Skip to main content
Log in

Unconditional Optimal Error Estimates of Linearized, Decoupled and Conservative Galerkin FEMs for the Klein–Gordon–Schrödinger Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with unconditionally optimal error estimates of linearized leap-frog Galerkin finite element methods (FEMs) to numerically solve the d-dimensional \((d=2,3)\) nonlinear Klein–Gordon–Schrödinger (KGS) equation. The proposed FEMs not only conserve the mass and energy in the given discrete norm but also are efficient in implementation because only two linear systems need to be solved at each time step. Meanwhile, an optimal error estimate for the proposed methods is derived by using the temporal-spatial error splitting techniques, which split the error between the exact solution and the numerical solution into two parts, i.e., the temporal error and the spatial error. Since the spatial error is \(\tau \)-independent, the boundedness of the numerical solution in \(L^\infty \)-norm follows an inverse inequality immediately without any restriction on the grid ratios. Then, the optimal \(L^2\) error estimates for r-order FEMs are derived unconditionally. Numerical results in both two and three dimensional spaces are given to confirm the theoretical predictions and demonstrate the efficiency of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.: Sobolev Spaces. Academic Press, New York (2003)

    MATH  Google Scholar 

  2. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear Schrödinger equations. SIAM J. Sci. Comput. 33, 1008–1033 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, W., Dong, X., Wang, S.: Singular limits of Klein–Gordon–Schrödinger equations. Multiscale Model. Simul. 8, 1742–1769 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bao, W., Mauser, N.J., Stimming, H.P.: Effective one particle quantum dynamics of electrons: a numerical study of the Schrödinger–Poisson-X\(\alpha \) model. Commun. Math. Sci. 1, 809–828 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao, W., Yang, L.: Efficient and accurate numerical methods for the Klein–Gordon–Schrödinger equations. J. Comput. Phys. 225, 1863–1893 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biler, P.: Attractors for the system of Schrödinger and Klein–Gordon equations with Yukawa coupling. SIAM J. Math. Anal. 21, 1190–1212 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bohun, S., Illner, R., Lange, H., Zweifel, P.F.: Error estimates for Galerkin approximations to the periodic Schrödinger–Poisson system. ZAMM Z. Angew. Math. Mech. 76, 7–13 (1996)

    Article  MATH  Google Scholar 

  9. Borz, A., Decker, E.: Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation. J. Comput. Appl. Math. 193, 65–88 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  11. Cai, W., He, D., Pan, K.: A linearized energy-conservative finite element method for the nonlinear Schrödinger equation with wave operator. Appl. Numer. Math. 140, 183–198 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Castillo, P., Gómez, S.: Conservative local discontinuous Galerkin method for the fractional Klein–Gordon-Schrödinger system with generalized Yukawa interaction. Numer. Algorithms 84, 407–425 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dehghan, M., Mohammadi, V.: Two numerical meshless techniques based on radial basis functions (RBFs) and the method of generalized moving least squares (GMLS) for simulation of coupled Klein–Gordon–Schrödinger (KGS) equations. Comput. Math. Appl. 71, 892–921 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numer. 17, 249–265 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fukuda, I., Tsutsumi, M.: On coupled Klein–Gordon–Schrödinger equations, I. Bull. Sci. Eng. Lab. Waseda Univ. 69, 51–62 (1975)

    MATH  Google Scholar 

  17. Fukuda, I., Tsutsumi, M.: On coupled Klein–Gordon–Schrödinger equations II. J. Math. Anal. Appl. 66, 358–378 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gao, H.: Optimal error estimates of a linearized backward Euler FEM for the Landau–Lifshitz equation. SIAM J. Numer. Anal. 52, 2574–2593 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao, H., Li, B., Sun, W.: Optimal error estimates of linearized Crank–Nicolson Galerkin FEMs for the time-dependent Ginzburg–Landau equations in superconductivity. SIAM J. Numer. Anal. 52, 1183–1202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, B.: Global solution for some problem of class of equations in interaction of complex Schrödinger field and real Klein–Gordon field. Sci. China Ser. A 2, 97–107 (1982)

    Google Scholar 

  21. Guo, B., Miao, C.: Global existence and asymptotic behavior of solutions for the coupled Klein–Gordon–Schrödinger equations. Sci. China Ser. A 38, 1444–1456 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Guo, B., Miao, C.: Asymptotic behavior of coupled Klein–Gordon–Schrodinger equations. Sci. China Ser. A 25, 705–714 (1995)

    Google Scholar 

  23. Guo, L., Xu, Y.: Energy conserving local discontinuous Galerkin methods for the nonlinear Schrödinger equation with wave operator. J. Sci. Comput. 65, 622–647 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hecht, F.: New development in Freefem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for the second order time discretization. SIAM J. Numer. Anal. 2, 353–384 (1990)

  26. Hioe, F.: Periodic solitary waves for two coupled nonlinear Klein–Gordon and Schrödinger equations. J. Phys. A Math. Gen. 36, 7307–7330 (2003)

    Article  MATH  Google Scholar 

  27. Hong, J., Jiang, S., Li, C.: Explicit multi-symplectic methods for Klein–Gordon–Schrödinger equations. J. Comput. Phys. 228, 3517–3532 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hong, Q., Wang, Y., Wang, J.: Optimal error estimate of a linear Fourier pseudo-spectral scheme for two dimensional Klein–Gordon–Schrödinger equations. J. Math. Anal. Appl. 468, 817–838 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hou, Y., Li, B., Sun, W.: Error estimates of splitting Galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51, 88–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, M., Shi, D., Wang, J., Ming, W.: Unconditional superconvergence analysis of the conservative linearized Galerkin FEMs for nonlinear Klein–Gordon–Schrödinger equation. Appl. Numer. Math. 142, 47–63 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Mod. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Li, B.: Mathematical modeling, analysis and computation for some complex and nonlinear flow problems. Ph.D. Thesis, City University of Hong Kong, Hong Kong (2012)

  33. Li, B., Gao, H., Sun, W.: Unconditionally optimal error estimates of a Crank–Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, B., Wang, J., Sun, W.: The stability and convergence of fully discrete Galerkin–Galerkin FEMs for porous medium flows. Commun. Comput. Phys. 15, 1141–1158 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, D.: Optimal error estimates of a linearized Crank–Nicolson Galerkin FEM for the Kuramoto–Tsuzuki equations. Commun. Comput. Phys. 26, 838–854 (2019)

    Article  MathSciNet  Google Scholar 

  37. Mu, M., Huang, Y.: An alternating Crank–Nicolson method for decoupling the Ginzburg–Landau equations. SIAM J. Numer. Anal. 35, 1740–1761 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ohta, M.: Stability of stationary states for the coupled Klein–Gordon–Schrödinger equations. Nonlinear Anal. 27, 455–461 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sanz-Serna, J.M.: Methods for the numerical solution of nonlinear Schrödinger equation. Math. Comput. 43, 21–27 (1984)

    Article  MATH  Google Scholar 

  40. Tourigny, Y.: Optimal \(H^1\) estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11, 509–523 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, J.: A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60, 390–407 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, J.: Unconditional stability and convergence of Crank–Nicolson Galerkin FEMs for a nonlinear Schrödinger–Helmholtz system. Numer. Math. 139, 479–503 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, M., Zhou, Y.: The periodic wave solutions for the Klein–Gordon–Schrödinger equations. Phys. Lett. A 318, 84–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, S., Zhang, L.: A class of conservative orthogonal spline collocation schemes for solving coupled Klein–Gordon–Schrödinger equations. Appl. Math. Comput. 203, 799–812 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Wang, T., Jiang, Y.: Point-wise errors of two conservative difference schemes for the Klein–Gordon–Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 17, 4565–4575 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, T., Zhao, X., Jiang, J.: Unconditional and optimal \(H^2\)-error estimates of two linear and conservative finite difference schemes for the Klein–Gordon–Schrödinger equation in high dimensions. Adv. Comput. Math. 44, 477–503 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xiang, X.: Spectral method for solving the system of equations of Schrödinger–Klein–Gordon field. J. Comput. Appl. Math. 21, 161–171 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, F., Peréz-García, V., Vázquez, L.: Numerical simulation of nonlinear Schrödinger equation system: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, F., Han, B.: The finite difference method for dissipative Klein–Gordon–Schrödinger equations in three dimensions. J. Comput. Math. 28, 879–900 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Bo Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Natural Science Foundation of China (NSFC) under Grant 11871393, the key project of the International Science and Technology Cooperation Program of Shaanxi Research & Development Plan (2019KWZ-08), and the Doctoral Foundation of Yunnan Normal University (2019BSQI01,2019XJLK17,00800205020503128) and the Scientific Research Program Funded by Yunnan Provincial Education Department under Grant 2019J0076, and the Youth Project of Yunnan Basic Research Program (202001AU070068, 202001AU070066).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YB., Jiang, YL. & Yu, BH. Unconditional Optimal Error Estimates of Linearized, Decoupled and Conservative Galerkin FEMs for the Klein–Gordon–Schrödinger Equation. J Sci Comput 87, 89 (2021). https://doi.org/10.1007/s10915-021-01510-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01510-2

Keywords

Mathematics Subject Classification

Navigation