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Abstract. In this paper, we design, analyze, and numerically validate positive and energy-

dissipating schemes for solving the time-dependent multi-dimensional system of Poisson-Nernst-

Planck (PNP) equations, which has found much use in the modeling of biological membrane chan-

nels and semiconductor devices. The semi-implicit time discretization based on a reformulation

of the system gives a well-posed elliptic system, which is shown to preserve solution positivity for

arbitrary time steps. The first order (in time) fully-discrete scheme is shown to preserve solution

positivity and mass conservation unconditionally, and energy dissipation with only a mild O(1)

time step restriction. The scheme is also shown to preserve the steady-states. For the fully second

order (in both time and space) scheme with large time steps, solution positivity is restored by a

local scaling limiter, which is shown to maintain the spatial accuracy. These schemes are easy

to implement. Several three-dimensional numerical examples verify our theoretical findings and

demonstrate the accuracy, efficiency, and robustness of the proposed schemes, as well as the fast

approach to steady states.

1. Introduction

In this paper, we are concerned with efficient and structure-preserving numerical approximations

to a multi-dimensional time-dependent system of Poisson-Nernst-Planck (PNP) equations. Such

system has been widely used to describe charge transport in diverse applications such as biological

membrane channels [6, 7, 43], electrochemical systems [1, 33], and semiconductor devices [30, 38].

In the semiconductor modeling, it is often called the Poisson-drift-diffusion system.

PNP equations consist of Nernst–Planck (NP) equations that describe the drift and diffusion of

ion species, and the Poisson equation that describes the electrostatic interaction. Such mean field

approximation of diffusive ions admits several variants, and we consider the following form

∂tρi +∇ · Ji = 0, x ∈ Ω ⊂ Rd, t > 0, (1.1a)

− Ji = Di(x)

[
∇ρi +

1

kBT
ρi(qi∇φ+∇µi)

]
, (1.1b)

−∇ · (ε(x)∇φ) = 4π

(
f(x) +

m∑
i=1

qiρi

)
, (1.1c)

subject to initial data ρi(x, 0) = ρini (x) ≥ 0 (i = 1, · · · ,m) and appropriate boundary conditions

to be specified in section 2.1. Here m is the number of species, ρi = ρi(x, t) is the charge carrier

density for the i-th species, and φ = φ(x, t) the electrostatic potential. The charge carrier flux is
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Ji, with which Di(x) is the diffusion coefficient, kB is the Boltzmann constant, T is the absolute

temperature. The coupling parameter qi = zie, where zi is the valence (with sign), e is the unit

charge. In the Poisson equation, ε(x) is the permittivity, f(x) is the permanent (fixed) charge

density of the system. The equations are valid in a bounded domain Ω with boundary ∂Ω and for

time t ≥ 0. For more accurate modeling of collective interactions of charged particles, the chemical

potential µi is often included and can be modeled by other means (see section 2.3 for more details).

Due to the wide variety of devices modeled by the PNP equations, computer simulation for this

system of differential equations is of great interest. However, the PNP system is a strongly coupled

system of nonlinear equations, also, the PNP system as a gradient flow can take very long time

evolution to reach steady states. Hence, designing efficient and stable methods with comprehensive

numerical analysis for the PNP system is highly desirable. This is what we plan to do in this work.

1.1. Related work. In the literature, there are different numerical solvers available for solving

both steady and time-dependent PNP problems; see, e.g., [11, 12, 17, 29, 31, 40, 41, 47]. Many

existing algorithms were introduced to handle specific issues in complex applications, in which one

may encounter different numerical obstacles, such as discontinuous coefficients, singular charges,

geometric singularities, and nonlinear couplings to accommodate various phenomena exhibited

by biological ion channels. We refer the interested reader to [44] for some variational multiscale

models on charge transport and related algorithms.

Solutions to the PNP equations are known to satisfy some important physical properties. It is

desirable to maintain these properties at the discrete level, preferably without or with only mild

constraints on time step relative to spatial meshes. Under natural boundary conditions, three main

properties for the PNP equations are known as (i) Conservation of mass, (ii) Density positivity,

and (iii) Free energy dissipation law. The first property requires the scheme to be conservative.

The second property is point-wise and also important for the third property. In general, it is rather

challenging to obtain both unconditional positivity and discrete energy decay simultaneously. This

is evidenced by several recent efforts [8–10, 14, 26, 27, 32], in which these properties have been

partially addressed at the discrete level for PNP equations. With explicit time discretization, the

finite difference scheme in [26] preserves solution positivity under a CFL condition ∆t = O(∆x2)

and the energy decay was shown for the semi-discrete scheme (time is continuous). An arbitrary

high order DG scheme in [27] was shown to dissipate the free energy, with solution positivity

restored with the aid of a scaling limiter. With implicit time discretization, the second order finite

difference scheme in [8] preserves positivity under a CFL condition ∆t = O(∆x2) and a constraint

on spatial meshes. An energy-preserving version was further given in [9] with a proven second

order energy decay rate. The finite element method in [32] employs the fully implicit backward

Euler scheme to obtain solution positivity and the discrete energy decay. In some cases, electric

energy alone can be shown to decay (see [27]). Such decay has been verified for the finite difference

scheme in [14] and the finite element scheme in [10], both with semi-implicit time discretization.

More recent attempts have focused on semi-implicit schemes based on a formulation of the

nonlogarithmic Landau type. As a result, all schemes obtained in [5,15,16,22,23] have been shown

to feature unconditional positivity ( see further discussion in section 1.2).
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Our goal here is to construct and analyze structure-preserving numerical schemes for PNP

equations in a more general setting: multi-dimension, multi-species, also subject to other chemical

forces.

1.2. Our contributions. A key step is to reformulate (1.1a)-(1.1b) as

∂tρi = ∇ · (Di(x)e−ψi∇(ρie
ψi)), (1.2)

where

ψi(x, t) =
qi
kBT

φ(x, t) +
1

kBT
µi.

Such reformulation, called the Slotboom transformation in the semiconductor literature, converts

a drift-diffusion operator into a self-adjoint elliptic operator. It can be more efficiently solved,

and in particular more suitable for keeping the positivity-preserving property. In the context of

Fokker-Planck equations it is termed as the nonlogarithmic Landau formulation (see, e.g., [2,25]).

Using such reformulation in [25] Liu and Yu constructed an implicit scheme for a singular Fokker-

Planck equation and proved that all three solution properties hold for arbitrary time steps, for

which implicit time-discretization is essential. Inspired by [25, 26], we adopted a semi-implicit

discretization of (1.2) in [22] to construct a first order in time and second order in space scheme

for a reduced PNP system, and proved all three solution properties for the resulting scheme with

only a mild O(1) time step restriction. We further introduced a second order (in time) extension

in [23] again for the reduced PNP system, and a fully second order scheme in [24] for a class of

nonlinear nonlocal Fokker-Planck type equations. All schemes in [22–24] feature unconditional

positivity and a conditional discrete energy dissipation law simultaneously.

This paper improves upon the existing results in [22–24] in the study of (1.1). We first present

a semi-implicit time discretization of form

ρn+1
i − ρni
τ

= ∇ · (Di(x)e−ψ
n
i ∇(eψ

n
i ρn+1

i )) =: R[ρn+1
i , ψni ], (1.3)

which is shown to be well-posed and positivity-preserving for time steps of arbitrary size and

independent of the Poisson solver. We further construct the following second order scheme

ρ∗i − ρni
τ/2

= R[ρ∗i ,
3

2
ψni −

1

2
ψn−1
i ], ρn+1

i = 2ρ∗i − ρni , (1.4)

for which solution positivity for large time steps is restored by a positivity-preserving local limiter.

For the spatial discretization we use the 2nd order central difference approximation.

Before stating the main results, let us mention some viable options in the use of reformulation

(1.2), i.e.,

∂tρi = R[ρi, ψi],

which is linear in ρi if ψi is a priori given. With the second order central difference in spatial

discretization, there are several ways to define ψi on cell interfaces (see section 3.3). For the time

discretization, solution positivity is readily available if we take

ρn+1
i − ρn−k+1

i

kτ
= R[ρn+1

i , ψ∗i ], (1.5)
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with a consistent choice for ψ∗i and integer k ≥ 1. Different options are introduced in [5,15,16] for

obtaining their respective positive schemes.

It is natural and simple to take k = 1 and ψ∗ = ψn in (1.5), that is (1.3) (again with further

central difference in space). But it is subtle to establish a discrete energy dissipation law. A fully

discrete scheme using (1.3) was studied in [5], where no energy dissipation law was established.

Nonetheless, a discrete energy dissipation law can be verified with other options. Indeed, (1.5)

with k = 2 and ψ∗i = ψni was considered in [15], where the authors proved unconditional energy

decay for a modified energy. In [16], (1.5) with k = 1 and ψ∗i = (ψn+1
i +ψni )/2 was considered, and

all three properties are shown to hold simultaneously even for general boundary conditions for the

Poisson equation. Obviously these options can bring further computational overheads.

In this work, we formulate simple finite volume schemes for (1.1) by integrating the central

difference method for spatial discretization with the semi-implicit time discretization of the re-

formulation (1.2). We have strived to advance these numerical schemes by presenting a series of

theoretical results. We summarize the main contributions as follows:

• We show that the first order time discretization gives a well-posed elliptic system (1.3) at

each time step, and features solution positivity independent of the time steps (Theorem

3.1). Upper bound of numerical solutions for some cases is established as well (Theorem

3.2).

• For the first order (in time) fully-discrete scheme, beyond the unconditional solution posi-

tivity (Theorem 3.3), we further establish a discrete energy dissipation law for time steps of

size O(1/M), where M is the upper-bound of the numerical solutions (Theorem 3.4). This

result sharpens the previous estimates in [22] for the reduced PNP system. We also prove

that the scheme preserves steady-states, and numerical solutions converge to a steady state

as n→∞ (Theorem 3.5).

• We design a fully second order (both in time and space) scheme, and solution positivity is

shown for small time steps (Theorem 4.1). While solution positivity for large time steps is

ensured by using a local limiter. We prove that such limiter does not destroy the 2nd order

spatial accuracy (Theorem 4.2).

• Three-dimensional numerical tests are conducted to evaluate the scheme performance and

verify our theoretical findings. The computational cost of the second order scheme is

comparable to that of the first order semi-implicit schemes (see section 5).

1.3. Organization. We organize this paper as follows: In Section 2, we present primary problem

settings and solution properties, as well as model variations. In Section 3, we formulate a unified

finite volume method for the PNP system subject to mixed boundary conditions and establish

solution positivity, energy dissipation, mass conservation, and steady-state preserving properties

for the case of natural boundary conditions. Extension to a second order scheme is given in Section

4. In Section 5, we numerically verify good performance of the schemes. Finally in Section 6 some

concluding remarks are given.

Throughout this paper, we denote ρ as vector (ρ1, · · · , ρm), ∂Ω as the boundary of domain Ω

includes both the Dirichlet boundary ∂ΩD and the Neumann boundary ∂ΩN . |K| denotes the
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volume of domain K. We use gα to denote gα = 1/|Kα|
∫
Kα
g(x)dx, for an integral average of

function g(x) over a cell Kα.

2. Models and related work

2.1. Boundary conditions. Boundary conditions are a critical component of the PNP model

and determine important qualitative behavior of the solution. Here we consider the simplest form

of boundary conditions of Dirichlet and/or Neumann type [3].

Let Ω be a bounded domain with Lipschitz boundary ∂Ω. The external electrostatic potential

φ is influenced by applied potential, which can be modeled by prescribing a Dirichlet boundary

condition

φ(x, t) = φb(x, t), x ∈ ∂ΩD. (2.1)

For the remaining part of the boundary ∂ΩN = ∂Ω̄\∂ΩD, a no-flux boundary condition is applied:

ε(x)∇φ · n = 0, x ∈ ∂ΩN . (2.2)

This boundary condition models surface charges, where n is the outward unit normal vector on

the boundary ∂ΩN . Same types of boundary conditions are imposed for ρi as

ρi(x, t) = ρbi(x, t) ≥ 0, x ∈ ∂ΩD, (2.3)

Ji · n = 0, x ∈ ∂ΩN . (2.4)

In this work we present our schemes by restricting to a rectangular computational domain Ω =

(0, L1)× · · · × (0, Ld), with ∂ΩD = {x ∈ Ω̄| x1 = 0, x1 = L1}.
We remark that the boundary conditions for the electrostatic potential are not unique and

greatly depend on the problem under investigation. For example, one may use a non-homogeneous

Neumann boundary condition (∇φ · n = σ is used in [27]) or Robin boundary conditions [8, 16].

The existence and uniqueness of the solution for the nonlinear PNP boundary value problems have

been studied in [19,21,34] for the 1D case and in [3, 18] for multi-dimensions.

2.2. Positivity and energy dissipation law. One important solution property is

ρi(x, t) ≥ 0, x ∈ Ω, t > 0. (2.5)

Integration of each density equation gives

d

dt

∫
Ω

ρi(x, t)dx =

∫
∂Ω

Ji · nds,

which with zero flux Ji · n = 0 on the whole boundary leads to the mass conservation:∫
Ω

ρi(x, t)dx =

∫
Ω

ρini (x)dx, t > 0, i = 1, · · · ,m. (2.6)

We consider the free energy functional E associated to (1.1) with µi = µi(x):

E =

∫
Ω

( m∑
i=1

ρi(log ρi − 1) +
1

2kBT
(f +

m∑
i=1

qiρi)φ+
1

kBT

m∑
i=1

ρiµi

)
dx. (2.7)
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In virtue of the Poisson equation (1.1c), the free energy may be written as

E =

∫
Ω

( m∑
i=1

ρi(log ρi − 1) +
ε

8πkBT
|∇φ|2 +

1

kBT

m∑
i=1

ρiµi

)
dx.

Note that the unscaled free energy F = kBTE is also often used, see [28]. A formal calculation

gives

dE

dt
= −

∫
Ω

m∑
i=1

Di(x)ρi|∇ψ∗i |2dx+

∫
∂Ω

m∑
i=1

ψ∗i Ji · nds

+
1

8πkBT

∫
∂Ω

ε(x) [φ(∂nφ)t − ∂nφφt] ds,

where

ψ∗i := log ρi +
qi
kBT

φ+
1

kBT
µi.

Clearly, with ∂ΩD = ∅, we have the following energy dissipation law:

dE

dt
= −

∫
Ω

m∑
i=1

Di(x)ρi|∇ψ∗i |2dx ≤ 0. (2.8)

Otherwise, the Dirichlet boundary condition needs to be carefully handled (see, e.g., [28]).

For time dependent chemical potentials µi(x, t), the total free energy and its dissipation law

needs to be modified depending on how the chemical potential is determined.

2.3. Chemical potential. In application, the chemical potential µi often includes the ideal chem-

ical potential µidi (x, t) and the excess chemical potential µexi (x, t) of the charged particles:

µi(x, t) = µidi (x, t) + µexi (x, t),

with

µidi (x, t) = − log[γiρi(x, t)/ρ
bulk
i ],

where the activity coefficient γi described by the extended Debye-Hückel theory depends on ρ in

nonlinear manner. Meanwhile,

µexi (x, t) =
δF ex(ρ(x, t))

δρi(x, t)

is the L2 variational derivative of the excess chemical functional F ex, which may include hard-

sphere components, short-range interactions, Coulomb interactions and electrostatic correlations,

where the expression of each component can be found in [31,42].

We remark that the steric interactions between ions of different species are important in the

modeling of ion channels [17,20]. Such effects can be described by choosing

F ex =
1

2

∫
Ω

ωijρiρj,

where ωij are the second-order virial coefficients for hard spheres, depending on the size of i-th

and j-th ion species [49]. With this addition alone, the flux becomes

−Ji = Di(x)

(
∇ρi +

1

kBT
qiρi∇φ+ ρi

m∑
j=1

ωij∇ρj

)
.
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The PNP system with this modified flux has been studied numerically first in [39] without cross

steric interactions, and then in [5] with cross interactions.

Our schemes will be constructed so that numerical solutions are updated in an explicit-implicit

manner while µi needs only to be evaluated off-line. For simplicity, we shall present our schemes

assuming µi is given while keeping in mind that it can be applied to complex chemical potentials

without difficulty.

2.4. Steady states. By the free energy dissipation law (2.8), the solution to (1.1) with zero-flux

boundary conditions is expected to converge to the steady-states as time becomes large. In such

case the steady states formally satisfy (1.1) with ∂tρi = 0; i.e.,

∇ · (Di(x)ρi∇ψ∗i )) = ∇ · Ji = 0, Ji · n = 0, x ∈ ∂Ω.

This yields
∫

Ω
Ji ·∇ψ∗i dx = 0, which ensures that ψ∗i must be a constant. This gives the well-known

Boltzmann distribution

ρi = cie
− 1
kBT

(qiφ+µi), (2.9)

where ci is any constant. Such constant can be uniquely determined by the initial data in the

PNP system (1.1) if such steady-state is approached by the solution at large times. Indeed, mass

conservation simply gives

ci =

∫
Ω
ρini dx∫

Ω
e
− 1
kBT

(qiφ+µi)dx
. (2.10)

This allows us to obtain a closed Poisson-Boltzmann equation (PBE) of form

−∇ · (ε(x)∇φ) = 4π

(
f(x) +

m∑
i=1

qicie
− 1
kBT

(qiφ+µi)

)
, ∂nφ|∂Ω = 0. (2.11)

We should point out that the numerical method presented in this paper may be used as an iterative

algorithm to numerically compute the nonlocal PBE (2.11); hence it serves as a simpler alternative

to the iterative DG methods recently developed in [45,46].

In practical applications, one may describe ions of less interest using the Boltzmann distribution

and still solve the NP equations for the target ions so to reduce the computational cost, see [48]

for further details on related models. Our numerical method thus provides an alternative path to

simulate such models.

3. Numerical method

In this section we will construct positive and energy stable schemes.

3.1. Reformulation. By setting

ψi(x, t) =
1

kBT
(qiφ(x, t) + µi),

we reformulate the density equation (1.1a)-(1.1b) as:

∂tρi = ∇ · (Di(x)e−ψi∇(eψiρi)). (3.1)
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In spite of the aforementioned advantages of such reformulation, possible large variation of the

transformed diffusion coefficients could result in large condition number of the stiffness matrix [29].

This issue has been recently investigated in [5, 36].

3.2. Time discretization. Let τ > 0 be a time step, and tn = τn, n = 0, 1 · · · , be the corre-

sponding temporal grids. We initialize by taking ρ0(x) = ρin(x), and obtaining φ0 by solving the

Poisson equation (1.1c) using ρ0(x).

Let ρn and φn be numerical approximations of ρ(x, tn) and φ(x, tn), respectively, we first obtain

ρn+1 by solving the following elliptic system:

ρn+1
i − ρni
τ

= ∇ · (Di(x)e−ψ
n
i ∇(eψ

n
i ρn+1

i )) =: R[ρn+1
i , ψni ], (3.2a)

ρn+1
i = ρbi(x, tn+1), x ∈ ∂ΩD, (3.2b)

∇(eψ
n
i ρn+1

i ) · n = 0, x ∈ ∂ΩN , (3.2c)

where

ψni =
1

kBT
(qiφ

n + µi).

Using this obtained ρn+1, we update to obtain φn+1 from solving

−∇ · (ε(x)∇φn+1) = 4π

(
f(x) +

m∑
i=1

qiρ
n+1
i

)
, (3.3a)

φn+1(x) = φb(x, tn+1), x ∈ ∂ΩD, (3.3b)

∇φn+1 · n = 0, x ∈ ∂ΩN . (3.3c)

This scheme is well-defined for any τ > 0 with ρn ≥ 0 for all n ∈ N. More precisely, we have

Theorem 3.1. Assume Di(x) ≥ D0 > 0 and ε(x) ≥ ε0 > 0, and µi(x) ∈ C(Ω̄). Then for given

(ρn, φn) ∈ C(Ω̄) ∩ C2(Ω), there exists a unique solution (ρn+1, φn+1) ∈ C(Ω̄) ∩ C2(Ω). If ρn ≥ 0

and ρb(x, t) ≥ 0, x ∈ ∂ΩD, then ρn+1 ≥ 0 for x ∈ Ω.

The proof is deferred to the appendix A.

In some cases density for the PNP problem is known to be uniformly bounded for all time. We

shall show this bound property also for the semi-discrete scheme (3.2).

Theorem 3.2. Let 0 ≤ ρini (x) ≤ Bi, 0 ≤ ρbi(x, t) ≤ Bb
i , Di(x)/ε(x) = σi be constants, Ω be C1

convex domain, all qi have the same sign, and µi is smooth with (∇µi) · n ≥ 0 on ∂ΩN . If

τ <
1

Qi,max

,

then ρn obtained by scheme (3.2) is uniformly bounded, i.e.,

ρni (x) ≤ max

{
Bb
i , Bi,

Qi,max

γi

}
, (3.4)

where Qi,max = maxx∈Ω̄ Qi(x) with

Qi(x) =
1

kBT
[∇ · (Di(x)∇µi)− 4πqiσif(x)] , γi =

4πq2
i σi

kBT
.
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Remark 3.1. In the case of qi with different sign, density ρi in (1.1) may not be bounded.

Proof. We rewrite the semi-discrete scheme

ρn+1
i − ρni
τ

= ∇ ·
(
Di(x)e−ψ

n
i ∇
(
ρn+1
i eψ

n
i
))

into
ρn+1
i − ρni
τ

= Di(x)∆ρn+1
i + bi · ∇ρn+1

i + ciρ
n+1
i ,

where

bi = (∇Di(x) +Di(x)∇ψni ) , ci = ∇ · (Di(x)∇ψni ) .

In virtue of ψni = qi
kBT

φn + 1
kBT

µi and Di(x)/ε(x) = σi, the coefficient ci can be estimated as

ci =
1

kBT
[∇ · (qiDi(x)∇φn) +∇ · (Di(x)∇µi))]

=
1

kBT
[qiσi∇ · (ε(x)∇φn) +∇ · (Di(x)∇µi))]

(using (3.3a))

=
1

kBT

[
−4πqiσi

(
f(x) +

m∑
j=1

qjρ
n
j

)
+∇ · (Di(x)∇µi))

]
(using qiqj > 0 and ρnj ≥ 0)

≤ 1

kBT

[
∇ · (Di(x)∇µi)− 4πqiσif(x)− 4πq2

i σiρ
n
i

]
=Qi(x)− γiρni .

Hence
ρn+1
i − ρni
τ

≤ Di(x)∆ρn+1
i + bi · ∇ρn+1

i + ρn+1
i (Qi,max − γiρni ) . (3.5)

We proceed to distinct three cases, by letting x∗ = argmaxx∈Ω̄ ρ
n+1
i (x):

(i) If x∗ ∈ ∂ΩD we have

ρn+1
i (x∗) = ρbi(x

∗, tn+1) ≤ Bb
i .

(ii) If x∗ ∈ Ω, then (3.5) can be reduced to

ρn+1
i (x∗)− ρni (x∗)

τ
≤ ρn+1

i (x∗) (Qi,max − γiρni (x∗)) .

This using notation ρni,max = maxx∈Ω̄ ρ
n
i yields

ρn+1
i (x) ≤ ρn+1

i (x∗) ≤
ρni,max

1− τQi,max + τγiρni,max
=: P (ρni,max), (3.6)

where we used the fact that P (·) : R+ → R+ is non-decreasing.

(iii) If x∗ ∈ ∂ΩN , we must have ρn+1
i (x∗) ≤ P (ρni,max). Otherwise assume ρn+1

i (x∗) > P (ρni,max).

Set

U(x) = ρn+1
i (x)− ρn+1

i (x∗),

and introduce the differential operator

Lξ := τDi(x)∆ξ + τbi · ∇ξ − (1− τQi,max + τγiρ
n
i )ξ.
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From (3.5) we have

Lρn+1
i ≥ −ρni ,

and using (3.6) we obtain

LU(x) =Lρn+1
i (x)− Lρn+1

i (x∗)

≥− ρni + (1− τQi,max + τγiρ
n
i )ρn+1

i (x∗)

≥− ρni + (1− τQi,max + τγiρ
n
i )P (ρni,max)

≥0.

Note that U(x) ≤ 0 on ∂Ω and U(x∗) = 0. Apply the maximum-principle [35, Theorem 8] we have

(∇U(x∗)) · n = (∇ρn+1
i (x∗)) · n > 0.

On the other hand, from the no-flux boundary condition (3.2c) and using (3.3c), we have

0 =
(
∇
(
ρn+1
i eψ

n
i
))
· n

=

(
eψ

n
i ∇ρn+1

i +
1

kBT
eψ

n
i ρn+1

i (qi∇φn +∇µi)
)
· n

=eψ
n
i

(
∇ρn+1

i · n +
1

kBT
∇µi · n)

)
>eψ

n
i

1

kBT
∇µi · n x ∈ ∂ΩN .

This is a contradiction to the assumption (∇µi) · n ≥ 0. Hence for x ∈ Ω ∪ ∂ΩN ∪ ∂ΩD = Ω̄, we

have

ρn+1
i,max ≤ max

{
Bb
i , P (ρni,max)

}
.

Again by the monotonicity of P (·), we obtain

ρn+1
i,max ≤ max

{
Bb
i , max{ρni,max,

Qi,max

γi
}
}
.

The stated result (3.4) thus follows by induction. �

A discrete energy dissipation law can be established by precisely quantifying a sufficient bound

on the time step. In order to save space, we present a detailed analysis of the energy dissipation

property only for the fully discrete scheme in the next section.

3.3. Spatial discretization. For given positive integers Nj (j = 1, · · · , d), let hj = Lj/Nj be the

mesh size in j-th direction, α ∈ Zd be the index vector with α(j) ∈ {1, · · · , Nj}, and ej ∈ Zd be a

vector with j-th entry equal to one and all other entries equal to zero. We partition the domain Ω

into computational cells

Kα = [(α(1)− 1)h1, α(1)h1]× · · · × [(α(d)− 1)hd, α(d)hd]

with cell size |Kα| =
∏d

j=1 hj such that
⋃
α∈AKα = Ω, where A denotes the set of all indices α.
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3.3.1. Density update. A finite volume approximation of (3.2a) over each cell Kα with α ∈ A gives

ρn+1
i,α − ρni,α

τ
=

d∑
j=1

Ci,α+ej/2 − Ci,α−ej/2
hj

=: Rα[ρn+1
i , ψni ], (3.7a)

where ρ0
i,α := ρini,α.

Numerical fluxes on interfaces are defined by:

(i) on the interior interfaces,

Ci,α+ej/2 =
Di(xα+ej/2)e

−ψn
i,α+ej/2

hj

(
ρn+1
i,α+ej

e
ψni,α+ej − ρn+1

i,α eψ
n
i,α

)
, for 1 < α(j) < Nj; (3.7b)

(ii) on the boundary ∂ΩD,

Ci,α−e1/2 =
2Di(xα−e1/2)e−ψ

b
i (xα−e1/2,tn)

h1

(
ρn+1
i,α

e−ψ
n
i,α
−
ρbi(xα−e1/2, tn+1)

e−ψ
b
i (xα−e1/2,tn)

)
, α(1) = 1,

Ci,α+e1/2 =
2Di(xα+e1/2)e−ψ

b
i (xα+e1/2,tn)

h1

(
ρbi(xα+e1/2, tn+1)

e−ψ
b
i (xα+e1/2,tn)

−
ρn+1
i,α

e−ψ
n
i,α

)
, α(1) = N1;

(3.7c)

(iii) on the boundary ∂ΩN ,

Ci,α−ej/2 = 0, for α(j) = 1,

Ci,α+ej/2 = 0, for α(j) = Nj.
(3.7d)

In (3.7b) e
−ψn

i,α+ej/2 needs to be evaluated using numerical solutions φnα. There are three choices,

all are second order approximations:

(i) the harmonic mean

e
−ψn

i,α+ei/2 =
2e
−ψni,α+ej−ψ

n
i,α

e
−ψni,α+ej + e−ψ

n
i,α

, (3.8)

(ii) the geometric mean

e
−ψn

i,α+ei/2 =

√
e
−ψni,α+ej−ψ

n
i,α , (3.9)

(iii) the algebraic mean

e
−ψn

i,α+ei/2 =
e
−ψni,α+ej + e−ψ

n
i,α

2
. (3.10)

It is reported in [36] that the harmonic mean results in a linear system with better condition

number than that of the geometric mean. We use the harmonic mean in our numerical tests.

3.3.2. Solving Poisson’s equation. In order to complete the scheme, we need to evaluate ψni,α by

ψni,α =
1

kBT
(qiφ

n
α + µi,α),

and φnα is determined from ρnα by using the following discretization of the equation (3.3a):

−
d∑
j=1

Φn
α+ej/2

− Φn
α−ej/2

hj
= 4π

(
fα +

m∑
i=1

qiρ
n
i,α

)
, (3.11a)

where numerical fluxes on cell interfaces are defined by:
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(i) on the interior interfaces,

Φn
α+ej/2

= ε(xα+ej/2)
φnα+ej

− φnα
hj

, for 1 < α(j) < Nj, (3.11b)

(ii) on the boundary ∂ΩD,

Φn
α−e1/2 = ε(xα−e1/2)

2(φnα − φb(xα−e1/2, tn))

h1

, for α(1) = 1,

Φn
α+e1/2

= ε(xα+e1/2)
2(φb(xα+e1/2, tn)− φnα)

h1

, for α(1) = N1,

(3.11c)

(iii) on the boundary ∂ΩN ,

Φn
α−ej/2 = 0, for α(j) = 1,

Φn
α+ej/2

= 0, for α(j) = Nj.
(3.11d)

Note that in the case of ∂ΩD = ∅, the solution to (3.11) is unique only up to an additive constant,

in such case we take φn(1,··· ,1) = 0 to obtain a unique solution φnα.

3.3.3. Positivity. The following theorem states that the scheme (3.7) preserves positivity of nu-

merical solutions without any time step restriction.

Theorem 3.3. Let ρn+1
α be obtained from (3.7). If ρnα ≥ 0 for all α ∈ A, and ρb(x, tn) ≥ 0, x ∈ ∂ΩD,

then

ρn+1
α ≥ 0 for all α ∈ A.

Proof. This proof mimics that in [25] for the Fokker-Planck equation. Set λj = τ
h2j

, D̄i,α+ej/2 =

Di(xα+ej/2)e
−ψn

i,α+ej/2 , gni,α = eψ
n
i,α and

Gi,α = ρn+1
i,α gni,α, α ∈ A.

Let β be such that

Gi,β = min
α∈A

Gi,α,

it suffices to prove Gi,β ≥ 0. We discuss in cases:

(i) Kβ is an interior cell. On the cell Kβ we have

gni,βGi,β =
d∑
j=1

λj[D̄i,β+ej/2(Gi,β+ej −Gi,β)− D̄i,β−ej/2(Gi,β −Gi,β−ej)] + ρni,β

≥ ρni,β,

where we used the fact Gi,β ≤ Gi,β±ej and D̄i,β±ej/2 > 0. Since gni,β > 0, so Gi,β ≥ 0.

(ii) Kβ is a boundary cell( Kβ ∩ ∂ΩD 6= ∅). We only deal with the case β(1) = 1, remaining

cases are similar. In such case,

gni,βGi,β =
d∑
j=2

λj[D̄i,β+ej/2(Gi,β+ej −Gi,β)− D̄i,β−ej/2(Gi,β −Gi,β−ej)]

+ λ1D̄i,β+e1/2(Gi,β+e1 −Gi,β)
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− 2λ1Di(xβ−e1/2)gbi (xβ−e1/2, tn)

(
Gi,β −

ρbi(xβ−e1/2, tn+1)

gbi (xβ−e1/2, tn)

)
+ ρni,β.

Due to Gi,β ≤ Gi,β±ej and D̄i,β±ej/2 ≥ 0, we have(
gni,β + 2λ1Di(xβ−e1/2)gbi (xβ−e1/2, tn)

)
Gi,β ≥ 2λ1Di(xβ−e1/2)ρbi(xβ−e1/2, tn+1) + ρni,β ≥ 0,

which with gni,β + 2λ1Di(xβ−e1/2)gbi (xβ−e1/2, tn) > 0 ensures Gi,β ≥ 0.

(iii)Kβ is a boundary cell (Kβ ∩ ∂ΩN 6= ∅). Again we only deal with the case β(l) = 1. In such

case,

gni,βGi,β =
d∑

j=1,j 6=l

λj[D̄i,β+ej/2(Gi,β+ej −Gi,β)− D̄i,β−ej/2(Gi,β −Gi,β−ej)]

+ λlD̄i,β+1/2el(Gi,β+el −Gi,β) + ρni,β

≥ρni,β ≥ 0.

This also gives Gi,β ≥ 0. The proof is thus complete. �

3.3.4. Energy dissipation. If ∂ΩD = ∅, then solutions ρn+1
α obtained by (3.7) are conservative and

energy dissipating in addition to the non-negativity. Let a discrete version of the free energy (2.7)

be defined as

En
h =

∑
α∈A

|Kα|

[
m∑
i=1

ρni,α(log ρni,α − 1) +
1

2kBT

(
fα +

m∑
i=1

qiρ
n
i,α

)
φnα +

1

kBT

m∑
i=1

ρni,αµi,α

]
, (3.12)

we have the following result.

Theorem 3.4. Let ρnα be obtained from (3.7) by using either (3.8), (3.9), or (3.10) for e
−ψn

i,α+ei/2 .

Let φnα be obtained from (3.11). If ∂ΩD = ∅, then we have:

(i) Mass conservation:∑
α∈A

|Kα|ρn+1
i,α =

∑
α∈A

|Kα|ρni,α for n ≥ 0, i = 1, · · · ,m;

(ii) Energy dissipation: There exists τ ∗ > 0 such that if τ ∈ (0, τ ∗), then

En+1
h − En

h ≤ −
τ

2
In, (3.13)

where

In =
m∑
i=1

d∑
j=1

∑
α(j) 6=Nj

|Kα|
Ci,α+ej/2

hj

(
log(ρn+1

i,α+ej
e
ψnα+ej )− log(ρn+1

i,α eψ
n
α)
)
≥ 0.

If we let

εmin = min
x∈Ω̄

ε(x), εmax = max
x∈Ω̄

ε(x), Dmax = max
i,x∈Ω̄

Di(x),

then τ ∗ can be quantified by

τ ∗ =
kBTε

2
min

4πεmaxDmax maxi,α,n ρni,α
∑m

i=1 q
2
i

e
−maxi,j,α |ψni,α+ej−ψ

n
i,α|.
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Remark 3.2. We remark that τ ∗ is of size O(1), though it appears to be dependent on numerical

solutions. For hj small, the exponential term is only of size eO(h), therefore bounded. As n

increases, the solution {ρnα} is expected to converge to the steady-state and therefore bounded

from above, hence we simply use the notation maxi,α,n ρ
n
i,α. The boundedness of ρn in n for some

cases has been established in Theorem 3.2 for the corresponding semi-discrete scheme.

The proof is deferred to Appendix B.

3.3.5. Preservation of steady-states. With no-flux boundary conditions, scheme (3.7) can be shown

to be steady-state preserving. Based on the discussion in section 2.4, we say a discrete function

ρα is at steady-state if

ρi,α = cie
− 1
kBT

(qiφα+µi,α)
, i = 1, · · · ,m, α ∈ A, (3.14)

where φα satisfies (3.11) with ρi,α replaced by the above relation, which is a nonlinear algebraic

equation for φα uniquely determined for each (c1, · · · cm). We have the following theorem.

Theorem 3.5. Let the assumptions in Theorem 3.4 be met, then

(i) If ρ0
α is already at steady-state, then ρnα = ρ0

α for n ≥ 1.

(ii) If En+1
h = En

h , then ρnα must be at steady-state.

(iii) If ρni,α, φ
n
α converge as n→∞, then their limits are determined by

ρ∞i,α = c∞i e
− 1
kBT

(qiφ
∞
α +µi,α)

, c∞i =

∑
α∈A |Kα|ρ0

i,α∑
α∈A |Kα|e

− 1
kBT

(qiφ∞α +µi,α)
,

where φ∞α is obtained by solving (3.11) by using ρ∞i,α.

Proof. (i) We only need to prove ρ1
i,α = ρ0

i,α, for all i = 1, · · · ,m, α ∈ A. Summing (3.7) with

n = 0 against |Kα|ρ1
i,α/ρ

0
i,α, using summation by parts, we obtain

∑
α∈A

|Kα|(ρ1
i,α − ρ0

i,α)
ρ1
i,α

ρ0
i,α

=τ
d∑
j=1

∑
α∈A

|Kα|
1

hj
(Ci,α+ej/2 − Ci,α−ej/2)

ρ1
i,α

ρ0
i,α

=− τ
d∑
j=1

∑
α(j)6=Nj

|Kα|
1

hj
Ci,α+ej/2

(
ρ1
i,α+ej

ρ0
i,α+ej

−
ρ1
i,α

ρ0
i,α

)
.

(3.15)

Substituting ρ0
i,α = cie

−ψ0
i,α into Ci,α+ej/2, the right hand side of (3.15) becomes

RHS =− τci
d∑
j=1

∑
α(j)6=Nj

|Kα|
Di,α+ej/2e

−ψ0
i,α+ej/2

h2
j

(
ρ1
i,α+ej

ρ0
i,α+ej

−
ρ1
i,α

ρ0
i,α

)2

≤ 0.

Adding
∑

α∈A |Kα|(ρ0
i,α − ρ1

i,α) = 0 to the left hand side of (3.15) leads to

LHS =
∑
α∈A

|Kα|
[
(ρ1
i,α − ρ0

i,α)
ρ1
i,α

ρ0
i,α

+ (ρ0
i,α − ρ1

i,α)

]

=
∑
α∈A

|Kα|
(ρ1
i,α − ρ0

i,α)2

ρ0
i,α

≥ 0.
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Hence LHS = RHS ≡ 0, we must have

ρ1
i,α = ρ0

i,α, i = 1, · · · ,m, α ∈ A.

(ii) The inequality (3.13) when combined with En+1
h = En

h leads to In = 0. From the proof of

Theorem 3.4 in Appendix B it follows

ρn+1
i,α = ρni,α.

(iii) Since En
h is non-increasing in n, and we can verify that En

h is bounded from below, hence

lim
n→∞

En
h = inf{En

h}.

Taking the limit in (3.13), we have limn→∞ I
n = 0, which implies

ρ∞i,α = c∞i e
−ψ∞i,α .

Conservation of mass gives

c∞i =

∑
α∈A |Kα|ρ0

i,α∑
α∈A |Kα|e−ψ

∞
i,α
. i = 1, · · · ,m, α ∈ A,

where φ∞α in ψ∞i,α = 1
kBT

(qiφ
∞
α + µi,α) is obtained by solving (3.11) using ρ∞i,α. �

4. Second order in time discretization

The semi-discrete scheme (3.2a) is first order accurate, one can design higher order in time

schemes based on (3.1).

The following is a second order time discretization,

ρn+1
i − ρni
τ

= R[(ρn+1
i + ρni )/2,

3

2
ψni −

1

2
ψn−1
i ].

This can be expressed as a prediction-correction method,

ρ∗i − ρni
τ/2

= R[ρ∗i ,
3

2
ψni −

1

2
ψn−1
i ], ρn+1

i = 2ρ∗i − ρni . (4.1)

As argued for the first order scheme, this scheme is well-defined.

4.1. Second order fully-discrete scheme. With central spatial difference, our fully discrete

second order (in both space and time) scheme reads

ρ∗i,α − ρni,α
τ/2

= Rα[ρ∗i ,
3

2
ψni −

1

2
ψn−1
i ], (4.2a)

ρn+1
i,α = 2ρ∗i,α − ρni,α. (4.2b)

Positivity of ρn+1
α can be ensured if time steps are sufficient small.

Theorem 4.1. Let ρn+1
α be obtained from (4.2). If ρnα ≥ 0 for all α ∈ A, and ρb(x, t) ≥ 0 for

x ∈ ∂ΩD, then

ρn+1
α ≥ 0, α ∈ A

provided τ is sufficiently small.
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Proof. Inserting (4.2b) into (4.2a) leads to the following compact form of the scheme (4.2):

ρn+1
i,α −

τ

2
Rα[ρn+1

i ,
3

2
ψni −

1

2
ψn−1
i ] = ρni,α +

τ

2
Rα[ρni ,

3

2
ψni −

1

2
ψn−1
i ], (4.3)

where we have used the linearity of Rα[·, ·] on the first entry.

Set

g∗i,α = e
3
2
ψni,α−

1
2
ψn−1
i,α , D̄∗i,α+ej/2

= Di,α+ej/2e
− 3

2
ψn
i,α+ej/2

+ 1
2
ψn−1
i,α+ej/2 , Gn

i,α = ρni,αg
∗
i,α,

then the scheme (4.3) can be rewritten as

g∗i,αG
n+1
i,α −

d∑
j=1

τ

h2
j

[D̄∗i,α+ej/2
(Gn+1

i,α+ej
−Gn+1

i,α )− D̄∗i,α−ej/2(Gn+1
i,α −Gn+1

i,α−ej)]

= g∗i,αG
n
i,α +

d∑
j=1

τ

h2
j

[D̄∗i,α+ej/2
(Gn

i,α+ej
−Gn

i,α)− D̄∗i,α−ej/2(Gn
i,α −Gn

i,α−ej)].

(4.4)

Let β be such that

Gn+1
i,β = min

α∈A
Gn+1
i,α ,

it suffices to prove Gn+1
i,β ≥ 0. We prove the result when Kβ is an interior cell, the result for

boundary cells can be proved similarly.

Since Gn+1
i,β ≤ Gn+1

i,β±ej and Gn
i,β±j ≥ 0, thus equation (4.4) on cell Kβ reduces to the inequality:

g∗i,βG
n+1
i,β ≥

(
g∗i,β − τ

d∑
j=1

1

h2
j

(D̄∗i,β+ej/2
+ D̄∗i,β−ej/2)

)
Gn
i,β,

we see that Gn+1
i,β ≥ 0 is insured if

τ ≤ min
α

 g∗i,α∑d
j=1

1
h2j

(D̄∗i,α+ej/2
+ D̄∗i,α−ej/2)

 .

The stated result thus follows. �

We should point out that numerical density {ρnα} obtained by the second order scheme (4.2) may

not be non-negative for large time step τ , though {ρ∗α} stays positive. We shall restore solution

positivity by using a local limiter, which was first introduced in [23] for one-dimensional case.

4.2. Positivity-preserving limiter. We present a local limiter to restore positivity of ρ if∑
α∈A

|Kα|ρα > 0,

but ρβ < 0 for some β ∈ A. The idea is to find a neighboring index set Sβ such that the local

average

ρ̄β =
1

|Sβ|
∑
γ∈Sβ

|Kγ|ργ > 0,

where |Sβ| denotes the minimum number of indices for which ργ 6= 0 and ρ̄β > 0, then use this

local average as a reference to define the following scaling limiter

ρ̃α = θρα + (1− θ)ρ̄β/|Kα|, α ∈ Sβ, (4.5)
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where

θ = min

{
1,

ρ̄β
ρ̄β − ρmin

}
, ρmin = min

γ∈Sβ
|Kγ|ργ.

Recall the result stated in Lemma 5.1 in [24], such limiter restores solution positivity and respects

the local mass conservation. In addition, for any sequence gα with gα ≥ 0, we have

|ρ̃α − gα| ≤ (1 + |Sβ|Λ) max
γ∈Sβ
|ργ − gγ|, α ∈ Sβ, (4.6)

where Λ is the upper bound of mesh ratio |Kγ|/|Kα|. Let ρα be the approximation of ρ(x) ≥ 0, we

let gα = ρ(xα) or the average of ρ on Kα, so we can assert that the accuracy is not destroyed by

the limiter as long as |Sβ|Λ is uniformly bounded. Boundedness of |Sβ| for shape-regular meshes

was rigorously proved in [24] for the one-dimensional case. We restate such result in the present

setting in the following.

Theorem 4.2. Let {ρα} be an approximation of ρ(x) ≥ 0 over shape regular meshes, and ρ ∈ Ck(Ω)

(k ≥ 2). If ρβ < 0 (or only finite number of neighboring values are negative), then there exists

C∗ > 0 finite such that

|ρ̃α − ρ(xα)| ≤ C∗max
α∈Sβ
|ρα − ρ(xα)|, ∀α ∈ Sβ,

where C∗ may depend on the local meshes associated with Sβ.

Proof. For simplicity, we prove only for the case of uniform meshes (e.g. uniform in each dimen-

sion). Let h = min1≤j≤d hj ≤ 1 and hj ≤ Λh for some Λ > 0. From (4.6) we see that it suffices to

show there exists A∗ > 0 finite such that |Sβ| ≤ A∗, with which we will have C∗ = 1 +A∗Λ. Under

the smoothness assumption of ρ we may assume |ρα−ρ(xα)| ≤ Chk. Under the assumption ρβ < 0,

ρ must touch zero near xβ. We discuss the case where ρ(x∗) = 0 and ∇ρ(x∗) = ~0 with ρ(x) > 0

for x(j) ≥ x∗(j), j = 1, · · · , d, locally with x∗ ∈ Kβ. To be concrete, we consider β = (1, · · · , 1)

and
∫
Kβ
ρ(x)dx > 0. From the limiter construction we have Sβ such that∑

α∈Sβ

|Kα|ρα > 0. (4.7)

The rest of the proof is devoted to bounding |Sβ|. The assumed error bound gives

ρα ≥ ρ(xα)− Chk. (4.8)

From ρ ∈ Ck(Ω)(k ≥ 2), we have

ρ(xα) ≥ ρ̄α − λΛ2h2, (4.9)

with λ = d
24

maxj=1,··· ,d |∂xjxjρ| and the cell average ρ̄α = 1
|Kα|

∫
Kα
ρ(x)dx. From (4.8) and (4.9),

we see that the left hand side of (4.7) is bounded from below by∑
α∈Sβ

|Kα|ρα ≥
∑
α∈Sβ

|Kα|
(
ρ̄α − (C + λΛ2)h2

)
=

∫
∪α∈SβKα

ρ(x)dx− (C + λΛ2)h2
∑
α∈Sβ

|Kα|.
(4.10)
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Without loss of generality we assume ∪α∈SβKα is a rectangle in Rd; otherwise we could add more

cells to complete the rectangle. Let

| ∪α∈Sβ Kα| = Πd
j=1ηj, hj ≤ ηj ≤ Lj,

and ~η = (η1, · · · , ηd), ~h = (h1, · · · , hd). Rewriting integral in (4.10) we have∑
α∈Sβ

|Kα|ρα ≥
[
g(η)− (C + λΛ2)h2

] ∑
α∈Sβ

|Kα|,

where

g(η) :=

∫ 1

0

· · ·
∫ 1

0

ρ

(
diag(~θ)~η + xβ −

1

2
~h

)
dθ1 · · · dθd.

From the fact hd ≤ η1···ηd
|Sβ |

, we can see that the term in the bracket is bounded from below by

g(η)− (C + λΛ2)

(
η1 · · · ηd
|Sβ|

)2/d

,

which is positive if

|Sβ| > (C + λΛ2)d/2g(η)−d/2η1 · · · ηd.
This can be insured if we take

|Sβ| = bAc+ 1,

where

A = (C + λΛ2)d/2 max
ηj∈[hj ,Lj ],j=1,··· ,d

g(η)−d/2η1 · · · ηd.

This is bounded and may depend on the local mesh of Kβ. �

Note that our numerical solutions feature the following property: if ρni,α = 0, then

ρn+1
i,α = 2ρ∗i,α − ρni,α ≥ 0

due to the fact ρ∗i,α ≥ 0. This means that if ρin(x) = 0 on an interval, then ρ1
i,α cannot be negative

in most of nearby cells. Thus negative values appear only where the exact solution turns from zero

to a positive value, and the number of these values are finitely many. Our result in Theorem 4.2

is thus applicable.

4.3. Algorithm. The following algorithm is only for the second order scheme with limiter.

(1) Initialization: From the initial data ρini (x), obtain

ρ0
i,α =

1

|Kα|

∫
Kα

ρini (x)dx, i = 1, · · · ,m, α ∈ A,

by using central point quadrature.

(2) Update to get {ρ1
i,α}: Compute {φ0

α} from (3.11), then obtain {ρ1
i,α} by the first order

scheme (3.7).

(3) Update from {ρni,α}: For n ≥ 1, compute {φnα} from scheme (3.11) then get {ρn+1
i,α } from

(4.2).

(4) Reconstruction: if necessary, locally replace ρn+1
i,α by ρ̃n+1

i,α using the limiter defined in (4.5).

The following algorithm can be called to find an admissible set Sα used in (4.5).
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(i) Start with Sβ = {β}, p = 1.

(ii) For lj = max{1, α(j)− p} : min{α(j) + p,Nj} with j = 1, · · · , d.

If α := (l1, · · · , ld) /∈ Sβ and ρn+1
i,α 6= 0, then set Sβ = Sβ ∪ {α}.

If ρ̄β > 0, then stop, else go to (iii).

(iii) Set p = p+ 1 and go to (ii).

Remark 4.1. The coefficient matrices of the linear systems obtained by (3.7), (3.11), and (4.2a) are

sparse, diagonally dominant, and symmetric, hence more efficient linear system solvers, such as

the ILU preconditioner + FGMRES (see e.g., [37]), ILU preconditioner + Bicgstab (see e.g., [4]),

can be used.

5. Numerical tests

In this section, we implement the fully discrete schemes (3.7) and (4.2) to demonstrate their

orders of convergence and capacity to preserve solution properties. In both schemes the numerical

solution φnα is computed by the scheme (3.11). Errors in the accuracy tests are measured in the

following discrete l1 norm:

error =
∑
α∈A

|Kα||g̃α − gα|.

Here gα denotes the numerical solution, say gα = ρni,α or φnα at time t = nτ , and g̃α indicates the

cell average of the corresponding exact solutions.

In our numerical tests, the sparse linear systems obtained by (3.7), (3.11), and (4.2a) are solved

by ILU preconditioned FGMRES [37] algorithm using compressed row format of the coefficient

matrices. In the three-dimensional case, the coefficient matrices of the linear systems are 7-

diagonal matrices. It is worth to mention that the compressed row format allows us to store a l× l
7-diagonal matrix by using at most 15l storage locations with l = Nx×Ny×Nz. With 30×30×30

cells, we can save 99% of the storage space needed for storing the resulting coefficient matrices.

In our three examples below we consider the computational domain

Ω = (0, 1)× (0, 1)× (0, 1).

Example 5.1. (Accuracy test) In this test we numerically verify the accuracy and order of schemes

(3.7) and (4.2) by using manufactured solutions. Consider
ρ1(x, t) = 4(x2(1− x)2 + y(1− y))e−t,

ρ2(x, t) = (y(1− y) + z2(1− z)2)e−t,

φ(x, t) = (x2(1− x)2 + y(1− y) + z2(1− z)2)e−t
(5.1)

and

∂ΩD = {x ∈ Ω̄ : y = 0, 1}, ∂ΩN = ∂Ω̄ \ ∂ΩD,

then they are exact solutions to the following problem
∂tρ1 = ∇ · (∇ρ1 + ρ1∇φ) + f1(x, t), x ∈ Ω, t > 0,

∂tρ2 = ∇ · (∇ρ2 − ρ2∇φ) + f2(x, t), x ∈ Ω, t > 0,

−∆ψ = ρ1 − ρ2 + f3(x, t), x ∈ Ω, t > 0,

(5.2)
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where source terms f1(x, t), f2(x, t) and f3(x, t), and the initial and boundary conditions are de-

termined by the exact solutions.

We first test the accuracy of the semi-implicit scheme (3.7) by using various spatial step size

h, errors and orders at t = 1 are listed in Table 1 (with τ = h) and in Table 2 (with τ = h2),

respectively. We observe the first order accuracy in time and the second order accuracy in space.

We then test the accuracy of the scheme (4.2) with time step size τ = h. From Table 3, we see

the second order accuracy in both time and space.

Table 1. Scheme (3.7) with τ = h

Nx ×Ny ×Nz ρ1 error order ρ2 error order φ error order

8× 8× 8 4.7508E-02 - 1.3904E-02 - 5.7213E-03 -

16× 16× 16 2.1283E-02 1.1585 5.8701E-03 1.2440 2.0987E-03 1.4468

32× 32× 32 1.0060E-02 1.0811 2.6956E-03 1.1228 8.6460E-04 1.2794

64× 64× 64 4.8890E-03 1.0410 1.2915E-03 1.0616 3.8667E-04 1.1609

Table 2. Scheme (3.7) with τ = h2

Nx ×Ny ×Nz ρ1 error order ρ2 error order φ error order

8× 8× 8 1.1252E-02 - 4.0301E-03 - 3.1194E-03 -

16× 16× 16 2.7824E-03 2.0158 9.8548E-04 2.0319 7.7117E-04 2.0161

32× 32× 32 6.9369E-04 2.0040 2.4502E-04 2.0079 1.9225E-04 2.0041

64× 64× 64 1.7330E-04 2.0010 6.1170E-05 2.0020 4.8028E-05 2.0010

Table 3. Scheme (4.2) with τ = h

Nx ×Ny ×Nz ρ1 error order ρ2 error order φ error order

8× 8× 8 5.5476E-03 - 2.3247E-03 - 2.7378E-03 -

16× 16× 16 1.5073E-03 1.8799 6.0465E-04 1.9429 6.7758E-04 2.0146

32× 32× 32 3.9635E-04 1.9271 1.5851E-04 1.9315 1.6895E-04 2.0038

64× 64× 64 1.0182E-04 1.9608 4.0875E-05 1.9553 4.2206E-05 2.0011

Example 5.2. (Solution positivity) We consider the two-species PNP system with initial data of

form 

∂tρ1 = ∇ · (∇ρ1 + ρ1∇φ), x ∈ Ω, t > 0,

∂tρ2 = ∇ · (∇ρ2 − ρ2∇φ), x ∈ Ω, t > 0,

−∆ψ = ρ1 − ρ2 + 10χ
[0.2,0.4]×[0.2,0.4]×[0.2,0.4]

, x ∈ Ω, t > 0,

ρin1 (x) = χ
[0,0.25]×[0,0.25]×[0,0.25]

,

ρin2 (x) = 2χ
[0,0.25]×[0,0.25]×[0,0.25]

.

(5.3)

This corresponds to (1.1) with D1 = D2 = 1, q1 = −q2 = 1, kBT = 1, ε(x) = 4π, µi = 0, and

f(x) = 10χ
[0.2,0.4]×[0.2,0.4]×[0.2,0.4]

.
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With ∂ΩD = {x ∈ Ω̄ : y = 0, 1}, and ∂ΩN = ∂Ω̄ \ ∂ΩD, we solve the problem subject to mixed

boundary conditions
(∇φ) · n = 0, (∇ρ1 + ρ1∇φ) · n = 0, (∇ρ2 − ρ2∇φ) · n = 0, x ∈ ∂ΩN ,

φb(x, t) = (x2(1− x)2 + z2(1− z)2)e−t, x ∈ ∂ΩD,

ρb1(x, t) = 4x2(1− x)2e−t, x ∈ ∂ΩD,

ρb2(x, t) = z2(1− z)2e−t, x ∈ ∂ΩD.

(5.4)

We use 30×30×30 cells with τ = 0.5h to compute numerical solutions up to t = 2. Given in Fig.1

are the time evolution of numerical solutions (top three rows) and the minimum of ρ1, ρ2 (bottom

row) obtained by the scheme (3.7), showing non-negative approximations for both ρ1 and ρ2.

Results obtained by the scheme (4.2) are given in Fig.2. Note that the positivity preserving limiter

keeps being invoked when we use the scheme (4.2). The CPU time (average of 10 simulations)

needed for running the schemes (3.7) and (4.2) are 207.27 seconds and 203.15 seconds, respectively,

from which we see that the second-order scheme is as efficient as the first order scheme.

Example 5.3. (Mass conservation and energy dissipation) In this numerical example we test both

mass conservation and energy dissipation properties of our schemes.

We consider system (5.3) with zero flux boundary conditions:

(∇φ) · n = 0, (∇ρ1 + ρ1∇φ) · n = 0, (∇ρ2 − ρ2∇φ) · n = 0, x ∈ ∂Ω.

Numerical approximations of ρ1 and ρ2 at t = 2 obtained by the scheme (3.7) are given in Fig.3.

We can see by comparing Fig.3 and Fig.1 that boundary conditions have strong effects on the

solution profiles. In Fig.4 (left) are the time evolution of the total mass and free energy obtained

by the scheme (3.7), the results verify our theoretical findings in Theorem 3.4. In Fig.4 (right) are

plots of the free energy and total mass obtained by (4.2). In this test the second order scheme

looks also energy dissipative and mass conservative.

6. Concluding remarks

In this paper, we have developed unconditional structure-preserving schemes for PNP equations

in more general settings. These schemes are shown to preserve several important physical laws at

the fully discrete level including: mass conservation, solution positivity, and free energy dissipation.

The non-logarithmic Landau reformulation of the model is important, enabling us to construct a

simple, easy-to-implement fully discrete scheme (first order in time, second order in space), which

proved to satisfy all three desired properties of the continuous model with only O(1) time step re-

striction. We further designed a second order (in both time and space) scheme, which has the same

computational complexity as the first order scheme. For such second order scheme, we employed a

local scaling limiter to restore solution positivity where necessary. Moreover, we rigorously proved

that the limiter does not destroy the desired accuracy. Three-dimensional numerical tests are

conducted to evaluate the scheme performance and verify our theoretical findings. Our schemes

presented with µi given can be applied to complex chemical potentials without difficulty.
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Figure 1. Example 5.2: ρ1, ρ2, φ computed by scheme (3.7)
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Figure 2. Example 5.2: ρ1, ρ2, φ computed by scheme (4.2) ( with limiter)
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Figure 3. Example 5.3: ρ1, ρ2 computed by scheme (3.7)

Figure 4. Example 5.3: Mass conservation and energy dissipation

Appendix A. Proof of Theorem 3.1

Proof. The elliptic problem (3.2) can be rewritten in w = ρn+1
i eψ

n
i as

e−ψ
n
i w − τ∇ · (Di(x)e−ψ

n
i ∇w) = ρni , (A.1a)

w = ρbi(x, tn+1)eψ
b
i (x,tn), x ∈ ∂ΩD, (A.1b)

(∇w) · n = 0, x ∈ ∂ΩN . (A.1c)

Let γ0 be the trace operator on ∂ΩD. The above problem admits a variational formulation of form

B[u, v] = Lv, u, v ∈ H, (A.2)

where for a Dirichlet lift G ∈ H2(Ω) with trace γ0(G) = ρbi(x, tn+1)eψ
b
i (x,tn), we find

w = u+G.

Here

H = {v ∈ H1(Ω) : γ0(v) = 0 on ∂ΩD}, (A.3a)
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B[u, v] =

∫
Ω

(τDi(x)e−ψ
n
i ∇u · ∇v + e−ψ

n
i uv)dx, (A.3b)

Lv =

∫
Ω

(ρni − e−ψ
n
i G)v − τDi(x)e−ψ

n
i ∇G · ∇vdx. (A.3c)

Under the assumptions, the celebrated Lax-Milgram theorem ( [13] Theorem 5.8) ensures that the

variational problem (A.2) admits a unique solution u ∈ H. We thus obtain

ρn+1
i = e−ψ

n
i (u+G).

Regularity for ρn+1
i follows from the classical elliptic regularity for u.

Similarly, the variational problem for (3.3) can also be written as (A.2) with

B[u, v] =

∫
Ω

ε(x)∇u · ∇vdx, (A.4a)

Lv =

∫
Ω

4π

(
f(x) +

m∑
i=1

qiρ
n+1
i

)
v − ε(x)∇G · ∇vdx, (A.4b)

where the Dirichlet lift G ∈ H2(Ω) with γ0(G) = φb(x, tn+1) on x ∈ ∂ΩD. Here one can use the

Poincaré-Friedrichs’ inequality of form ‖u‖L2 ≤ CF‖∇u‖L2 , which holds if u = 0 on a set of ∂Ω

with non-vanishing measure, to regain coercivity of B on H. The variational problem is thus

well-posed, and we obtain

φn+1 = u+G.

Regularity for φn+1 follows from the classical elliptic regularity for u and regularity for ρn+1.

If ∂ΩD = ∅, then B[u, 1] = 0 requires the compatibility condition for the source∫
Ω

(
f(x) +

m∑
i=1

qiρ
n+1
i

)
dx = 0.

Due to conservation of mass, this can be ensured by∫
Ω

(
f(x) +

m∑
i=1

qiρ
in
i

)
dx = 0.

With such compatibility condition the solution of this variational formulation exists but is not

unique. In such case one can replace H by

H∗ =

{
v ∈ H1,

∫
Ω

vdx = 0

}
,

then by the Poincaré-Wirtinger inequality, B is actually H∗- coercive. The new variational problem

hence admits a unique solution and is well-posed.

Finally we prove positivity of ρn+1 if ρn ≥ 0. Since w = ρn+1
i eψ

n
i ∈ C(Ω̄) ∩ C2(Ω), we let

x∗ = argminx∈Ω̄ w(x), and distinct three cases:

(i) If x∗ ∈ ∂ΩD, then

w(x) ≥ w(x∗) = ρbi(x
∗, tn+1)eψ

b
i (x
∗,tn) ≥ 0, x ∈ Ω̄.

(ii) If x∗ ∈ Ω, then we can show that

w(x) ≥ w(x∗) ≥ ρni (x∗)eψ
n
i (x∗) ≥ 0, x ∈ Ω̄.
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In fact, from (A.1a) it follows

ρni (x) =e−ψ
n
i (x)w(x)− τ∇ · (Di(x)e−ψ

n
i (x)∇w(x))

=e−ψ
n
i (x)w(x)− τ∇(Di(x)e−ψ

n
i (x)) · ∇w(x)− τDi(x)e−ψ

n
i (x)∆w(x).

This when evaluated at x∗, using ∇w(x∗) = 0 and ∆w(x∗) ≥ 0, gives

ρni (x∗) ≤ e−ψ
n
i (x∗)w(x∗).

(iii) For x∗ ∈ ∂ΩN . If w(x∗) ≥ 0, the proof is complete. We proceed with the case that

w(x∗) < 0, x∗ ∈ ∂ΩN .

This is possible by the Hopf strong minimum principle.

Define the differential operator

Lξ := τDi(x)e−ψ
n
i (x)∆ξ + τ∇(Di(x)e−ψ

n
i (x)) · ∇ξ − e−ψni (x)ξ.

We then have Lw = −ρni (x) ≤ 0, and w(x) ≥ w(x∗) for all x ∈ Ω. These together with w(x∗) < 0

allow us to apply Theorem 8 in [35] to conclude (∇w(x∗)) · n < 0. This is a contradiction.

Collecting all three cases, we have w(x) ≥ 0 for all x ∈ Ω̄. �

Appendix B. Proof of Theorem 3.4.

Proof. (i) For fixed i we sum (3.7) over all cells to get∑
α∈A

|Kα|(ρn+1
i,α − ρni,α) = τ

d∑
j=1

∑
α∈A

|Kα|
hj

(Ci,α+ej/2 − Ci,α−ej/2) = 0,

where we used summation by parts and Ci,α+ej/2 = 0 for xα+ej/2 ∈ ∂Ω.

(ii) Set

Snα = fα +
m∑
i=1

qiρ
n
i,α

and

ψ∗i,α = log ρn+1
i,α +

1

kBT
qiφ

n
α +

1

kBT
µi,α.

Using (3.12) we find that

En+1
h − En

h =
∑
α∈A

m∑
i=1

|Kα|

(
(ρn+1
i,α − ρni,α)ψ∗i,α + ρni,α log

ρn+1
i,α

ρnα

)

+
1

kBT

∑
α∈A

|Kα|
(

1

2
Sn+1
α φn+1

α +
1

2
Snαφ

n
α − Sn+1

α φnα

)
.

(B.1)

Using logX ≤ X − 1 for X > 0 and the mass conservation, we have∑
α∈A

|Kα|ρni,α log
ρn+1
i,α

ρnα
≤
∑
α∈A

|Kα|(ρn+1
i,α − ρnα) = 0.

Also one can verify that ∑
α∈A

|Kα|Sn+1
α φnα =

∑
α∈A

|Kα|Snαφn+1
α ,
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with which we obtain∑
α∈A

|Kα|
(

1

2
Sn+1
α φn+1

α +
1

2
Snαφ

n
α − Sn+1

α φnα

)
=

1

2

∑
α∈A

|Kα|(Sn+1
α − Snα)(φn+1

α − φnα).

Insertion of these into (B.1) gives

En+1
h − En

h ≤ −τIn + τ 2IIn, (B.2)

where

In = −
∑
α∈A

m∑
i=1

|Kα|

(
ρn+1
i,α − ρni,α

τ

)
ψ∗i,α,

IIn =
1

2kBT

∑
α∈A

|Kα|
(
Sn+1
α − Snα

τ

)(
φn+1
α − φnα

τ

)
.

By using (3.7) and summation by parts, we have

In =−
m∑
i=1

∑
α∈A

d∑
j=1

|Kα|
(
Ci,α+ej/2 − Ci,α−ej/2

hj

)
ψ∗i,α

=
m∑
i=1

d∑
j=1

∑
α(j)6=Nj

|Kα|
hj

(
ψ∗i,α+ej

− ψ∗i,α
)
Ci,α+ej/2.

(B.3)

Note that

Ci,α+ej/2 =
Di(xα+ej/2)e

−ψn
i,α+ej/2

hj

(
e
ψ∗i,α+ej − eψ∗i,α

)
,

hence In ≥ 0.

We pause to discuss the special case with In = 0. In such case we must have ψ∗i,α+ej
= ψ∗i,α

for each i, j and α ∈ A, which implies Ci,α+ej/2 = 0 for each i, j and α ∈ A. Thus, we have

ρn+1
i,α = ρni,α, hence

Snα = fα +
m∑
i=1

qiρ
n
i,α = fα +

m∑
i=1

qiρ
n+1
i,α = Sn+1

α , ∀α ∈ A,

therefore IIn = 0 and En+1
h − En

h ≤ 0, this is (3.13) with In = 0.

From now on we only consider the case In > 0. We proceed to estimate IIn,

IIn =
1

2kBT

∑
α∈A

|Kα|
(
Sn+1
α − Snα

τ

)(
φn+1
α − φnα

τ

)

=− 1

8πkBT

∑
α∈A

d∑
j=1

|Kα|
τ 2hj

(Φn+1
i,α+ej/2

− Φn+1
i,α−ej/2 − Φn

i,α+ej/2
+ Φn

i,α−ej/2)(φn+1
α − φnα)

=
1

8πkBT

d∑
j=1

∑
α(j) 6=Nj

|Kα|
τ 2hj

(Φn+1
i,α+ej/2

− Φn
i,α+ej/2

)(φn+1
α+ej
− φnα+ej

− φn+1
α + φnα)

=
1

8πkBT

d∑
j=1

∑
α(j) 6=Nj

|Kα|
εα+ej/2

τ 2h2
j

(φn+1
α+ej
− φnα+ej

− φn+1
α + φnα)2 ≥ 0.

(B.4)
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Here the second equality is obtained by using the equation (3.11), the last equality is obtained by

using the definition (3.11b) of Φn
i,α+ej/2

.

From (B.3) and (B.4), we see that the energy dissipation inequality (3.13) is satisfied if

τ ≤ τ ∗ ≤ In

2IIn
. (B.5)

In the remaining of the proof we will quantify τ ∗ from estimating the lower bound of In

2IIn
.

Subtracting (3.11) at time level t = tn+1 and t = tn, one has

−
d∑
j=1

Φn+1
α+ej/2

− Φn+1
α−ej/2 − Φn

α+ej/2
+ Φn

α−ej/2

hj
= 4π

m∑
i=1

qi(ρ
n+1
i,α − ρni,α), (B.6)

multiplying by |Kα|(φn+1
α − φnα) and summing over α ∈ A leads to

−
d∑
j=1

∑
α∈A

Kα

hj
(Φn+1

α+ej/2
− Φn+1

α−ej/2 − Φn
α+ej/2

+ Φn
α−ej/2)(φn+1

α − φnα)

= 4π
m∑
i=1

∑
α∈A

qi|Kα|(ρn+1
i,α − ρni,α)(φn+1

α − φnα).

(B.7)

Similar to (B.4), the left hand side of (B.7) reduces to

LHS =
d∑
j=1

∑
α(j) 6=Nj

|Kα|
εα+ej/2

h2
j

(φn+1
α+ej
− φnα+ej

− φn+1
α + φnα)2. (B.8)

We estimate the right hand side of (B.7) by using the equation (3.7):

RHS =4π
m∑
i=1

∑
α∈A

qi|Kα|(ρn+1
i,α − ρni,α)(φn+1

α − φnα)

=4πτ
m∑
i=1

∑
α∈A

d∑
j=1

qi|Kα|
1

hj
(Ci,α+ej/2 − Ci,α−ej/2)(φn+1

α − φnα)

=− 4πτ
m∑
i=1

d∑
j=1

∑
α(j)6=Nj

qi|Kα|
1

hj
Ci,α+ej/2(φn+1

α+ej
− φnα+ej

− φn+1
α + φnα).

(B.9)

Note that

LHS ≥ εmin

d∑
j=1

∑
α(j)6=Nj

|Kα|

(
φn+1
α+ej − φnα+ej

− φn+1
α + φnα

hj

)2

.
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Using the Cauchy-Schwarz inequality we see that

RHS ≤ 4πτ
m∑
i=1

|qi|

 d∑
j=1

∑
α(j)6=Nj

|Kα|Ci,α+ej/2

(
φn+1
α+ej

− φnα+ej − φ
n+1
α + φnα

hj

)
≤ 4πτ

m∑
i=1

|qi|

 d∑
j=1

∑
α(j) 6=Nj

|Kα|C2
i,α+ej/2

1/2

×

 d∑
j=1

∑
α(j)6=Nj

|Kα|

(
φn+1
α+ej

− φnα+ej − φ
n+1
α + φnα

hj

)2
1/2

.

(B.10)

We thus obtain
d∑
j=1

∑
α(j)6=Nj

|Kα|

(
φn+1
α+ej − φnα+ej

− φn+1
α + φnα

hj

)2

≤ 16π2τ 2

ε2min

 m∑
i=1

|qi|

 d∑
j=1

∑
α(j)6=Nj

|Kα|C2
i,α+ej/2

1/2


2

≤ 16π2τ 2

ε2min

(
m∑
i=1

q2
i

)
m∑
i=1

d∑
j=1

∑
α(j)6=Nj

|Kα|C2
i,α+ej/2

.

(B.11)

Upon insertion into (B.4)

IIn ≤ C
m∑
i=1

d∑
j=1

∑
α(j)6=Nj

|Kα|C2
i,α+ej/2

, (B.12)

where C =
2εmaxπ

∑m
i=1 q

2
i

ε2minkBT
. We use (B.3) and (B.12) to obtain:

In

2IIn
≥
∑m

i=1

∑d
j=1

∑
α(j)6=Nj

|Kα|
hj
Ci,α+ej/2(ψ∗i,α+ej

− ψ∗i,α)

2C
∑m

i=1

∑d
j=1

∑
α(j)6=Nj |Kα|C2

i,α+ej/2

≥ 1

2C
min
i,j,α

{
ψ∗i,α+ej

− ψ∗i,α
hjCi,α+ej/2

}
=

1

2C
min
i,j,α

{
ψ∗i,α+ej

− ψ∗i,α
Di,α+ej/2e

−ψn
i,α+ej/2(e

ψ∗i,α+ej − eψ∗i,α)

}
by the mean-value theorem

=
1

2C
min
i,j,α

{
1

Di,α+ej/2e
−ψn

i,α+ej/2e
(θψ∗i,α+ej

+(1−θ)ψ∗i,α)

}
,

(B.13)

where θ ∈ (0, 1). By using the harmonic mean for e
−ψn

i,α+ej/2 , we have

1

e
−ψn

i,α+ej/2e
(θψ∗i,α+ej

+(1−θ)ψ∗i,α)
=
e

((θ−1)ψni,α−θψni,α+ej )

(ρn+1
i,α+ej

)θ(ρn+1
i,α )1−θ ·

2e
ψni,α+ej

+ψni,α

e
ψni,α+ej + eψ

n
i,α

=
1

(ρn+1
i,α+ej

)θ(ρn+1
i,α )1−θ ·

2e
(1−θ)ψni,α+ej+θψni,α

e
ψni,α+ej + eψ

n
i,α
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≥ 2e
min

{
ψni,α+ej

,ψni,α

}

2Me
max

{
ψni,α+ej

,ψni,α

}

=
e
−|ψni,α+ej−ψ

n
i,α|

M
,

where M = maxi,α,n ρ
n
i,α, thus

In

2IIn
≥ 1

2CDmaxM
e
−maxi,j,α |ψni,α+ej−ψ

n
i,α|. (B.14)

For geometric mean or algebraic mean when used for the evaluation of e
−ψn

i,α+ej/2 we can verify

either the same or bigger bound than the right hand side of in (B.14). �
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