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Abstract
We use the behavior of the L2 norm of the solutions of linear hyperbolic equations with
discontinuous coefficient matrices as a surrogate to infer stability of discontinuous Galerkin
spectral element methods (DGSEM). Although the L2 norm is not bounded in terms of the
initial data for homogeneous and dissipative boundary conditions for such systems, the L2

norm is easier to work with than a norm that discounts growth due to the discontinuities. We
show that the DGSEM with an upwind numerical flux that satisfies the Rankine–Hugoniot
(or conservation) condition has the same energy bound as the partial differential equation
does in the L2 norm, plus an added dissipation that depends on how much the approximate
solution fails to satisfy the Rankine–Hugoniot jump.
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1 Introduction

Inwave propagation problems, it is natural to find interfaceswherematerial properties like the
wave propagation speeds or density abruptly change. Examples include interfaces between
two dielectrics in electromagnetic wave propagation problems, or different rock layers in geo-
physics. At such interfaces the solutions can make discontinuous jumps, causing difficulties
for many numerical methods.

One of the key features of discontinuous Galerkin (DG) methods is that the discontinuous
approximation at element interfaces naturally allows jump discontinuities in the solution if
element boundaries are placed along them. Consequently, DG spectral element methods have
been used for over twenty years to solve problems with material discontinuities, both station-
ary [3,6,9,19] and moving [20]. Computations and theory in such works show that placing
the discontinuities at element boundaries leads to exponentially convergent approximations.

In a paper on discontinuous interface problems, La Cognata and Nordström [13] noted
that hyperbolic problems with discontinuous coefficients do not necessarily have their energy
bounded in terms of the initial data when measured in the L2 norm, even with constant
coefficients and homogeneous and dissipative boundary conditions. Instead, the L2 norm
can increase or decrease, depending on the relative size of the wave speeds on either side of
the discontinuity. The lack of a bound on the L2 norm is not due to an instability in the usual
sense, but is due to the fact that conservation at the interface, and the resulting jump in the
solution, can increase the norm of the solution as a wave propagates across it. In an alternate
norm, however, one that discounts the effect of the jump, the energy is bounded.

Here we propose a procedure where we use the L2 norm as a surrogate to infer stability
of discontinuous Galerkin spectral element methods (DGSEM) for the approximation of
hyperbolic equations with discontinuous coefficient matrices. The L2 norm is easier to work
with since it does not require finding the discount factors, which are difficult to compute in
general configurations of elements and interfaces. We show that the DGSEMwith an upwind
numerical flux that satisfies the Rankine–Hugoniot (or conservation) condition behaves as
the partial differential equation (PDE) does in the L2 norm, plus an added dissipation that
depends on how much the approximate solution fails to satisfy the Rankine–Hugoniot jump.

2 Linear Hyperbolic Systems with Discontinuous Coefficients

In this paper we establish the stability of a discontinuous Galerkin spectral element approx-
imation to linear hyperbolic systems of equations of the form

ut + →∇x · ↔
f = 0, (1)

where u is the state vector, and
↔
f is the vector of fluxes,

↔
f =

3∑

j=1

A jux̂ j = →
Au, (2)

with coefficient matrices A j and unit coordinate vectors x̂ j . We assume throughout this paper
that the coefficient matrices are piecewise constant, with discontinuities marking what we
will refer to in this paper as material interfaces. To isolate the contribution of the disconti-
nuities, we choose the coefficient matrices constant between material interfaces to avoid the
complexity of possible exponential growth in the solution norm when the matrices vary over
the domain.
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Fig. 1 Diagram of a domain Ω

split by a material interface, Γ

Γ

Γb

ΩL

ΩR

⃗n

We examine the problem defined in a domain Ω , as sketched in two space dimensions in
Fig. 1. It is sufficient to consider two domains with a single material interface, so the domain
is split into two subdomains ΩL and ΩR separated by an interface Γ . The external boundary
is Γb, along which we assume that proper, well-posed and dissipative boundary conditions
are applied.

Since the system is hyperbolic, there exists a matrix of right eigenvectors, P, and a real
diagonal matrix, Λ, such that A ≡ →

k · →
A = PΛP−1 for any nonzero space vector

→
k =

kx x̂ + ky ŷ + kz ẑ, where (x̂, ŷ, ẑ) = (x̂1, x̂2, x̂3). We also assume that the matrices A j are
simultaneously symmetrizable and that there exists a piecewise constant matrix S such that

As
j = S−1A jS =

(
As

j

)T
.

As a concrete example of the system (1), we pose the linear acoustic wave system where

u =

⎡

⎢⎢⎣

p
u
v

w

⎤

⎥⎥⎦ , A j =

⎡

⎢⎢⎣

0 δ j1ρc2 δ j2ρc2 δ j3ρc2

δ j1/ρ 0 0 0
δ j2/ρ 0 0 0
δ j3/ρ 0 0 0

⎤

⎥⎥⎦ , j = 1, 2, 3, (3)

and where ρ is the density of the medium, c is the sound speed, and δi j is the Kronecker delta.
The state vector can be viewed as representing pressure, p, and three velocity components,
u, v, w. The coefficient matrices are simultaneously symmetrizable by the matrix

S =

⎡

⎢⎢⎣

c 0 0 0
0 1/ρ 0 0
0 0 1/ρ 0
0 0 0 1/ρ

⎤

⎥⎥⎦ . (4)

With jump discontinuities in the material parameters, ρ and c, the coefficient matrices and
symmetrizer have jump discontinuities.

We contrast the approximation of the system (1) with that of the approximation of systems
that can be written in the form

E ut + ∇ ·
(→
Bu

)
= 0, (5)
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Fig. 2 Exact, analytic p solution
of the one dimensional acoustic
wave equation for propagation of
a wave across a material interface
at x = 0. The solution is plotted
at three times showing the initial
incident wave (t = 0), the
interaction with the material
discontinuity (t = 1.4), and the
reflected and transmitted waves
after the interaction (t = 2.6)

where E > 0 is diagonal and discontinuous at material interfaces while
→
B is continuous. The

system (3), for example, can be re-written in the form (5) with symmetric matrices

E =

⎡

⎢⎢⎣

1/ρc2 0 0 0
0 ρ 0 0
0 0 ρ 0
0 0 0 ρ

⎤

⎥⎥⎦ , B j =

⎡

⎢⎢⎣

0 δ j1 δ j2 δ j3
δ j1 0 0 0
δ j2 0 0 0
δ j3 0 0 0

⎤

⎥⎥⎦ , j = 1, 2, 3 (6)

For equations of the form (5), there is a natural norm,

||u||2E =
∫

Ω

uTEud→
x, (7)

in which the energy is bounded for homogeneous dissipative physical boundary conditions
and nonconservative interface conditions, with that energy satisfying

d

dt
||u||2E ≤ 0. (8)

Stability of DG spectral approximations to equations in the form (5) has been shown specif-
ically, for instance, for Maxwell’s equations [6] and the elastic wave equations [19].

Remark 2.1 The system (1) cannot in general be rewritten in the form (5). That would require
that each A j can be written as A j = E−1B j where E = ET > 0 and E contains all material
properties. A counter example is the frozen coefficient compressible Euler equations [1].

As noted in [13], systems of the form (1) with discontinuous coefficient matrices do not
necessarily have energy bounded by the initial data when measured in the L2 norm, and we
present an example here to motivate the situation. Figure 2 shows the p component of the
analytic solution of acoustic wave reflection and transmission at a material boundary placed
at x = 0 at three times: The initial incident wave, when the wave is interacting with the
material discontinuity, and the reflected and transmitted waves after the interaction.

We plot the energy as a function of time, measured by the L2 norm,

||u||2L2
=

∫ 2

−2
uT udx, (9)

in Fig. 3. We see that the L2 energy is bounded, and even though the L2 energy estimate does
not show boundedness directly, energy is bounded in terms of the initial data in a norm that
discounts the jump [13]. Note that there is a slight downturn in the energy in Fig. 3 as t → 3.
The energy does decrease to zero after that time as the waves propagate out of the domain.

To establish the stability of the discontinuous Galerkin spectral element approximation of
(1), we follow the roadmap presented in [16]. We first establish energy behavior of the PDE
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Fig. 3 Exact L2 energy for the
solution of the one dimensional
acoustic wave equation for
propagation of a wave across a
material interface

system, and then follow an equivalent discrete path to establish an equivalent behavior for the
approximation. We begin with the study of the scalar one-dimensional advection problem,
since it is easy to follow the steps, and then a symmetric system in one space dimension.
Finally we use the symmetric system results to derive the energy bound for the general system
in Sect. 2.3.

2.1 Energy Dynamics of the Scalar Problem in One Space Dimension

Tomotivate (and simplify) the general formulation,we startwith the scalar advection equation
with two domains as an introduction. Our discussion in this section restates that of [13], but
introduces our notation used in succeeding sections.

We derive the energy dynamics of the solution to the scalar advection initial-boundary-
value problem in the form (1)

ut + aux = 0 x ∈ [−1, 1]
u(−1, t) = 0

u(x, 0) = u0(x), (10)

where

a(x) =
{
aL > 0 x ≤ 0

aR > 0 x > 0,
(11)

aL , aR are constants, and aL �= aR . The discussion that follows leads to the same types of
conclusions if the wave speeds are both negative. We are interested here in problems where
the domains couple and waves propagate from one side to the other. So we do not consider
aL > 0, aR < 0, where the domains decouple as energy is dissipated at the interface, or
aL < 0, aR > 0 where boundary conditions for both sides are required.

We split the problem into two: Left,

ut + aLux = 0 x ≤ 0

u(−1, t) = 0, (12)

and Right

ut + aRux = 0 x > 0

u(0+, t) = u∗(t), (13)
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where u∗ is the upwind specified interface condition chosen so that the Rankine–Hugoniot
(or conservation) condition

aLu(0−, t) = aRu∗(t) (14)

is satisfied. Thus, for the scalar equation, u∗(t) = aL
aR

u(0−, t).
To find the energy equation, we multiply by the solution and integrate over the domains.

Define the L2 energy norms

||u||2L =
∫ 0

−1
u2dx, ||u||2R =

∫ 1

0
u2dx . (15)

Then
1

2

d

dt
||u||2L + aL

2
u2

∣∣0−
−1 = 0

1

2

d

dt
||u||2R + aR

2
u2

∣∣1
0+ = 0.

(16)

Adding together and re-arranging,

1

2

d

dt
||u||2 − 1

2
aLu

2(−1) + 1

2

{
aLu

2(0−) − aRu
2(0+)

} + 1

2
aRu

2(1) = 0, (17)

where ||·||2 = ||·||2L + ||·||2R . Applying the homogeneous boundary condition on the left,

1

2

d

dt
||u||2 + 1

2

{
aLu

2(0−) − aRu
2(0+)

} = −1

2
aRu

2(1) ≤ 0. (18)

When we apply the interface condition,

1

2

d

dt
||u||2 ≤ −1

2

{
aLu

2(0−) − aRu
2∗
} ≡ Q. (19)

The quantity Q will be used later in this paper to define stability.
Finally, we substitute the interface value for u∗,

1

2

d

dt
||u||2 ≤ −1

2

{
aLu

2(0−) − aR
a2L
a2R

u2(0−)

}
, (20)

and rearrange so that
1

2

d

dt
||u||2 ≤ −aL

2

{
1 − aL

aR

}
u2(0−). (21)

Equation (21) shows that the energy is dissipated by the interface only if aR > aL . Otherwise
the interface generates energy, as illustrated in Fig. 3.

In [13] it was shown that one can construct “discounted norms”, in which the energy is
bounded. If the second equation in (16) is multiplied by a constant αc > 0, then the weighted
sum leads to

1

2

d

dt

{||u||2L + αc ||u||2R
} ≤ −aL

2

{
1 − αc

aL
aR

}
u2(0−). (22)

Then defining the new norm with the αc discount factor, we have

d

dt
||u||2αc ≤ 0, (23)

provided that

αc ≤ aR
aL

. (24)
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Remark 2.2 The weighted norm discounts the effect of the jump, with the result that viewed
in the discounted norm, the energy no longer appears to increase. 
�
Remark 2.3 The use of the discounted norm scales tomultiplematerial interfaces andmultiple
space dimensions by choosingαc to be theminimumover all the ratios of downwind to upwind
wave speed ratios. 
�
Remark 2.4 Alternatively, unlike the general case noted in Remark 2.1, the scalar equation
(10) can be recast to the form (5) by dividing by the wave speed. Let ε = 1/a > 0. Then

εut + ux = 0. (25)

If the nonconservative boundary condition at the interface, u∗ = u(0+, t) = u(0−, t), is
used, then following the same procedure as (16)–(21),

1

2

d

dt
||u||2ε ≤ 0, (26)

where the weighted energy norm is given by

||u||2ε =
∫ 0

−1
εLu

2dx +
∫ 1

0
εRu

2dx . (27)

Using the norm (27), but with the conservative interface condition (14), the solution still has
a bound like (21), namely

1

2

d

dt
||u||2ε ≤ −1

2

{
1 −

(
aL
aR

)2
}
u2(0−). (28)

So when the conservative interface condition is used, the weighted energy norm is also
bounded only when aL/aR ≤ 1 . 
�

The discounted norm is equivalent to the L2 norm. In the discounted situation, where
αc < 1,

||u||2αc = ||u||2L + αc ||u||2R ≤ ||u||2L + ||u||2R = ||u||2 , (29)

and

||u||2αc = αc

(
1

αc
||u||2L + ||u||2R

)
≥ αc

(||u||2L + ||u||2R
) = αc ||u||2 . (30)

Therefore, √
αc ||u|| ≤ ||u||αc ≤ ||u|| . (31)

Equivalence of the norms means that the L2 norm is actually bounded in terms of the
initial data, even though the energy method does not show it directly through (21). From (23)
and (31), √

αc ||u(T )|| ≤ ||u(T )||αc ≤ ||u0||αc ≤ ||u0|| . (32)

Thus,

||u(T )|| ≤ 1√
αc

||u0|| (33)

for the constant coefficient problem.
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2.2 Energy Dynamics for Hyperbolic Systems in One Space Dimension

Wenow increase the complexity and extend the scalar one-dimensional analysis to the general
system (1) in one space dimension. We derive the energy equation for the one-dimensional
hyperbolic system

ut + ALux x ≤ 0

ut + ARux x > 0,
(34)

where the coefficient matrices are for now assumed to be symmetric. Under this assumption,
there is a matrix P such that A = PΛP−1 satisfying P−1 = PT . For the moment, let us assume
that A has no zero eigenvalues. We also assume that the number of positive and negative
eigenvalues does not change across the interface. In other words, there is no eigenvalue that
changes sign at the jump. Depending on the sign change, boundary/interface conditions are
either lost or gained. More general conditions where the sign of the eigenvalues changes in
multi-physics applications are considered in [5]. Finally,we assume that appropriate boundary
and initial data are applied.

To find the interface condition at x = 0 for the system (34), we split the system into right
and left going waves. The characteristic variables for the system (34) are

w = P−1u =
[
w+
w−

]
, (35)

where w+ is associated with the positive eigenvalues of A and w− is associated with the
negative ones. They are chosen upwind at the interface according to

w+
R = w+∗ , w−

L = w−∗ , (36)

where here and in the following, the subscripts R and L correspond to the values at x = 0+
and x = 0−, respectively.

The w±∗ are computed so that the Rankine–Hugoniot condition

ALu|0− = ARu|0+ ⇔ PLΛL

[
w+

L
w−∗

]
= PRΛR

[
w+∗
w−

R

]
(37)

is satisfied at the stationary interface. Let us write

Λ =
[

Λ̄+ 0
0 Λ̄−

]
, Λ+ =

[
Λ̄+ 0
0 0

]
, Λ− =

[
0 0
0 Λ̄−

]
. (38)

Then (37) can be written as

PLΛ+
L

[
w+

L
0

]
+ PLΛ−

L

[
0
w−∗

]
= PRΛ+

R

[
w+∗
0

]
+ PRΛ−

R

[
0
w−

R

]
. (39)

Let us put the unknowns on the left, and the knowns on the right, giving

PLΛ−
L

[
0
w−∗

]
− PRΛ+

R

[
w+∗
0

]
= PRΛ−

R

[
0
w−

R

]
− PLΛ+

L

[
w+

L
0

]
. (40)

Equation (40) provides a system of equations for the unknowns.
The matrices on the left of (40) have a special structure since P is the matrix of right

eigenvectors and Λ is a diagonal matrix. Let n be the number of positive eigenvalues out of
a total of m. Then define

M+ ≡ PΛ+ = [
λ1

→
p1 . . . λn

→
pn 0 . . . 0

]
(41)
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and
M− ≡ PΛ− = [

0 . . . 0 λn+1
→
pn+1 . . . λm

→
pm

]
, (42)

where
→
p j is the eigenvector associatedwith the eigenvalue λ j and the eigenvalues are ordered

in decreasing order, largest to smallest with λ j > 0 for j ≤ n. Then we can write (40) as

M−
L

[
0
w−∗

]
− M+

R

[
w+∗
0

]
= M−

R

[
0
w−

R

]
− M+

L

[
w+

L
0

]
. (43)

Given the structure of the M± matrices, the equations can be combined to produce a single
system for the unknowns

MLR

[
w+∗
w−∗

]
= MRL

[
w+

L
w−

R

]
, (44)

where
MLR ≡ M−

L − M+
R , MRL ≡ M−

R − M+
L . (45)

Existence and uniqueness of the inflow characteristic vectors w±∗ therefore depends on
the existence of the inverse of the matrix MLR . That matrix is comprised of eigenvectors
of the coefficient matrix evaluated on the left and eigenvectors evaluated on the right. On
the one hand, if the eigenvectors of the coefficient matrix do not change across the material
discontinuity, then, since the eigenvectors are independent, M−1

LRMLR is diagonal. As an
example, the eigenvectors of the acoustic wave system (3) are constant, being independent
of the material properties on either side. On the other hand, if the eigenvectors change across
the interface and the matrix M−1

LRMRL is not diagonal, then the problem is ill-posed [5]. We
therefore require that the eigenvectors be preserved across the jumps so that M−1

LR exists,
M ≡ M−1

LRMLR is diagonal, and
[
w+∗
w−∗

]
= M−1

LRMRL

[
w+

L
w−

R

]
≡ M

[
w+

L
w−

R

]
. (46)

Remark 2.5 TheRankine–Hugoniot (conservation) condition (37) limits the formof the inter-
face condition significantly. If only boundedness is desired, more general coupling conditions
are allowed [5]. 
�
Remark 2.6 One can see that the assumption that there are no zero eigenvalues is not a
restriction. If there are zero eigenvalues, then the associated characteristic variables w0 are
multiplied by the zero matrix and have no contribution to the system. Therefore those quan-
tities can be eliminated, leaving (43) and what followed. The w0 vector is determined by the
initial data. 
�

Going back to the original equations, (34), we compute the energy equation bymultiplying
by the state and integrating over the domain, giving

1

2

d

dt

{||u||2L + ||u||2R
} + PBT = −1

2

{
uTLALuL − uTRARuR

}
, (47)

where, now, ||u||2 = 〈u,u〉 and PBT represents the terms coming from the physical boundary
conditions on the left and right. Since we are only interested here in the interface conditions,
we will assume that the physical boundary conditions are well posed so that PBT ≥ 0. In
that case,

1

2

d

dt

{||u||2L + ||u||2R
} ≤ Q, (48)
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where

Q ≡ −1

2

{
uTLALuL − uTRARuR

}
(49)

is the interface contribution to the energy.
Following the steps in the scalar analysis, we now apply the interface boundary conditions

on Q. We decompose the system into characteristic variables. Then we use the fact that A is
symmetric, making P−1 = PT . With this decomposition,

Q = −1

2

{
wT

LΛLwL − wT
RΛRwR

}

= −1

2

{
w+,T

L Λ̄+
Lw

+
L + w−,T∗ Λ̄−

Lw
−∗
}

+ 1

2

{
w+,T∗ Λ̄+

Rw
+∗ + w−,T

R Λ̄−
Rw

−
R

}
,

(50)

taking into account the upwinding of the characteristic variables, (36).
We now gather the right-going and left-going wave contributions (c.f. (19)),

Q = −1

2

{
w+,T

L Λ̄+
Lw

+
L − w+,T∗ Λ̄+

Rw
+∗
}

+ 1

2

{
w−,T

R Λ̄−
Rw

−
R − w−,T∗ Λ̄−

Lw
−∗
}

, (51)

and then use the fact that Λ̄− < 0, to get the final form of the interface contribution, which
we write in terms of its characteristic components,

Q (wL ,wR) = −1

2

{
w+,T

L Λ̄+
Lw

+
L − w+,T∗ Λ̄+

Rw
+∗
}

−1

2

{
w−,T

R

∣∣Λ̄−
R

∣∣w−
R − w−,T∗

∣∣Λ̄−
L

∣∣w−∗
}

. (52)

Equation (52) is the system version of the scalar interface condition seen in (19).
As in the scalar problem, one can construct a discounted norm ||·||B for which the associ-

ated interface term QB is non-positive and the discounted norm is boundedwhen the coupling
matrix, M, exists and is diagonal. For instance, one simple choice is to let

B = P

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ+
. . .

μ+
μ−

. . .

μ−

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

P−1, (53)

where the entries with μ± > 0 are counted according to the number of positive and negative
eigenvalues of A. Thenmultiplying the system on x > 0 by B from the left, defining the norm

||u||B = 〈
u,Bu

〉 1
2 , and following the same steps leading to (52), the interface contribution

to the energy is

QB = −1

2

{
w+,T

L Λ̄+
Lw

+
L − μ+w+,T∗ Λ̄+

Rw
+∗
}

−1

2

{
μ−w−,T

R

∣∣Λ̄−
R

∣∣w−
R − w−,T∗

∣∣Λ̄−
L

∣∣w−∗
}

. (54)

One then only needs to findμ+ small enough andμ− large enough to ensure that QB ≤ 0,

in which case the new energy
√

||u||2L + ||u||2B,R is bounded in terms of the initial data. Since
the coupling matrix M is diagonal, let us split it as
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M =
(
M̄+ 0
0 M̄−

)
(55)

so that w+∗ = M̄+w+
L and w−∗ = M̄−w−

R . Then QB ≤ 0 if μ± are chosen so that

Λ̄+
L − μ+M̄+,TΛ+

R M̄
+ > 0,

μ− ∣∣Λ̄−
R

∣∣ − M̄−,T
∣∣Λ̄−

L

∣∣ M̄− > 0.
(56)

2.3 Extension to Non-symmetric Equations and an Arbitrary Domain

The results of the previous two sections extend to general geometries and non-symmetric
coefficient matrices. In preparation for the generalization of (52), we note that within each
subdomain the coefficient matrices are constant, and therefore we can re-write (1) in a split
form as

ut + 1

2

{
∇ ·

(→
Au

)
+ →

A · ∇u
}

= 0. (57)

We also define the inner product and norm over a subdomain D = ΩL or ΩR as

〈u, v〉D =
∫

D
uT vdx, ||u||D = 〈u,u〉

1
2
D (58)

so that
||u||2Ω = ||u||2ΩL

+ ||u||2ΩR
. (59)

To form the energy, we take the inner product of (57) with the vector
(
S−1

)T
S−1u, giving

〈(
S−1)T S−1u,ut

〉

D
+ 1

2

〈(
S−1)T S−1u,∇ ·

(→
Au

)〉

D

+ 1

2

〈(
S−1)T S−1u,

→
A · ∇u

〉

D
= 0. (60)

Let us define us = S−1u to be the symmetric system state. Then since S is constant within
the subdomains and As = S−1AS,

1

2

d

dt

∣∣∣∣us
∣∣∣∣2
D + 1

2

〈
us,∇ ·

(→
Asus

)〉

D
+ 1

2

〈
us,

→
As · ∇us

〉

D
= 0. (61)

We then apply multidimensional integration by parts and symmetry to the divergence term
〈
us,∇ ·

(→
Asus

)〉

D
=

∫

∂D
us,T

→
As · →

nus dS −
〈
us,

→
As · ∇us

〉

D
, (62)

where
→
n is the outward normal at the boundary of D, and note that the volume term cancels

the third term in (61), leaving only the boundary integral,

1

2

d

dt

∣∣∣∣us
∣∣∣∣2
D = −1

2

∫

∂D
us,T

→
As · →

nus dS. (63)

Then over the domain Ω ,

1

2

d

dt

∣∣∣∣us
∣∣∣∣2

Ω
= −1

2

∫

Γb

us,T
(→
As · →

n
)
us dS

−1

2

∫

Γ

{
us,TL

→
As

L · n̂usL − us,TR
→
As

R · n̂usR
}
dS, (64)
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where L/R represent the states on either side of the interface with respect to the normal
→
n.

We can now get a bound for the multidimensional system similar to (48). The integrand
in the interface integral is identical to that in (47), with A ← →

As
L · n̂ and u ← us . Therefore,

if the boundary conditions along Γb are properly posed and dissipative,

1

2

d

dt

∣∣∣∣us
∣∣∣∣2

Ω
≤

∫

Γ

Q dS. (65)

Therefore, Q is still given by (52), but now formulated in the new symmetrized variables.

Note that the norm defined by ||us ||2 =
〈(
S−1

)T
S−1u,u

〉
is equivalent to the norm ||u||

since
(
S−1

)T
S−1 > 0.

2.4 Stability

In summary, for hyperbolic systems of the form (1), with discontinuities in the coefficient
matrices and homogeneous, dissipative boundary conditions, the L2 norm of the solution
obeys (65). The integrand of the interface contribution, Q, is of the form (52), where the
characteristic variables are evaluated from the upwind side and satisfy the Rankine–Hugoniot
condition. It is not necessarily non-negative, depending on the relative wave speeds from
either side of the interface, so the L2 norm of the solution is not bounded in general by the
initial data. An example of such behavior was shown in Fig. 3.

Although the L2 norm (or, for that matter, weighted norms, see Remark 2.4) is not always
bounded in terms of the initial data, there exists an energy in a discounted norm that is bounded
in the usual way provided that the coupling matrix between the upwind and downwind states
is diagonal.

Thus, we have two views of stability at our disposal, which wewill call direct and inferred:

– Direct Stability When the L2 norm is bounded, we directly have L2 stability. This is
seen in scalar problems if aL/aR ≤ 1 in (21). For the system, the equivalent is when
Λ̄+

L − M̄+,TΛ+
R M̄

+ > 0 and
∣∣Λ̄−

R

∣∣ − M̄−,T
∣∣Λ̄−

L

∣∣ M̄− > 0, as seen through (56) setting
μ± = 1.

– Inferred Stability Nonetheless, even if the L2 norm is not directly bounded, we have
seen that one can construct a discounted norm in which it is, e.g. (23) for scalar problems
and for systems when (56) is satisfied. Stability in some discounted norm is therefore
inferred, or implicit, if Q is given by (52).

In general geometries it may not be easy to find the discounted norm in which the solution
is bounded. Finding the precise coefficients requires satisfying conditions like (56). When
multiple subdomains exist in multiple space dimensions, T -type intersections between mate-
rials are possible. The discount factors must then take into account all subdomain boundaries
and be adjusted globally so that at each interface (56) is still satisfied. For these reasons, it
is easier to monitor the behavior (65) of the simpler L2 norm as a surrogate to infer well-
posedness of the system. Further insights into how choosing the norm affects how the energy
is bounded or not can be found in [14].

Stability of a numerical approximation of a system follows that of the PDE, and so we
state the stability condition for the approximation as:
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Definition 2.1 A scheme approximating the discontinuous coefficient problem (1) is said to
have inferred stability if the discrete approximation of the standard L2 norm is bounded as
in (65) and the approximation to the integrand, QN ≈ Q, satisfies

QN ≤ Q(WL ,WR),

where W is the approximation of w.

3 The Discontinuous Galerkin Spectral Element Discretization

In this section,we briefly summarize the important discretization steps. For a detailed descrip-
tion and derivation of the scheme, we refer to e.g. [4,10,21].

The first step is to divide the computational domain into a mesh of non-overlapping,
possibly curved, hexahedral (quadrilateral in 2D) elements, {el}Kl=1. Each hexahedron is

mapped from physical space to a reference space cube E = [−1, 1]3 with x = →
Xl(

→
ξ). To

retain spectral accuracy and exponential convergence in the presence of jump discontinuities,
we require element faces to be aligned with the material interface, Γ , so that polynomial
approximation is not made across the discontinuity.

From the mapping, we can compute the metric terms

→
ai = ∂

→
X

∂ξi
, i = 1, 2, 3; J = →

a1 · (
→
a2 × →

a3); J
→
ai = →

a j × →
ak, (i, j, k)cyclic. (66)

Note that we need to carefully evaluate the metric terms to get a discretely divergence-free
contravariant basis J

→
ai , which is necessary to guarantee free-stream preservation of the

discretization [7] and stability of the volume terms [4,12].
The second step of the discetization process is to transform the problem (57) from physical

to reference space. In reference space, (57) becomes

J ut + 1

2

{→∇ξ ·
(
MT →

Au
)

+ →
A · M →∇ξu

}
= 0, (67)

where we collect the metric terms in the block matrix

M =
⎛

⎝
Ja11 I Ja21 I Ja31 I
Ja12 I Ja22 I Ja32 I
Ja13 I Ja23 I Ja33 I

⎞

⎠ , (68)

with the identity matrix, I, having the size as the state vector u.
The third step is the variational Galerkin formulation. We first approximate the solu-

tion with an interpolatory polynomial of degree N , and denote polynomial approximations
with capital letters u ≈ U = I

N (u), where I
N denotes the interpolation operator. In the

spectral collocation framework, one typically uses a nodal basis for the interpolation. Fur-
thermore, for hexahedral/quadrilateral elements, we use a tensor-product of one-dimensional
nodal Lagrange basis functions spanned on the Legendre–Gauss–Lobatto nodes. The same
polynomial approximation is used for all quantities, e.g. for the contravariant flux function
↔
f̃ ≈

↔
F̃ = I

N (MT
↔
f).

To get the variational formulation, we multiply the transformed PDE (67) by polynomial
test functionsϕ, which are linear combinations of the nodal basis functions. Thenwe integrate
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over the reference element E and use integration-by-parts to arrive at

〈
I
N (J )Ut ,ϕ

〉

E
− 1

2

〈
I
N

(
MT →

AU
)

,
→∇ξ ’

〉

E
+ 1

2

〈
I
N

(→
A · M →∇ξU

)
,ϕ

〉

E

= −
∫

∂E

ϕT
{↔
F̃ − 1

2
I
N

(
MT →

AU
)}

· n̂ dS,
(69)

where n̂ is the reference space outward pointing normal vector to the face ∂E .
Finally, we replace the integration in (69) by quadrature and cubature rules, collocated

with the Legendre–Gauss–Lobatto interpolation. Note, that the Legendre–Gauss–Lobatto
nodes include the boundary nodes and hence surface and volume integration nodes partially
coincide with the interpolation ansatz and IN (·) can be dropped. Furthermore, we introduce

the yet to be defined numerical flux function F∗
n = F∗

n(U
L ,UR) ≈

↔
F̃ · →

n, which depends on
the two states UL,R at the interface and approximates the normal flux through the interface.
Note that we assume the coefficients A are mostly constant, but when they jump, the mesh
is aligned so that an element interface is at the jump. Hence, the numerical flux function at
the coefficient jump interface depends not only on the solutions left and right, but also on the
coefficients left and right: F∗

n = F∗
n(U

L,R;AL,R).
Applying quadrature, we get the formal statement of the DGSEM,

〈J Ut ,ϕ〉N − 1

2

〈
MT →

AU,
→∇ξ ϕ

〉

N
+ 1

2

〈→
A · M →∇ξU,ϕ

〉

N

= −
∫

∂E,N

ϕT
{
F∗
n − 1

2
Fn

}
dS, (70)

where 〈·, ·〉N and
∫

∂E,N
represent the volume and surface quadratures, see [11]. The right

hand side of (70) is written in terms of the normal covariant fluxes and is equivalent to that
written in terms of the contravariant ones [21]. The resulting high-order semi-discretization
is integrated with a proper high-order accurate explicit Runge–Kutta time integrator, which
is stable under the typical CFL-type time step restriction.

4 Stability of the Discontinuous Galerkin Approximation

We establish the stability bound from the weak form of the equation, (70). We then follow the
path taken in Sect. 2 for the continuous problem to examine the discontinuous interface term:
We examine the scalar problem for insights, then the symmetric one-dimensional system,
and finally the general problem for the DGSEM approximation.

4.1 Discrete Stability Estimate

For a detailed derivation of the discrete stability estimate, which parallels the continuous
analysis, we refer to [4,21]. Here, we will only sketch some important intermediate steps.
To get the stability estimate, we replace the test function ϕ with the approximate solution
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polynomial and the symmetrizer matrices, writing ϕ = (
S−1

)T
S−1U = (

S−1
)T

Us to get

〈
J Us

t ,U
s 〉
N = + 1

2

〈
S−1MT S

→
AsUs,

→∇ξ Us
〉

N
− 1

2

〈
S−1MS

→∇ξUs, (
→
As)TUs

〉

N

−
∫

∂E,N

(Us)T
{
Fs,∗
n − 1

2
Fs
n

}
dS,

(71)

wherewe define the symmetrized discrete fluxFs
n that uses the symmetric coefficientmatrices

→
As = S−1→

A S. Using the fact that the symmetrizer matrix S commutes with the metric block
matrix M (see e.g. [4,21]) we see that the volume terms cancel, leaving only surface terms,

〈
J Us

t ,U
s 〉
N = −

∫

∂E,N

(Us)T
{
Fs,∗
n − 1

2
Fs
n

}
dS. (72)

When we sum over all elements, inner surface terms appear twice (with different normal
vectors), whereas element surfaces that are at the physical domain boundary appear only once
and are denoted as physical boundary terms ( PBT). The interior element surface contributions
split into two parts: Surfaces that fall on the material interface Γ , and those across which
the coefficient matrices are the same, which we call smooth interface boundary terms, SIBT.
The sum over all elements can then be written as

1

2

d

dt

∑

ek

∣∣∣∣Us
∣∣∣∣2
J ,N =

∫

Γ ,N

{�
(Us)T

�
Fs,∗
n − 1

2

�
(Us)TFs

n

�}
dS + PBT + SIBT, (73)

written in terms of the jump operator,
�
U

�
= UR −UL . Assuming that the discrete physical

boundary terms are dissipative, the discrete L2 norm satisfies

1

2

d

dt

∑

ek

∣∣∣∣Us
∣∣∣∣2
J ,N ≤

∫

Γ ,N

{�
(Us)T

�
Fs,∗
n − 1

2

�
(Us)TFs

n

�}
dS + SIBT, (74)

which mimics the continuous stability (65) if SIBT ≤ 0.
We thus need a proper numerical flux function Fs,∗

n to control discrete stability, i.e. to
guarantee that the integrand satisfies

QN ≡
�
(Us)T

�
Fs,∗
n − 1

2

�
(Us)TFs

n

�
≤ Q(WL ,QR) (75)

pointwise at each node on element faces along the discretization of Γ , and SIBT ≤ 0.
The dissipativity of the SIBT for the upwind numerical flux has been shown elsewhere,

e.g. [8],[21]. Therefore, in the following we will assume SIBT ≤ 0 and concern ourselves
only with the discontinuous interface terms.

4.2 Stability for the Scalar Problem

In theDGapproximation, theRankine–Hugoniot condition and the inflowboundary condition
are enforced weakly with the upwind numerical flux

F∗(UL ,UR; aL , aR) = aLUL , (76)
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If summation by parts is applied again to the second term in (70), one gets the strong form
of the approximation, in which the integrand of the boundary term is [21]

F∗ − F = aLUL − aRUR . (77)

As the solution converges, this difference goes to zero, and the Rankine–Hugoniot condition
is satisfied. Furthermore,

F∗ − F = aLUL − aRUR = aR

(
aL
aR

UL −UR

)
, (78)

so that when the approximation converges, the analytical inflow boundary condition, UR =
aL
aR
UL is approached, as required, c.f. (14).
With (76), the interface contribution for the scalar problem is

QN = (UR −UL)aLUL − 1

2
(aRU

2
R − aLU

2
L)

= URaLUL − aLU
2
L − 1

2
aRU

2
R + 1

2
aLU

2
L

= −1

2

(
aLU

2
L − 2URaLUL + aRU

2
R

)
.

(79)

Factoring the quadratic,

QN = −1

2

(
aLU

2
L − 2URaLUL + aRU

2
R

)

= −1

2
aLU

2
L

(
1 − 2

UR

UL
+ aR

aL

(
UR

UL

)2
)

= −1

2
aLU

2
L Q̃

(
UR

UL
; aL
aR

)
.

(80)

The quadratic Q̃(η; aL
aR

) is concave up and has a minimum when η∗ = aL/aR , since

Q̃′ = −2 + 2
aR
aL

η, Q̃′′ = 2
aR
aL

> 0. (81)

When η∗ = aL/aR , the Rankine–Hugoniot condition is satisfied by the states on either side.
The value of that minimum is Q̃(η∗; aL

aR
) = 1 − aL

aR
.

It then follows that the contribution to the energy in the numerical approximation matches
that of the PDE, (21), plus a dissipation term dependent on howmuch the Rankine–Hugoniot
condition is not satisfied by the approximate solution. If we define β = aL/aR , and note that
the minimum value of Q̃ is 1 − β, we can separate out that term giving

Q̃(η;β) = 1 − 2η + 1

β
η2 = (1 − β) + (1 − 2η + 1

β
η2) − (1 − β)

= (1 − β) + 1

β
(η − β)2.

(82)

Re-writing the interface contribution in the final form of (82) will be a key step in showing
inferred stability of the approximation for the more complex case of a system of equations.
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When we substitute for η and β,

QN = −1

2
aLU

2
L

(
1 − aL

aR

)
− aRU 2

L

2

(
UR

UL
− aL

aR

)2

= −1

2
aL

(
1 − aL

aR

)
U 2

L − 1

2aR
(aRUR − aLUL)2 .

(83)

Let us compare: In the continuous case, we have (21), with

Q
(
u(0−), u(0+)

) = −aL
2

{
1 − aL

aR

}
u2(0−), (84)

whereas discretely,

QN = Q (UL ,UR) − 1

2aR
(aRUR − aLUL)2 ≤ Q (UL ,UR) . (85)

Thus, according to the definition of stability, Definition 2.1, the DGSEM approximation of
the scalar problem with the upwind numerical flux has inferred stability.

Remark 4.1 The comparison between (84) and (85) shows explicitly what is interpreted as
stability. The first term in (85) can be positive or negative depending on aL/aR , but matches
that of the PDE, (84). The approximation is therefore directly stable if aL/aR ≤ 1, just like
the PDE. The second term is always non-positive and represents dissipation of the energy by
the approximation. 
�
Remark 4.2 For the scalar problem it is straightforward, as for the continuous problem, to
show energy boundedness in a discounted norm by scaling the downwind domain contri-
butions before summing over the elements. When the global sum (in this case, over two
elements) is formed, the parenthetical term in the second line of (80) becomes

Q̃N ,αc =
(
1 − 2αc

UR

UL
+ αc

aR
aL

(
UR

UL

)2
)

. (86)

Like the original quantity, Q̃N in (80), Q̃N ,αc is concave up, with minimum at the same point,
η∗, with minimum value

Q̃N ,αc (η
∗; aL

aR
) = 1 − αc

aL
aR

, (87)

so
Q̃N ,αc (η; aL

aR
) ≥ 1 − αc

aL
aR

. (88)

Since one can always show bounded energy in the new discounted norm by choosing αc to
match the analytical value for any (positive) wavespeeds, the condition (85) infers stability.
The amount of numerical dissipation in that norm depends on the particular choice of αc,
however. 
�

4.3 Stability for the One-Dimensional Symmetric System

We now parallel Sect. 2.2 and extend the analysis to a symmetric PDE system in one space
dimension. For the system, the DG approximation has the interface contribution

QN =
�
UT

�
F∗ − 1

2

�
UTAU

�
. (89)
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The upwind numerical flux is now

F∗ = ALPL

[
W+

L
W−∗

]
= ARPR

[
W+∗
W−

R

]

= PLΛL

[
W+

L
W−∗

]
= PRΛR

[
W+∗
W−

R

]
,

(90)

with the equalities between the left and right representations arising by virtue of the Rankine–
Hugoniot condition. The key observation is that

�
UT

�
F∗ = UT

RPRΛR

[
W+∗
W−

R

]
− UT

LPLΛL

[
W+

L
W−∗

]
. (91)

But UT = (
PW

)T = WT PT and for the symmetric system PT P = I, so

�
UT

�
F∗ = WT

RΛR

[
W+∗
W−

R

]
− WT

LΛL

[
W+

L
W−∗

]
. (92)

Now,

WT
LΛL

[
W+

L
W−∗

]
= W+,T

L Λ̄+
LW

+
L − W−,T

L

∣∣Λ̄−
L

∣∣W−∗ (93)

and

WT
RΛR

[
W+∗
W−

R

]
= W+,T

R Λ̄+
RW

+∗ − W−,T
R

∣∣Λ̄−
R

∣∣W−
R . (94)

Therefore,
�
UT

�
F∗ = W+,T

R Λ̄+
RW

+∗ − W−,T
R

∣∣Λ̄−
R

∣∣W−
R − W+,T

L Λ̄+
LW

+
L + W−,T

L

∣∣Λ̄−
L

∣∣W−∗ . (95)

Looking at the second jump term in (89),

UTAU = (PW)T PΛW = WTΛW = W+,T Λ̄+W+ + W−,T Λ̄−W−, (96)

so
�
UTAU

�
= W+,T

R Λ̄+
RW

+
R + W−,T

R Λ̄−
RW

−
R − W+,T

L Λ̄+
LW

+
L − W−,T

L Λ̄−
LW

−
L

=
{
W+,T

R Λ̄+
RW

+
R − W+,T

L Λ̄+
LW

+
L

}

−
{
W−,T

R

∣∣Λ̄−
R

∣∣W−
R − W−,T

L

∣∣Λ̄−
L

∣∣W−
L

}
.

(97)

Therefore, forming QN and gathering right and left going wave components,

QN =
{
W+,T

R Λ̄+
RW

+∗ − W+,T
L Λ̄+

LW
+
L − 1

2
W+,T

R Λ̄+
RW

+
R + 1

2
W+,T

L Λ̄+
LW

+
L

}

+
{
W−,T

L

∣∣Λ̄−
L

∣∣W−∗ − W−,T
R

∣∣Λ̄−
R

∣∣W−
R + 1

2
W−,T

R

∣∣Λ̄−
R

∣∣W−
R − 1

2
W−,T

L

∣∣Λ̄−
L

∣∣W−
L

}
.

(98)
Terms cancel, leaving

QN = − 1

2

{
W+,T

L Λ̄+
LW

+
L − 2W+,T

R Λ̄+
RW

+∗ + 1

2
W+,T

R Λ̄+
RW

+
R

}

− 1

2

{
W−,T

R

∣∣Λ̄−
R

∣∣W−
R − 2W−,T

L

∣∣Λ̄−
L

∣∣W−∗ + 1

2
W−,T

L

∣∣Λ̄−
L

∣∣W−
L

}
.

(99)
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Following (82), we now add and subtract terms to match the PDE form, which is

Q = −1

2

{
w+,T

L Λ̄+
Lw

+
L − w+,T∗ Λ̄+

Rw
+∗
}

− 1

2

{
w−,T

R

∣∣Λ̄−
R

∣∣w−
R − w−,T∗

∣∣Λ̄−
L

∣∣w−∗
}

, (100)

to write

QN = − 1

2

{
W+,T

L Λ̄+
LW

+
L − W+,T∗ Λ̄+

RW
+∗
}

− 1

2

{
W+,T∗ Λ̄+

RW
+∗ − 2W+,T

R Λ̄+
RW

+∗ + W+,T
R Λ̄+

RW
+
R

}

− 1

2

{
W−,T

R

∣∣Λ̄−
R

∣∣W−
R − W−,T∗

∣∣Λ̄−
L

∣∣W−∗
}

− 1

2

{
W−,T∗

∣∣Λ̄−
L

∣∣W−∗ − 2W−,T
L

∣∣Λ̄−
L

∣∣W−∗ + W−,T
L

∣∣Λ̄−
L

∣∣W−
L

}
.

(101)

Now, let

R+ =
{
W+,T∗ Λ̄+

RW
+∗ − 2W+,T

R Λ̄+
RW

+∗ + W+,T
R Λ̄+

RW
+
R

}
,

R− =
{
W−,T∗

∣∣Λ̄−
L

∣∣W−∗ − 2W−,T
L

∣∣Λ̄−
L

∣∣W−∗ + W−,T
L

∣∣Λ̄−
L

∣∣W−
L

}
.

(102)

Then

QN = − 1

2

{
W+,T

L Λ̄+
LW

+
L − W+,T∗ Λ̄+

RW
+∗
}

− 1

2
R+

− 1

2

{
W−,T

R

∣∣Λ̄−
R

∣∣W−
R − W−,T∗

∣∣Λ̄−
L

∣∣W−∗
}

− 1

2
R−.

(103)

To show that the approximation is stable according to Definition 2.1, then, we just need
to show that R± ≥ 0, since the other terms match those of the PDE. To do so, let W̄± =√∣∣Λ̄±∣∣W±. Then

R+ = W̄+,T∗ W̄+∗ − 2W̄+,T
R W̄+∗ + W̄+,T

R W̄+
R = (

W̄+∗ − W̄+
R

)2 ≥ 0. (104)

Similarly,

R− = (
W̄−∗ − W̄−

L

)2 ≥ 0. (105)

Thus, the interface contribution matches that of the PDE plus an additional dissipation and
has inferred stability, satisfying Definition 2.1 with

QN ≤ − 1
2

{
W+,T

L Λ̄+
LW

+
L − W+,T∗ Λ̄+

RW
+∗
}

− 1
2

{
W−,T

R

∣∣Λ̄−
R

∣∣W−
R − W−,T∗

∣∣Λ̄−
L

∣∣W−∗
}

= Q(WL ,WR). (106)

4.4 Stability of the General Problem

As in the continuous problem, we use the analysis of the one-dimensional problem to imply
stability of the multidimensional one. As before, replace U ← Us and A ← →

As · →
n. Then

QN is given by (106), with the eigenvalues (and eigenvectors to construct the characteristic
variables) coming from

→
As · →

n. Therefore the approximation to the general multidimensional
problem is stable according to Definition 2.1.

Remark 4.3 The key features of the stability analysis are the use of summation by parts, and a
stable implementation of the boundary terms. As such, the analysis extends to other methods
that have the summation by parts property and allow discontinuities at subdomain interfaces,
such as summation by parts finite difference techniques, e.g. as used in [15,17,18].
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Table 1 Parameters for the plane
wave reflection problem Parameter M ω kix kiy ρL ρR cL cR t0

Value 4 4π 0.5
√
3/2 1 0.4 1 0.7 3

5 Example

As an example, we consider the scattering of a plane wave off a plane material interface,
approximating the system of equations (1) with the state vector and coefficient matrices (3)
reduced to two space dimensions. The problem has exact incident, transmitted and reflected
plane wave solutions of the form

u = aψ
(→
k · →

x − ω(t − t0)
)

⎡

⎢⎣
1
kx
ρc
ky
ρc

⎤

⎥⎦ , (107)

where ψ is a given wavefunction, a is the amplitude,
→
k is the wavevector, ω is the frequency.

For the incident wavevector →
ki = ω

cL

(
kix x̂ + kiy ŷ

)
, (108)

the reflected and transmitted wavevectors are
→
kr = ω

cL

(
−kix x̂ + kiy ŷ

)

→
kT = ω

cR

⎡

⎣
√

1 −
(
cR
cL

)2 (
kiy

)2
x̂ + cR

cL
kiy ŷ

⎤

⎦ ,

(109)

with amplitudes
ar

ai
= 1

d

(
ρRcRkTx /|→kT | − ρLcLkix/|

→
ki |

)
,

aT

ai
= 1

d

(
ρLcLkrx/|

→
kr | − ρRcLkix/|

→
ki |

)
,

(110)

where
d = −ρRcRk

T
x /|→kT | + ρLcLk

r
x/|

→
kr |. (111)

For the wavefunction, we choose the Gaussian

ψ(s) = e−s2/(ωσ)2 , (112)

with σ 2 = −(MT )2/(4 ln(10−4)), M = 4 and period T = 2π/ω.
We compute the problem on the square domain [−5, 5]2 with 400 square elements and

the material interface at x = 0. The solution parameters are provided in Table 1.
The results are shown in Figs. 4 and 5. Figure 4 shows the contours of the p component

of the solution at time t = 5.0, which is near the time of the maximum L2 energy, computed
with sixth order polynomials. Clearly seen is the jump discontinuity at the interface. The L2

energy is plotted as a function of time in Fig. 5, for polynomial degrees N = 2, 3 and 6.
Although the L2 energy initially grows, it reaches a maximum around time t = 4.5. Figure 5
shows that the computed energy converges from below to the exact as the polynomial order
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Fig. 4 Computed p contours at
time t = 5 for plane wave
scattering from a material
interface along the vertical center
of the domain

Fig. 5 L2 energy as a function of
time for scattering at a material
interface

is increased. In fact, it converges exponentially with polynomial degree, as expected [2] for
a spectral element method. Also, as expected due to the additional dissipation at physical,
smooth and discontinuous interfaces, the computed energies fall below the exact curve and
are worst for low order approximations.

6 Conclusions

We have shown that the interface treatment of the discontinuous Galerkin spectral element
method with the upwind numerical flux is stable for hyperbolic systems with discontinuous
coefficient matrices when the eigenvectors are preserved across the interface. Examples
include systems like Maxwell’s equations, or acoustic and elastic wave equations. The new
feature of our approach was to show that the discrete L2 norm of the approximate solution
grows no faster than the same norm of the continuous solution. By matching the L2 norm,
we avoid having to find the precise conditions for a discounted norm in which the energy is
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bounded in terms of the initial data (for homogenous and dissipative boundary conditions).
The numerical flux only weakly enforces the inflow boundary condition and the Rankine–
Hugoniot condition. Viewing stability in terms of the L2 norm shows that the dissipation
introduced by the upwind numerical flux depends on the amount by which the approximate
solution fails to satisfy the Rankine–Hugoniot condition.
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