Skip to main content
Log in

A Spherical Harmonic Discontinuous Galerkin Method for Radiative Transfer Equations with Vacuum Boundary Conditions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze a spherical harmonic discontinuous Galerkin (SH-DG) method for solving the radiative transfer equations with vacuum boundary conditions. To incorporate vacuum boundary conditions in spherical harmonic approximations, we first embed the original domain into a larger computational area of rectangular type with an extra pure absorbing layer and then establish a perturbation problem with a periodic condition at the boundary of the extended domain. Since the outflow radiative intensity at the outer boundary of the extended area can be made arbitrarily small by sufficiently increasing the magnitude of absorption in or the thickness of the absorbing layer, such a replacement of the boundary condition only causes a minimal difference between the solution of the perturbation problem and the original problem in the original domain, but will benefit the construction of the discretization scheme. Then based on the analysis of the perturbation problem and the SH-DG method for solving the radiative transfer equation with periodic boundary conditions, the well-posedness and the error estimates are derived for the approximation solution arising from the SH-DG method for solving the radiative transfer equation with vacuum boundary conditions. Numerical examples with both periodic and vacuum boundary conditions are included to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams, M.L.: Discontinuous finite element transport solutions in thick diffusive problems. Nuclear Sci. Eng. 137(3), 298–333 (2001)

    Article  Google Scholar 

  2. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics. Academic Press, Cambridge (2003)

    Google Scholar 

  3. Agoshkov, V.: Boundary Value Problems for Transport Equations Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (1998)

    Book  Google Scholar 

  4. Atkinson, K., Han, W.: Theoretical numerical analysis: A functional analysis framework. Texts in Applied Mathematics, vol. 39, 3rd edn. Springer, New York (2009)

  5. Atkinson, K., Han, W.: Spherical harmonics and approximations on the unit sphere: an introduction. Lecture Notes in Mathematics, vol. 2044. Springer Science & Business Media, Berlin (2012)

  6. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994). https://doi.org/10.1006/jcph.1994.1159

    Article  MathSciNet  MATH  Google Scholar 

  7. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

  8. Brunner, T.A., Holloway, J.P.: Two-dimensional time dependent Riemann solvers for neutron transport. J. Comput. Phys. 210(1), 386–399 (2005). https://doi.org/10.1016/j.jcp.2005.04.011

    Article  MathSciNet  MATH  Google Scholar 

  9. Case, K., Zweifel, P.: Linear Transport Theory. Addison-Wesley Series in Nuclear Engineering. Addison-Wesley, Reading, MA (1967)

    Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2002). 10.1137/1.9780898719208

  11. Coakley Jr., J.A., Yang, P.: Atmospheric Radiation: A Primer with Illustrative Solutions. Wiley-VCH, Germany (2014)

    Google Scholar 

  12. Cockburn, B.: Discontinuous Galerkin methods. ZAMM - J. Appl. Math. Mech. 83(11), 731–754 (2003). https://doi.org/10.1002/zamm.200310088

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Dong, B., Guzmán, J.: Optimal convergence of the original DG method for the transport-reaction equation on special meshes. SIAM J. Numer. Anal. 46(3), 1250–1265 (2008). https://doi.org/10.1137/060677215

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39(1), 264–285 (2001). https://doi.org/10.1137/S0036142900371544

    Article  MathSciNet  MATH  Google Scholar 

  15. Cook, P., de Oliveira, C., Haigh, J., Goddard, A.: A finite element-spherical harmonics model for radiative transfer in inhomogeneous clouds: Part II. Some applications. Atmosp. Res. 72(1), 223–237 (2004)

    Article  Google Scholar 

  16. Czuprynski, K., Eichholz, J., Han, W.: Numerical analysis of the energy-dependent radiative transfer equation. IMA J. Numer. Anal. (2018). https://doi.org/10.1093/imanum/dry025

    Article  MATH  Google Scholar 

  17. Di Pietro, D., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et Applications. Springer, Berlin (2011)

    Google Scholar 

  18. Duderstadt, J.J., Martin, W.R.: Transport Theory. Wiley, New York (1978)

    MATH  Google Scholar 

  19. Egger, H., Schlottbom, M.: A mixed variational framework for the radiative transfer equation. Math. Models Methods Appl. Sci. 22(03), 1150014 (2012). https://doi.org/10.1142/S021820251150014X

    Article  MathSciNet  MATH  Google Scholar 

  20. Egger, H., Schlottbom, M.: Diffusion asymptotics for linear transport with low regularity. Asymptot. Anal. 89(3–4), 365–377 (2014). https://doi.org/10.3233/ASY-141235

    Article  MathSciNet  MATH  Google Scholar 

  21. Egger, H., Schlottbom, M.: An \({L}^p\) theory for stationary radiative transfer. Appl. Anal. 93(6), 1283–1296 (2014). https://doi.org/10.1080/00036811.2013.826798

    Article  MathSciNet  MATH  Google Scholar 

  22. Egger, H., Schlottbom, M.: A perfectly matched layer approach for \({P}_{N}\)-approximations in radiative transfer. SIAM J. Numer. Anal. 57(5), 2166–2188 (2019). https://doi.org/10.1137/18M1172521

    Article  MathSciNet  MATH  Google Scholar 

  23. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159. Springer-Verlag, New York (2004)

  24. Frank, M., Hauck, C., Küpper, K.: Convergence of filtered spherical harmonic equations for radiation transport. Commun. Math. Sci. 14(5), 1443–1465 (2016). https://doi.org/10.4310/CMS.2016.v14.n5.a10

    Article  MathSciNet  MATH  Google Scholar 

  25. Frank, M., Klar, A., Larsen, E.W., Yasuda, S.: Time-dependent simplified \({P}_{N}\) approximation to the equations of radiative transfer. J. Comput. Phys. 226(2), 2289–2305 (2007). https://doi.org/10.1016/j.jcp.2007.07.009

    Article  MathSciNet  MATH  Google Scholar 

  26. Gao, H., Zhao, H.: A fast-forward solver of radiative transfer equation. Transp. Theory Stat. Phys. 38(3), 149–192 (2009). https://doi.org/10.1080/00411450903187722

    Article  MathSciNet  MATH  Google Scholar 

  27. Gao, H., Zhao, H.: Analysis of a numerical solver for radiative transport equation. Math. Comput. 82(281), 153–172 (2013). https://doi.org/10.1090/S0025-5718-2012-02605-6

    Article  MathSciNet  MATH  Google Scholar 

  28. Garrett, C.K., Hauck, C.D.: On the eigenstructure of spherical harmonic equations for radiative transport. Comput. Math. Appl. 72(2), 264–270 (2016). https://doi.org/10.1016/j.camwa.2015.05.030

    Article  MathSciNet  MATH  Google Scholar 

  29. Han, W., Huang, J., Eichholz, J.: Discrete-ordinate discontinuous Galerkin methods for solving the radiative transfer equation. SIAM J. Sci. Comput. 32(2), 477–497 (2010). https://doi.org/10.1137/090767340

    Article  MathSciNet  MATH  Google Scholar 

  30. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983). https://doi.org/10.1137/1025002

    Article  MathSciNet  MATH  Google Scholar 

  31. Henyey, L., Greenstein, J.: Diffuse radiation in the galaxy. Astrophys. J. 93, 70–83 (1941)

    Article  Google Scholar 

  32. Houston, P., Süli, E.: A note on the design of \(hp\)-adaptive finite element methods for elliptic partial differential equations. Comput. Methods Appl. Mech. Eng. 194(2), 229–243 (2005). https://doi.org/10.1016/j.cma.2004.04.009

    Article  MathSciNet  MATH  Google Scholar 

  33. Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46(173), 1–26 (1986). https://doi.org/10.2307/2008211

    Article  MathSciNet  MATH  Google Scholar 

  34. Kanschat, G., Lorca, J.P.L.: A weakly penalized discontinuous Galerkin method for radiation in dense, scattering media. Computat. Methods Appl. Math. 16(4), 563–577 (2016). https://doi.org/10.1515/cmam-2016-0023

    Article  MathSciNet  MATH  Google Scholar 

  35. Laiu, M., Hauck, C., McClarren, R., O’Leary, D., Tits, A.: Positive filtered \({P}_{N}\) moment closures for linear kinetic equations. SIAM J. Numer. Anal. 54(6), 3214–3238 (2016). https://doi.org/10.1137/15M1052871

  36. Lasaint, P., Raviart, P.: On a finite element method for solving the neutron transport equation. In: C. de Boor (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89 – 123. Academic Press (1974)

  37. Lewis, E.E., Miller, W.F.: Computational Methods of Neutron Transport. Wiley, New York (1984)

    MATH  Google Scholar 

  38. Li, Q., Lu, J., Sun, W.: Diffusion approximations and domain decomposition method of linear transport equations: asymptotics and numerics. J. Comput. Phys. 292(Supplement C), 141–167 (2015)

  39. Manteuffel, T., Ressel, K., Starke, G.: A boundary functional for the least-squares finite-element solution of neutron transport problems. SIAM J. Numer. Anal. 37(2), 556–586 (1999). https://doi.org/10.1137/S0036142998344706

    Article  MathSciNet  MATH  Google Scholar 

  40. Modest, M.F.: Radiative Heat Transfer, 3rd edn. Academic Press, Oxford (2013)

    Google Scholar 

  41. Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966)

  42. Peraiah, A.: An Introduction to Radiative Transfer: Methods and Applications in Astrophysics. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  43. Powell, S., Cox, B.T., Arridge, S.R.: A pseudospectral method for solution of the radiative transport equation. J. Comput. Phys. 384, 376–382 (2019). https://doi.org/10.1016/j.jcp.2019.01.024

    Article  MathSciNet  MATH  Google Scholar 

  44. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Lab., N.Mex. (USA) (1973)

  45. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics. Springer, Berlin (2011). https://doi.org/10.1007/978-3-540-71041-7

  46. Thomas, G.E., Stamnes, K.: Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press, Cambridge (1999)

  47. Wang, C., Sheng, Q., Han, W.: A discrete-ordinate discontinuous-streamline diffusion method for the radiative transfer equation. Commun. Comput. Phys. 20(5), 1443–1465 (2016). https://doi.org/10.4208/cicp.310715.290316a

    Article  MathSciNet  MATH  Google Scholar 

  48. Zdunkowski, W., Trautmann, T., Bott, A.: Radiation in the Atmosphere: A Course in Theoretical Meteorology. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for carefully reading this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiwei Sheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, the proofs of some technical results are given.

1.1 Proof of Theorem 6

We introduce the operator \(\mathcal {L}: \varvec{W}\rightarrow (L^2(X))^L\) by \(\mathcal {L}\varvec{u}:= \varvec{A}\cdot \nabla \varvec{u} + (\sigma _{\mathrm {a}}\varvec{I} + \sigma _{\mathrm {s}} \varvec{R})\varvec{u}\). We will show that \(\mathcal {L}\) is an isomorphism. The following results will be needed.

Lemma 9

Under conditions (2.8), there exists \(\alpha >0\), such that for all \(\varvec{u}\in \varvec{W}\), \(\Vert \mathcal {L}\varvec{u}\Vert _X\ge \alpha \Vert \varvec{u}\Vert _{\varvec{V}}\).

Proof

Let us denote \(\varvec{n}\cdot \varvec{A}=\sum _{i=1}^{d}n_i\varvec{A}^{(i)}\), where \(\varvec{n}(\mathbf {x})=(n_1,n_2,\cdots ,n_d)^\mathsf {T}\) is the unit outward normal vector at \(\mathbf {x}\in \partial X\). Since \(\varvec{u}\) is periodic, we have \(\int _{\partial X}\varvec{u}^{\mathsf {T}}\varvec{n}\cdot \varvec{A}\varvec{u}\,\mathrm {d}\mathbf {x}=0\). Note that

$$\begin{aligned} (\mathcal {L}\varvec{u},\varvec{u})_X&= \int _X \varvec{u}^{\mathsf {T}} \varvec{A}\cdot \nabla \varvec{u}\,\mathrm {d}\mathbf {x}+ \int _X \varvec{u}^{\mathsf {T}}(\sigma _{\mathrm {a}}\varvec{I} + \sigma _{\mathrm {s}} \varvec{R})\varvec{u}\,\mathrm {d}\mathbf {x}\\&= \frac{1}{2}\int _{\partial X} \varvec{u}^{\mathsf {T}}\varvec{n}\cdot \varvec{A}\varvec{u}\,\mathrm {d}\mathbf {x}+ \int _X \varvec{u}^{\mathsf {T}}(\sigma _{\mathrm {a}}\varvec{I} + \sigma _{\mathrm {s}} \varvec{R})\varvec{u}\,\mathrm {d}\mathbf {x}\\&\ge \sigma _0 \Vert \varvec{u}\Vert _X^2, \end{aligned}$$

i.e., \((\mathcal {L}\varvec{u},\varvec{u})\ge \sigma _0 \Vert \varvec{u}\Vert _X^2\), which implies \(\sup _{\varvec{v}\in (L^2(X))^L\backslash \{\varvec{0}\}}\frac{(\mathcal {L}\varvec{u},\varvec{v})_X }{\Vert \varvec{v}\Vert _X}\ge \sigma _0 \Vert \varvec{u}\Vert _X\). Therefore,

$$\begin{aligned} \sup _{\varvec{v}\in (L^2(X))^L\backslash \{\varvec{0}\}}\frac{(\mathcal {L}\varvec{u},\varvec{v})_X }{\Vert \varvec{v}\Vert _X}&\ge \sup _{\varvec{v}\in (L^2(X))^L\backslash \{\varvec{0}\}}\frac{(\varvec{A}\cdot \nabla \varvec{u},\varvec{v})_X }{\Vert \varvec{v}\Vert _X} - (\sigma _{\mathrm {a}} + \sigma _{\mathrm {s}}) \Vert \varvec{u}\Vert _X \\&\ge \Vert \varvec{A}\cdot \nabla \varvec{u}\Vert _X - \frac{\sigma _{\mathrm {a}} + \sigma _{\mathrm {s}}}{\sigma _0}\sup _{\varvec{v}\in (L^2(X))^L\backslash \{\varvec{0}\}}\frac{(\mathcal {L}\varvec{u},\varvec{v})_X }{\Vert \varvec{v}\Vert _X}. \end{aligned}$$

Hence,

$$\begin{aligned} \left( 1 + \frac{1+\sigma _{\mathrm {a}} + \sigma _{\mathrm {s}}}{\sigma _0}\right) \sup _{\varvec{v}\in (L^2(X))^L\backslash \{\varvec{0}\}}\frac{(\mathcal {L}\varvec{u},\varvec{v})_X }{\Vert \varvec{v}\Vert _X} \ge \Vert \varvec{A}\cdot \nabla \varvec{u}\Vert _X + \Vert \varvec{u}\Vert _X = \Vert \varvec{u}\Vert _{\varvec{V}}, \end{aligned}$$

from which the claim follows. \(\square \)

Lemma 10

Under the condition (2.8), for all \(\varvec{v}\in (L^2(X))^L\), if \((\mathcal {L}\varvec{u},\varvec{v})=0\) for any \(\varvec{u}\in \varvec{W}\), then \(\varvec{v}=0\).

Proof

Let \(\varvec{v}\in (L^2(X))^L\) be such that, for all \(\varvec{u}\in \varvec{W}\), \((\mathcal {L}\varvec{u},\varvec{v})_X=0\). Therefore, we have

$$\begin{aligned} (\varvec{u},-\varvec{A}\cdot \nabla \varvec{v} + (\sigma _{\mathrm {a}} + \sigma _{\mathrm {s}} \varvec{R})\varvec{v})_X + (\varvec{u},\varvec{n}\cdot \varvec{A}\varvec{v})_{\partial X}=(\mathcal {L}\varvec{u},\varvec{v})_X=0, \quad \forall \varvec{u}\in \varvec{W}, \end{aligned}$$

where \(\varvec{A}\cdot \nabla \varvec{v}\) is understood in the distribution sense. As a result,

$$\begin{aligned} -\varvec{A}\cdot \nabla \varvec{v} + (\sigma _{\mathrm {a}} + \sigma _{\mathrm {s}} \varvec{R})\varvec{v}=0, \end{aligned}$$
(7.1)

i.e., \(\varvec{v}\in \varvec{V}\). Furthermore, \((\varvec{u},\varvec{n}\cdot \varvec{A}\varvec{v})_{\partial X}=0\) for all \(\varvec{u}\in \varvec{W}\). Let \(\breve{\mathbf {k}}\) be a vector with one component equal to either 1 or \(-1\) and all other two equal to zero. Define \(\varGamma _1=\{\mathbf {x}\in \partial X: \mathbf {x}+\breve{\mathbf {k}}\in \partial X\}\) and \(\varGamma _2=\partial X\backslash \varGamma _1\). Due to the periodic condition, the following decompositions hold: \(\varvec{v}=\varvec{u}_1 + \varvec{v_1}\), where \(\varvec{u}_1\in \varvec{W}\) and \(\varvec{u}_1=\varvec{v}\) on \(\varGamma _1\); \(\varvec{v}=\varvec{u}_2 + \varvec{v_2}\), where \(\varvec{u}_2\in \varvec{W}\) and \(\varvec{u}_2=\varvec{v}\) on \(\varGamma _2\). Therefore, on \(\partial X\),

$$\begin{aligned} (\varvec{v},\varvec{n}\cdot \varvec{A}\varvec{v})_{\partial X}&= \left( \varvec{u}_1 + \varvec{v_1}, \varvec{n}\cdot \varvec{A}(\varvec{u}_2 + \varvec{v_2})\right) _{\partial X} \\&= (\varvec{u}_1,\varvec{n}\cdot \varvec{A}\varvec{u}_2)_{\partial X} + (\varvec{u}_1,\varvec{n}\cdot \varvec{A}\varvec{v}_2)_{\partial X} +(\varvec{v}_1,\varvec{n}\cdot \varvec{A}\varvec{u}_2)_{\partial X} + (\varvec{v}_1,\varvec{n}\cdot \varvec{A}\varvec{v}_2)_{\partial X} \\&= (\varvec{v}_1,\varvec{n}\cdot \varvec{A}\varvec{v}_2)_{\varGamma _1} + (\varvec{v}_1,\varvec{n}\cdot \varvec{A}\varvec{v}_2)_{\varGamma _2}\\&= 0, \end{aligned}$$

where the last equality is due to the fact that \(\varvec{v}_1=0\) on \(\varGamma _1\) and \(\varvec{v}_2=0\) on \(\varGamma _2\). Taking the inner product of (7.1) with \(\varvec{v}\) and owing to the boundary condition satisfied by \(\varvec{v}\), we have

$$\begin{aligned} 0 = (\varvec{v},-\varvec{A}\cdot \nabla \varvec{v} + (\sigma _{\mathrm {a}} + \sigma _{\mathrm {s}} \varvec{R})\varvec{v})_X = (\mathcal {L}\varvec{v},\varvec{v})_X - (\varvec{v},\varvec{n}\cdot \varvec{A}\varvec{v})_{\partial X} = (\mathcal {L}\varvec{v},\varvec{v})_X \ge \sigma _0 \Vert \varvec{v}\Vert _X, \end{aligned}$$

i.e., \(\varvec{v}=0\). \(\square \)

With these two lemmas, we are ready to prove Theorem 6.

Proof of Theorem 6

By Lemmas 9 and 10, and employing the Banach-Nečas-Babuška (BNB) Theorem (cf. Theorem 1.1 in [17] and Theorem 2.6 in [23]), the operator \(\mathcal {L}\) is an isomorphism from \(\varvec{W}\) to \((L^2(X))^L\), from which we conclude that (4.12) admits a unique solution \(\varvec{u}\in \varvec{W}\). \(\square \)

Remark 7

The injectivity of \(\mathcal {L}\) is a direct consequence of Lemmas 9. From Lemma 10, we can infer that \(\mathcal {L}\) is surjective. Therefore \(\mathcal {L}\) is bijective.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, Q., Wang, C. A Spherical Harmonic Discontinuous Galerkin Method for Radiative Transfer Equations with Vacuum Boundary Conditions. J Sci Comput 88, 9 (2021). https://doi.org/10.1007/s10915-021-01530-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01530-y

Keywords

Mathematics Subject Classification

Navigation