0×10−17

25 2.1 3.8×10−16 4.1 6.3×10−16 2.9 1.6×10−16 4.2 6.0×10−16 2.9 1.4×10−15

and the factorization (7) is very accurate, providing much better results than those obtained
by Matlab using the command inv.

Table 10 From left to right, relative errors when computing the inverse of collocation matrices at xi = 1 + i/(n + 1),
i = 1, . . . ,n+1, of the Jacobi (with α = 1, β = 2), Legendre, Gegenbauer (with λ = 1) and Chebyshev of the first and second
kind polynomial bases.

Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
n+1 inv TNInvExp inv TNInvExp inv TNInvExp inv TNInvExp inv TNInvExp

10 1.4×10−16 3.8×10−16 4.0×10−17 8.2×10−16 1.5×10−15 5.4×10−16 1.3×10−6 4.8×10−16 9.5×10−7 1.6×10−15

15 2.0×10−12 7.5×10−16 3.7×10−13 3.6×10−16 8.3×10−13 1.9×10−15 0.8 3.3×10−15 1.6×10−1 3.2×10−15

20 3.3×10−11 1.7×10−15 4.6×10−11 4.9×10−16 5.8×10−11 1.8×10−16 1.0 4.6×10−15 1.0 2.8×10−15

25 1.4×10−9 4.6×10−16 6.3×10−10 4.5×10−16 9.2×10−10 6.2×10−16 1.0 9.9×10−15 1.0 3.8×10−15

Table 11 From left to right, relative errors when computing the inverse of the collocation matrices at x =

((xi−1)/(xi +1))n+1
i=1 such that xi =−3+ i/(n+1) of the Jacobi (with α = 1, β = 2), Legendre, Gegenbauer (with λ = 1)

and Chebyshev of the first and second kind polynomial bases.

Rational Jacobi Rational Legendre Rational Gegenbauer Rational Chebyshev 1st kind Rational Chebyshev 2nd kind
n+1 inv TNInvExp inv TNInvExp inv TNInvExp inv TNInvExp inv TNInvExp

10 4.1×10−17 8.5×10−17 4.1×10−17 1.9×10−16 1.4×10−16 2.9×10−16 5.1×10−17 3.9×10−16 5.7×10−17 3.0×10−16

15 7.1×10−14 2.2×10−16 1.0×10−14 3.0×10−16 3.2×10−14 2.5×10−15 4.4×10−15 3.7×10−15 1.4×10−14 2.6×10−15

20 4.1×10−12 7.0×10−16 2.3×10−12 3.2×10−16 3.3×10−12 5.3×10−16 1.5×10−12 2.9×10−15 3.0×10−12 8.2×10−16

25 1.4×10−11 5.9×10−16 2.5×10−11 1.1×10−15 2.1×10−11 1.0×10−15 2.8×10−11 7.8×10−15 2.5×10−11 2.4×10−15

Table 12 From left to right, relative errors when computing the inverse of Wronskian matrices at x0 = 50 of the Jacobi
(with α = 1, β = 2), Legendre, Gegenbauer (with λ = 1) and Chebyshev of the first and second kind polynomial bases.

Jacobi Legendre Gegenbauer Chebyshev of the first kind Chebyshev of the second kind
n+1 inv TNInvExp inv TNInvExp inv TNInvExp inv TNInvExp inv TNInvExp

10 1.6×10−13 1.7×10−17 1.4×10−13 1.8×10−16 1.1×10−13 7.5×10−17 1.3×10−14 2.2×10−16 8.0×10−14 6.0×10−16

15 7.8×10−11 4.5×10−17 2.2×10−11 2.0×10−16 2.2×10−11 4.1×10−15 5.9×10−13 4.6×10−15 4.6×10−11 4.4×10−15

20 7.3×10−9 1.4×10−16 8.3×10−9 3.9×10−16 1.1×10−8 1.2×10−15 6.6×10−10 3.3×10−15 6.7×10−10 1.9×10−15

25 2.4×10−6 1.0×10−16 5.3×10−6 5.0×10−16 8.0×10−7 4.6×10−15 1.4×10−7 8.2×10−15 3.7×10−7 4.7×10−15
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6.3 Linear systems

We shall illustrate the accuracy of the solutions of linear systems computed by using the
bidiagonal factorization (7). We have obtained the solution of the linear systems using Math-
ematica with a precision of 100 digits and considered this solution exact. Then we have also
computed with Matlab two approximations, the first one using the previous functions and
the second one using the Matlab command \. We have computed the relative error of ev-
ery approximation c̃ = (c̃1, . . . , c̃n+1) of the solution c of the linear system by means of the
formula e = ‖c− c̃‖2/‖c‖2.

Tables 13, 14 and 15 show the relative errors when solving the linear systems Mncn = dn
and Wncn = dn where dn = ((−1)i+1di)1≤i≤n+1 and di, i = 1, . . . ,n+1, random integer val-
ues. The computed results confirm the accuracy of the proposed method that, clearly, keeps
the accuracy when the dimension of the problem increases. In contrast, when n increases the
condition number of the considered matrices considerably increases and that explains the
bad results obtained with the Matlab command \.

Table 13 From left to right, relative errors when solving Mncn = dn with collocation matrices at xi = 1+ i/(n+ 1),
i = 1, . . . ,n+1 of the Jacobi (with α = 1, β = 2), Legendre, Gegenbauer (with λ = 1) and Chebyshev of the first and second
kind polynomial bases.

Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
n+1 Mn \dn TNsolve Mn \dn TNsolve Mn \dn TNsolve Mn \dn TNsolve Mn \dn TNsolve

10 1.4×10−16 4.1×10−16 6.6×10−17 9.4×10−16 1.5×10−15 5.4×10−16 1.3×10−6 4.8×10−16 9.5×10−7 6.1×10−16

15 2.0×10−12 6.5×10−16 3.7×10−13 1.4×10−16 8.3×10−13 1.9×10−15 8.2×10−1 3.3×10−15 1.6×10−1 3.0×10−15

20 3.3×10−11 1.2×10−15 4.6×10−11 3.9×10−16 5.8×10−11 1.8×10−16 1.0 4.6×10−15 1.0 2.7×10−15

25 1.4×10−9 5.4×10−16 6.3×10−10 2.3×10−16 9.2×10−10 6.2×10−16 1.0 9.9×10−15 1.0 1.1×10−15

Table 14 From left to right, relative errors when solving Mncn = dn with collocation matrices at x = ((xi−1)/(xi +1))n+1
i=1

such that xi =−3+ i/(n+1) of the Jacobi (with α = 1, β = 2), Legendre, Gegenbauer (with λ = 1) and Chebyshev of the
first and second kind rational bases.

Rational Jacobi Rational Legendre Rational Gegenbauer Rational Chebyshev 1st kind Rational Chebyshev 2nd kind
n+1 An \dn TNsolve An \dn TNsolve An \dn TNsolve An \dn TNsolve An \dn TNsolve

10 2.9×10−17 1.1×10−16 7.9×10−17 3.8×10−16 1.2×10−16 2.1×10−16 5.5×10−17 8.48×10−16 6.3×10−17 2.1×10−16

15 7.1×10−14 1.9×10−16 1.0×10−14 1.9×10−16 3.2×10−14 2.4×10−15 4.4×10−15 3.6×10−15 1.4×10−14 2.8×10−15

20 4.1×10−12 4.3×10−16 2.3×10−12 3.0×10−16 3.3×10−12 3.7×10−16 1.5×10−12 2.5×10−15 3.4×10−12 5.6×10−16

25 1.4×10−11 7.3×10−16 2.5×10−11 1.2×10−15 2.8×10−11 1.7×10−15 2.8×10−11 7.3×10−15 2.5×10−11 2.7×10−15

Table 15 From left to right, relative errors when solving Wncn = dn at x0 = 50 of the Jacobi (with α = 1, β = 2), Legendre,
Gegenbauer (with λ = 1) and Chebyshev of the first and second kind polynomial bases.

Jacobi Legendre Gegenbauer Chebyshev 1st kind Chebyshev 2nd kind
n+1 Wn \dn TNsolve Wn \dn TNsolve Wn \dn TNsolve Wn \dn TNsolve Wn \dn TNsolve

10 3.1×10−16 1.1×10−16 4.3×10−14 2.3×10−16 2.1×10−14 4.5×10−17 1.2×10−14 2.6×10−16 4.5×10−9 6.6×10−17

15 4.3×10−11 9.5×10−17 5.8×10−12 2.8×10−16 1.5×10−11 3.2×10−15 5.9×10−13 4.6×10−15 2.7×10−2 2.4×10−16

20 4.6×10−9 1.5×10−16 6.3×10−9 6.1×10−16 5.6×10−9 1.3×10−15 2.3×10−9 2.6×10−15 7.8×10−1 6.0×10−17

25 6.2×10−6 1.4×10−16 4.4×10−6 4.2×10−16 1.2×10−6 7.8×10−16 2.1×10−7 4.5×10−15 2.9 1.4×10−15
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