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Abstract

In this paper, we consider a second-order scalar auxiliary variable (SAV) Fourier spectral
method to solve the nonlinear fractional generalized wave equation. Unconditional energy conser-
vation or dissipation properties of the fully discrete scheme are first established. Next, we utilize
the temporal-spatial error splitting argument to obtain unconditional optimal error estimate of the
fully discrete scheme, which overcomes time-step restrictions caused by strongly nonlinear sys-
tem, or the restrictions that the nonlinear term needs to satisfy the assumption of global Lipschitz
condition in all previous works for fractional undamped or damped wave equations. Finally, some
numerical experiments are presented to confirm our theoretical analysis.
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1. Introduction

In this paper, we consider the following two-dimensional nonlinear space-fractional general-
ized wave equation (FGWE)

Uy + K(=A)2u+y (=N 2u, + you, + FFu) =0, xeQ, 0<t<T, (1.1)
u(x,0) = o(x), u,(x,0) = po(x), X € Q, (1.2)
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where the parameters k > 0, 1 < @ <2, x = (x1,x;) and y; > 0,7y, > 0 are coeflicients of damp-
ing terms. F(u) is nonlinear and nonnegative, and F’(u) satisfies local Lipschitz condition.The
fractional Laplacian (—A)“ is defined by

(_A)a/u — Z(SZ + lZ)(Ii\tSleisx1+ilx2. (13)
s,leZ
Foru € Lf,er(Q), U =Y,z lge™ "™ where i* = —1 and the Fourier coefficients &I are given by
) . 1 . .
i ;= (Ll ezsx1+zlx2) - uetsx1+tlx2dx (1 4)
s s . .
1 Ja

In addition, (I.1)-(T.2) possess the following energy function

H®) = f l|u,|2 + f|(—A)%u|2 + F(u)dx, (1.5)
0?2 2

and it holds that
dH (1)

dt

The conventional damped (y; = 0,7y, > 0) or undamped (y; = v, = 0) wave equations are
extensively described in anomalous diffusion, hydrology and so on [1H3]]. If F'(u) = sinu, (1.1))
deduces to the damped sine-Gordon equation, and when F’(u) = u* — 1, (T.T]) becomes the damped
Klein-Gordon equation. The FGWEs as the generalization of conventional wave equations are
widely applied in science and engineering to well describe the long-range interaction, such as the
interaction of solitons in a collisionless plasma and the presence of the phenomenon of nonlinear
supratransmission of energy [4]. A increasing number of mathematical and numerical methods
have been developed for the FGWE. Along the mathematical front, Shomberg [5] proved the well-
posedness of the FGWE and also derived the energy dissipation-preserving structure. In general,
the analytical solution of the FGWE is difficult to obtain and we have to construct numerical
methods.

Along the numerical front, numerous efficient numerical methods for the fractional damped
(y1 = 0,9 > 0) or undamped (y; = y, = 0) wave equation were proposed in recent years.
Liu et al. [6] studied a class of unconditionally stable difference schemes based on the Padé
approximation for the Riesz space-fractional telegraph equation. Ran and Zhang [7]] derived a
compact difference scheme with accuracy of fourth-order in space and second-order in time for
fractional damped wave equation. Plenty of numerical works in [8H16] have shown that energy
dissipative (or conservative) numerical methods have obvious superiority over common numerical
methods in long time simulation and thus developing energy dissipation-preserving methods for
the fractional wave equation has attracted more and more researchers’ attention. For the fractional
undamped wave equation, Xin et al. [[17] proposed a conservative difference scheme for Riesz
space-fractional sine-Gordon equation. Fu et al. [18] derived an explicit structure-preserving algo-
rithm by considering Hamiltonian system for fractional wave equation. For the fractional damped
wave equation, Macias-Diaz et al. [19-22] proposed a series of efficient structure-preserving finite
difference methods to study the fractional sine-Gordon equation with Riesz fractional derivative.
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Xie et al. [23] proposed a dissipation-preserving fourth-order difference method for fractional
damped wave equation. However, we noticed that all existing numerical methods were devoted to
investigate the nonlinear fractional wave equation (y; = 0,7y, > 0) and there is a little attention
for the fractional generalized wave equation (y; > 0,7y, > 0). Recently, Xie et al. [24] developed
a dissipation-preserving fourth-order difference method for the nonlinear fractional generalized
wave equations with Riesz fractional derivative in two dimensions, and this is the first work to
prove unconditional stability and convergence of the fully discrete scheme. But unfortunately,
the above scheme is fully implicit, which needs to solve the nonlinear system by a iterative algo-
rithm at each time step, and increases the computational cost. At the same time, the unconditional
convergence analysis is under the assumption that F’(u«) must satisfy global Lipschitz condition,
which means that |F’(x) — F'(y)| < LIx —y|, x, y € R, where L is a positive constant independent
of x and y. However, this assumption limits the range of applicability. In fact, nonlinear terms in
a very large of nonlinear wave equations are the local Lipschitz continuous, i.e., for any x,y € Q,
|F'(x) — F'(y)] < Lg|x — y|, where Lo > 0 is a Lipschitz constant dependent on Q. For example,
if F’(u) = u?, the nonlinear term satisfies the local Lipschitz condition. These two reasons moti-
vate us to construct a linearly implicit scheme to reduce computational cost and use some other
analytical techniques to remove the restriction of the global Lipschitz condition.

There are many energy dissipative schemes in [25-28] for classical nonlinear wave equations.
In particular, Jiang et al. [29] extended invariant energy quadratization (IEQ) approach (proposed
in [26]]), and established a linearly implicit energy-preserving scheme for sine-Gordon equation.
Very recently, to overcome introducing an auxiliary function by the IEQ approach, Shen and Xu
[30L 31] proposed a new eflicient linearly implicit scheme which is called the scalar auxiliary
variable (SAV) approach to describe energy dissipative physical systems without the Lipschitz as-
sumption. Moreover, the SAV approach results in a linear system at each time step and it is easy
to implement the scheme. Next, Li and Shen [32]] gave rigorous error estimate for the stabilized
SAV Fourier spectral for the phase field crystal equation. The SAV approach is being studied
extensively for other partial differential equations, see Refs. [3334] and references therein. Fol-
lowing the superiority of SAV approach, we develop the fully discrete SAV scheme for the FGWE
(L.I)-(1.2). In addition, the convergence analysis plays an important role in numerical methods.
Most previous works need the requirement of global Lipschitz condition and thus it is necessary
to study the convergence analysis under weaker condition. Similar to the technique in [35)], Wang
et al. [36] recently provided a rigorous convergence analysis for fractional damped wave equation
under the condition 72N < ¢ caused by the inverse inequality as usual, where nonlinear term is un-
der the weaker assumption.The similar time-spatial stepsize restriction often appeared in general
nonlinear parabolic equations, and in order to get the unconditional error estimate without the time
stepsize restrictions, the temporal-spatial error splitting argument was presented to get uncondi-
tional optimal error estimate for parabolic equations [37-H39]]. Inspired by the technique, Zeng et
al. [40] proposed Fourier spectral method for nonlinear fractional reaction-diffusion equation and
used the temporal-spatial error splitting argument to overcome the time stepsize restriction in [33]].
However, using the temporal-spatial error splitting argument to obtain the unconditional error es-
timate for the FGWE, has not been studied. In this work, we extend SAV Fourier spectral method
for the FGWE, which the resulting system can be used FFT solver. Furthermore, the temporal-
spatial error splitting argument is adopted to study the unconditional convergence analysis of the
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fully discrete scheme.

The main contribution of this paper is to develop the SAV Fourier-spectral method for the
FGWE in two dimensions, which can maintain energy dissipation and reach high error accuracy.
The unconditional energy dissipation is proved in detail. We use temporal-spatial error splitting
argument to obtain the unconditional optimal error estimate without the global Lipschitz assump-
tion. We obtain that our scheme is convergent with second order accuracy in time and spectral
accuracy in space. Numerical experiments are provided to confirm the theoretical results and
validate the efficiency of our algorithms.

The rest of paper is organized as follows. In Section 2, we recall some technical lemmas
and notations. In Section 3, we present the SAV spectral method for FGWE and main results.
Unconditional energy dissipation and optimal error estimate results of the fully discrete scheme
are shown. We get time-discrete system based on SAV approach and give error estimate as well
as unconditional energy dissipation for time-discrete system in Section 4. The boundedness of
numerical solutions in L* norm are proved unconditionally in Section 5. In section 6, the optimal
convergence analysis of the SAV spectral scheme based on the temporal error estimate and the
spatial error estimate is completed. The numerical experiments are performed to confirm the
correctness of theoretical analysis in Section 7. Some conclusions are drawn in Section 8.

2. Preliminaries

In this section, we first recall some essential notations and lemmas. Denote Q2 be a finite
domain with Q = I, X I, = (a,D) X (¢,d). Let C},,,(€2) be the set of all restrictions onto €2 of all
complex-values, 2r-periodic, C* function on R?. For a nonnegative real number r, let H ber(€2) be

the closure of C;‘;,(Q) with the semi-norm | - |, and norm || - ||, defined by

luf? = Z 2>+ Y, |ull? = Z 2,1+ 5%+ Py, 2.1
sieZ slez
Lemma 2.1. ([41l]). Let &, r > O, then for any u,v € Hi:,r(Q), it hold that
(=87 u,v) = (=AY u, (=A)v).
Lemma 2.2. ([40,41)]). If ¢ < rand u,v € le,f,(Q)for all ¢ > 0O, then
(=AY @n)I? < CelIVIZ =27 ulPT + (=AY VI a3, ],
where C; = max{1,2%7'}.

Lemma 2.3. ([40, 42l]). Let Q be a domain in R" satisfying the cone condition. If mp > n, let
p<qg<ooifmp<nletp <q<q =np/(n—mp). Then there exists a positive constant C,
depending on m, n, p, q, and the dimensions of Q such that for all u € W™?(Q),

1_
lelly < Clluls, el

where € = (n/mp) — (n/mq).



Lemma 2.4. ([40, 43]). For any u € Xy, there existing a positive constant C, independent of N
and the following inverse inequality holds,

llulleo < CoN|Jul|.
Lemma 2.5. ([41]). Suppose that u € H},,,(Q). Then the following estimate holds for all0 < & <,
llu = Pyulle < C3N*"|lul,,

where C; is a positive constant not depending on N.

3. The SAV Fourier spectral method for two-dimensional FGWE and main results

In this section, a linealy implicit fully discrete scheme is constructed, which is based on the
SAV approach in time and Fourier spectral method in space. Moreover, we give theoretical anal-
ysis of the linear system, including the unconditional energy dissipation and the corresponding
error estimate.

3.1. The stabilized SAV approach

The equation (I.1I)-(1.2)), by introducing a scalar variable r(r) = VE(u), can be transformed
into the following system

u =V, (3.1)
o o F’
Vi + k(=A)2u + y1(=A)2v + yov + (1) \/% =0, 3.2)
1
[ F’ aX. .
u(x,0) = ¢(x,y), v(x,0) = ¢(x), x € Q, (3.4)

where E(u) = fQ F(u)dx + Cy, and Cj is chosen such that E(u) > 0. In addition, we assume
F € C3(R).

Theorem 3.1. (Energy dissipation) Under the periodic boundary conditions, (3.1)-(3.4)) poessess
the following energy function

1 a
H() = f “iu + S =n) uPdx + 2, (3.5)
0?2 2
and it holds that
D = — [ (nI=A)FuP + yalu,P)dx < 0, (3.6)
and thus
H(t) < H(t), t, > b (3.7)



Proof. Taking the inner product of (3.2)) with v and using (3.1]), we can directly obtain

(Fra.uw)
VEw)

Vi V) + k(=) 21, 1) + y1 (=) 20, V) + ¥2(v, V) + (D)
Combining with (3.1) and Leibiniz rule, we have

1 K a a
f Sl + Sl uldx + (e + f (I=A) 3P + yalu,?)dx = 0,
Q Q

and one can get (3.5)) and (3.6)-(3.7). O

Remark 3.1. When y, = y, = 0, the system (1.1)-(1.2) deduces to the fractional wave equation.

From (3.6), we have
dH() _ |

dt ’
which implies that the energy is conservative.

For a positive integer N, the function space is denoted by
Xy = span{e™1*2 . _N/2 < 5,1 < N/2 - 1}.
Define the orthogonal projection operator Py as follows

(u— Pyu,v) = 0,¥v € Xy, u € L, (Q),
(=A)?Pyu = Py(—=AN)?u.

For the temporal discretization, we divide the interval [0, T] by a time step size T = T/K. Let
t, =nt,u" = u(x,t,), 0 <n < K, and denote

un+1 —u" 3u" — un—l . un+1 +u"
6 n+% — , ~n+ — , =N+5 - , 38
U — 7} — 7 — 3.8)
3.2. The full discrete SAV Fourier spectral method
The full discrete Fourier spectral method for (I.I)-(I.2) is given by: Find (i}, v}) € Xy X Xy,
such that for all (¥, ¢) € Xy X Xy,

D=

1 |
n+ 5 _n+x

((SI‘MN 7'71’) = (VN 7‘70)’ (39)
Gy, @) + k(D) 2Ty 2, ) + 11 (M) 2, o) +
FGi) )

1 - 1
72Ty 2. 0) + R —.4) =0, (3.10)
E(iiy %)
1 n+x n+s5
SR = (F’(aN+§),5tuN+5). (3.11)

2\ JE@)
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u(x) = Pyu’(x), V3 (x) = Py’ (x), R’ =¥, x e Q. (3.12)

Since the fully discrete system (3.9)-(3.11) is not self-starting, the following scheme is used in the
first step:

T T/ )= e (3.13)
o= i F
(VN /2V ,(,0)+K(( A)ZuN,tp)+y](( A)? VN’90)+7’2(VN,(,0) E( (uy) ,90) — 03.14)
VE@Y)
R% - R — 1 1.0 ﬁl%\/ - ”?v
) (F )= ) (3.15)

72 JEW)

Theorem 3.2. (Unconditional full discrete energy dissipation) Under the periodic boundary con-
ditions, (3.9)-(3.11) is dissipative in the sense that

H <H"! l<n<K+1, (3.16)

where {
K a 4, n
H' = E||v;'v||2 + 5||(—A)4MN||2 +(R"Y. (3.17)

n 1 .
Proof. Similar to the proof for Theorem , letting ¢ = \7N+2 in (3.10), we have

(F,(~n+2) n+2)

Gy )+ KAy T + =R IR + oy P + R _0
E(~n+2)
Taking ¢ = (—A)%ﬁfﬁ in (3.9), it yields
(51 n+l (- A)Zun+2)—( _n+l (- A)Z n+2)
Using
CUERADES <II VIR = NI Gy )by ) = 5 <| R A W BT

and (3.T1), it directly achieves

K
( I 1P+ S 1A f s P+ R™)?) - ( [ N||2+ =AY IR+ R4y~ E Ty 2 PryalFy | =



Throughout the paper, denote C a generic positive constant independent of K and N that may
has different values in different cases. We assume that

lleto [ +eal |z + 1P| 0.7y +Fel 2o 0.7y el o017+ Pl 0.7y 0t Lo + el o+ [t o+ etz + el 2 < L,
(3.19)
where L is a positive constant independent of N and 7.
With the assumption, we present unconditional optimal error estimates for the FGWE in the
following theorem. For simplicity , we assume u" := u(x, t,,).

Theorem 3.3. Let u and {u}}*_ be the solutions of (I1)-(L2) and (3:9)-(B-13), respectively. As-
sume u satisfies (3.19). Then it holds that

" = P+ V" = VAR + 17 = R < O 4 N7, e’ = iy < Ot N°2), (3.20)

%
where C are positive constants independent of N and T.

Taking technique similar as [40], we prove the Theorem [3.3]in the next two sections. We
splitting error into two parts, i.e., temporal error and spatial error.

4. Error analysis for the time-discrete system

In this section, we present and analyze the time-discrete system for the nonlinear FGWE. We
get the following time-discrete scheme based on SAV approach, which define U”, V" and R" such
that

S, U™ = Vi, (4.1)
. - . _ _ . F(Om:
PAVias PR ] /128 SPRAN N1 215 SOV 25 B il AR S
VE@™3)
1 .
SR = ————=(F"(0""%),5,U""), (4.3)
2 \JE(O"+h)
U’x) = u’(x), VO(x) =v'x),R° = /%, x e Q. (4.4)
While the first step is obtained by
o:-uv°
A v 45
T/2 (4.5)
Vi-Vo .~ ‘e o1 1 FI(U°
Y AT AT 4t RS YD (4.6)
/2 EUY)
R - R° 1 U:-0°
R (F "), —=>) @7
T/2 2‘/E(U0) T/2



Fnt L
By using the (3.8) and denote 0" := Lzl), we can get a linear equation from the SAV scheme
VEW@"2)
ED-E3), 2
AUn+l + %(Bn’ Un+1)Bn — gn’ (48)
where A = 2+ 7yl +(5k+Ty)(=A)2, g" = (A= k(=AY U" +27V" + Z(B", U")b" —T°R"D".
We can solve above linear equation by first computing A~'5" and A~'g". Thus, it leads to

2
U+ Tz(zn, UHATR = A7lg", 4.9)

Taking the inner product with 5” on the both sides of the above resulting equation to solve (5", U"*!),

then, we can get U"*!. Similar to the same solving procedure, we can get U ? from the Egs. (@.3)-
@.7) (see [31] for more details). In summary, we solve the schemes (4.I)-(.3) by the following
main procedure at each time step and the solving procedure of schemes (@.5)-(@.7) is similar.

1. Assume U", R*, U™, V" and R*! are known;

2. Compute A~'5" and A~'g";

3. Compute (5", U™") by solving the resulting equation, which is derived from taking the inner
product with 5" on the both sides of (@J);

4. Solve [@3) to obtain U™*';

5. Compute V"*! by solving (@.1));

6. Solve {.3) to get R"*!.

Theorem 4.1. (Unconditional energy dissipation) Under the periodic boundary conditions, {.1))-
@.3) is dissipative in the sense that

H™' <H", 0<n<K, (4.10)
where .
H" = f SIV'P + SI(=A)F U Pdx + (R") (4.11)
) 2
Proof. Taking the inner product of (@.2) with V"*2, combining with @.I), we get

1 FntAN n+l
n+l om+d 2 itk n+t 2 ot d2 on+li2 | pn+d (F (U +2)’V+2)
O V"2, V) +k((=A)2 U2, 6,U" )+ 71 I(=8) * V2 |7+ o[V 2 ||+ R™2 =0

/E(UM%)

By using (@.3)) and
5 /Mty 1 n n S rn+s n+s 1 Srm Srm
@V v = (VIR = V), (R0 6.0 = (1M FUIE - I-A) UTIE),

we easily obtain (#.10). O



4.1. Error estimate for time discrete scheme
Denote e, = u" — U", e), =Vv"—V"and e = r" — R".

Theorem 4.2. Suppose that (L.1)-(1.2) has the unique solution (u,v,r) € H?,(Q) X H?, (Q) X

per per
C3*(0,T). The assumption 3.19) and U° € H® hold. Then for 0 < n < K, there exists a positive

constant T\, such that @.1)-@.7) admits unique solution (U",V") € H},(Q) x H, (Q) and for
T<T1],
llesll® + wlels + kleyle + lleyll® +leyls + (e)* < Cr°, n=0,.... K, (4.12)
1U"lo < M, n=0,....K, (4.13)

where M > 0 is a bounded constant independent of K.

Proof. The (@.1)-(@.7) can be rewritten as the following elliptic systems
26,03 — 27" A Lt FI(OMY)

+ k(=AY U™ + 7, (=A)I6,U™ 1 + ,8,U™ 7 + R ———2 =,
VE@"™3)
1 3
SR = ————(F'(0"%),6,U"7), VY n=1,2,- K,
2AJE(O5)
0: - U° - zy0 U:-0°  U:-U° ., F/(U°
e k(DT () T Ayl
T /2 T/2 v/E(UO)
R:-R° 1 , 0: - U°
= (F@W, —=—).
T/2 2JEUY) 7/2

The existence and uniqueness of the solution to the linear elliptic equations are straightforward.
The (3.1)-(3.3) for time discretization at 7, ; follow that

5 un+2 = vn+2 + Qn+2’ (4.14)
., R F/ '"'n+l n
SV k(=M 4y (~A) 3T 4yt 4 et LU 0, 5 @a15)
E(i"2)
1 n
6" = e (P 5 + O (4.16)
2 \/E(Et’”z)
where
I’H—2 (61 n+2 _ l’l+%) _ (‘—}n+% _ l’l+%)
n+2

(6v"+2— 2)+K(( A)z—n+2 ( A)Zu"+2)+71(( A)zvn+2 ( A)zvn+2])
L F@h F'(”n+2))

el el (_ +
+ v (v V) + (7 o o



1
n+3

pel 1 1 pil
: :(5,#”5—r,*i)—(—(F’(a“%),atu“%)——fF'(u"+i)ut+5dx).
24E@™) 2\E@ 1)~ ¢
By (3.1)-(3.3) for time discretization at 7, it follows that
~1 0
uz —u 1 ~ 1
2 SO (4.17)
~1 0 7(4,0
- a a F ~1
PV KAty (— A 4 it 4 D) =02, (4.18)
/2 VEG)
71— 40 1 i —ul ~1
= F'(u®), + 02, (4.19)
T/2 2v/E(u0)( 7/2 ) 3
where
g —u L
Q12:( 7/2 —Ltf)—(vz—VZ),
5o (P Miib - ()i MY — (LAY S
0; = (5~ —vi)+dnie - =n)tu )+ 71((-8)357 = (~A)iv?)
F’ ~0 F’ L
oy (T )
E(uo) E(lfl%)
1 g0 iz —u° L oped
0: = (- (F (), ) - P )

Using Taylor formula, we get

K

o3 (1071 007+ 105 ) + (1B 1+ 1G5 1 + 1051 < €7 (4.20)

n=0

We will give the proof sketch for (4.12))-(@.13).

1 ~ 1 ~ 1 ~
1. The first step: error estimate for &, = i — U%, el = Pz — V%, el = 72 — Rz
Combining {@.17)-@.19) and @.5)-@.7), we arrive at
gt o 421
= + , .
T/2 ey Ql ( )
éé a l a l l ~ 1 ,.,l
P +Kk(=A)28; +vi(-A)2é; +y8; + G2 = 05, 4.22)
T
& gl 4.23
= 2 + s .
T/2 Q3 ( )
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where

G = b F'u’) 51 F'(U°)
VEWO) VEUY
and 1 . _, .
~1 1 Uz —u 1 U-U
Fé F/ 0 , _ ’ UO ,
\/M( =R E(U°>( )

Taking the inner product of &2, &2 in (#.21)) and (@.22) respectively, as well as multiplying &2 on
the both sides of (@.23).

1 T LT 1]
lez|* = 5( 0> €5)+ E(le ), (4.24)
T [ T 1 1 T <1 1
lley ||2 + ZK(( N)TE;,e7) + 2)/1|€v|a + )’2||€v||2 E(G%,eﬁ) + E(sz,eﬁ), (4.25)
@) = S(FLe) + 5038, (4.26)
Using (@.21)), the (@.25]) can be rewritten as
1 1 T 1 T T 1 1 T .1 1 T e 1 a1
||€v2||2 + Kleﬁlé + Eyllevzl% + 57’2” || = —5( 2,8)) + E(Qf,evz) + EK((—A)ZE'Z, Q). (4.27)
In addition, G2 and F> could be represented as
. . F' W F'(U° 1 F(U°
Gh=p ) P, G P (4.28)
VEW®)  VEU) VEU)
l
| 1 1 0: - u°
Fi= (—F W) — ————F'(UY, )+( ) (4.29)
E(u) 2VEUY) 7/2 2 E(MO) "T/2

From (#.24)-(@.26) and Lemma[2.1] using (#.27)-(@.29) and using the Cauchy-Schwarz inequality
and Young’s inequality, we obtain

1 2 1 ) ~1 ) 1 )
llex " < CTIIéﬁll + CT| Q7 II” + Crlley ]I, (4.30)
T s 532 S50 35112
121 + e Ia Vllev g +ynlle]l” < CrE)” + Crlgr|l” + CrllQ, i
1 ~1
+Crleil; + CTlQ] [, (4.31)
712 312 ~3\2 55112 55112
;) < Crlleg|I” + Cr(er)” + Crll Qs 1I” + CrllOf I (4.32)
By combining the above equations, we can obtain
1 1 ~1 L1 <1
le1P + w2 + 1217 + @ < Cx(10}1 + I031P + I3IFP) < ¢ (433)
1
Moreover, take the inner product of (#22) by (-A)2&; to get

1 T o 1 o 1T 1 T 1
e: 1 + FK(=A)2 8y, (-A)28)) + 571|€5|§ + 3 valey [y = ——(G2 + QZ,( nie)). (4.34)
12



Using & A)ze“ = (- A)zev + (=A)? Q1 , @34) can be rewritten as

1 1 T 1
~712 ~712 ~712
|63|% + klé; ], + 571|€3 l, + 72|€v g

< 2‘(G2 (- A)253)+(Q2,( m¥ed) + k(-D)F Ql,( m¥ed).

1

From Lemma 2.1} the three terms on the right side of the above equation can be controlled by
(G2, (=A%)

1
< e (

FUY, (~0)ed)| < cy@? + et
EU) 2

(4.35)
53 €3, ~32
I(Qz,( A)iel)| < —Iev Iw EIQZI%, (4.36)
'((—A)le,(—A)féﬁ) < il + S0, (437)
From (#.33) and (4.33)-(4.37), then we can get
1 1
ez + Kléﬁ % + lley ||2 + (er ) + |62|2 +xlgl; < CT. (4.38)
By virtue of Lemma[2.3] (¢.33) and (4.38), we have
~ 1
102l < 122l + 122 ko < 1]l + CIEl, < 1+ L < M, (4.39)
where T < C73.
2. The second step: estimate e, e! and e!
Subtract (@.1)-@.3) from @.14)-@.16) to obtain forn=0
Sl = et + 0, (4.40)
1 o L o L 1 1 1
Siel + K(=A)3es +y1(—A)3e! +y,8! + G = Q2 4.41)
1 1 1
Siel = F3 + Q2 (4.42)
where | .
Gt = p 2y B
E(ii?) E(U?)
Fi= (F'(ib), 6u?) - (F'(0),6,U%).
2 \JE(ii}) 2\EU?)
It is obvious that
)k e Pyt
G% :r%( F’'(@2) B F'(U?) )+é,% F'(U?2) ’
\/E(zzé) \/E(ff%) E0?)
Fb = (— P - F/(0%),6,u7) + ( F/(0),5e8),
2 E(i?) 2\ ED?) 2\ ED?)
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1, 1 L1 Fl(i2)- F/(0?) F/ () (E@@2) - E(T?))
F/(i?) - F/(0?) = + :
EG) E0Y) VEGH  EOHEGHEG + EDH)

Since €Y = 0, €Y = 0, and € = 0, then taking inner product of 27e! and 27e! in (@#.40)-(@4T)), and
multiplying 27e! on the both sides of (#.42), we have

112 11 i
2lle,|I” = (e,,e,) +27(0; . €,), (4.43)
(3 [e3 l
2lell? + kr((=A)2el, el) + Ty (=A)2el, el) + yar(el, el) + 27(G2, e)) = 27(Q2, e})(4.44)
(€)? = 7(F*,e!) + (0, ). (4.45)

By using the Cauchy-Schwarz inequality and Young’s inequality, we obtain
lle,l” < CrlleyI” + Crlle,II” + CTIIQfIIZ. (4.46)
20ellP +2xtelt + Tyilel +yarllellE < Cr{IGH Dl + elIP + 1051 + I((-A)F el (- @)
< CHl(GY, M)l + Crle!| + CTllQZIP + Crle, i + CrlQ: [, (447
(eM)? < CTI(F?,eh) + Crlle!|I? + Cr||Q§||2. (4.48)

Since |U %loo is bounded,

1o 1ol ! F'(f]%) 1 ~312 32 112
|(Gz,ev)|s(|r2|m|e£|+|e3| ——| )IeVISCIIeﬁll +C(e}) + CllelIP, (4.49)
JEO?)
1 1 B 1_,,0 1 - 1
(F2.ep)] < Cleyl|( ——=F"@) - FI(0%), === )|+ lell[(——=—==F"(0%), 6,¢5)|

2\E@@}) 2\E(O?)

‘) &u ‘) &u
’ (g — s)zﬁ(s)ds + ftl ’ (f — s)2¥(s)ds).

2\EO?)

where
1
1_ .0
— — 1) — —
u —u = 71ul 1 ) 2( .
From the above equations and (4.40)), using Cauchy-Schwarz inequality and Young’s inequality,
Thus,

1 g 1
T(F2, ep)| < Crluy(tle((e))? + 112 1P) + C7* f ||a—t§‘(s>||2ds +Ct(e,)’ + Crlley|P + CTlIQ} I
]
(4.50)
Combining (#.38) and {#.46)-(#.30), we get
| 831/!
lleal” + lleyl? + eyl + (e;)* < CT4f =5 ()IPds+
) i 3 2t0 ) 4

Cr(IQ; I +1Q7[5 + 112511 + Crllea]l” < C7. (4.51)

14



Applying (=A)? on the both sides of (#.40), taking the inner product of the resulting equation
with 27(—=A)2el, one arrives at

a @ (3 l (3
2e,ls = T((=D)e), (=A)%e,) + 21((-A)2 0], (-A)2e,). (4.52)
Taking the inner product of (@41)) with 27(-=A)2e! and using (#.52)), we obtain
- 24 (-D)EQ], (~)¥el) + ylel B+

2|e I(y + 2klel|?

ula

yatlelly +21(G2, (~A)fe)) = 2105, (-A)?e)). (4.53)
By the Cauchy-Schwarz inequality and Young’s inequality, it leads to from the equation (@.54)
12 12 ¢ 10 12 @ 32 ¢ 52 12
2|eV|% + 2«le, |, < Ctl|[(=A)*G2||” + CT|€V|% + CTl|(=A)3 Q5 |I” + CTlI(=A)2 Q] |I” + Crle,|,. (4.54)

Meanwhile, we have

I(=A)F G2 = ||(-A)§ % F/(07) _r% FI(O75) |

H a ‘/E e Ui))ﬂ E(tﬂ))
3’ i) J H e P e s

E@?) E(U% 7h

and by using Lemma[2.2] we obtain

H(_ N F(@) _ F(U: )) H : F/(U2)(E(i2) - E(U?)) ’
\/? E(U \/E(U%) \/E(a%) \/E(a%) + \/E(U%))

- EEO LGOI |y "+ apah - EohE-mir @b
< Clesl. (4.56)
Then substituting (4.56) into (4.53)) and using Lemma 2.2} it follows from (4.54) that

I-A) G2|P < C|€u|a +Cle,). (4.57)
Combining (4.51)), (4.54) and (#.57), we arrive at
le |a +K|€u|a + ||e I* + ||e I& +K|e I(, + (e ) < Ctt, (4.58)
By virtue of Lemma [2.3]and (4.58)), we have
10 oo < Nl lloo + lleplloo < N1t [loo + Cleylo < 1+ L < M, (4.59)
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where 7 < C72.

3. The third step : we intend to use the mathematical induction method to estimate (.12)) holds
forl <n<K.

First, we assume that (4.12) holds for n < k and we intend to prove that it also holds for
n =k + 1. Similar to (#.39), we obtain

WU"lw <M, 1 <n<k. (4.60)

Subtract @I)-@3)) from @.T14)-@.16) to obtain the following error equations.

1
St = 4 g, (4.61)
k+3 @ _k+y o _k+} _k+1 P k+%
sie* +K(=M)ia, (=018 + 08, + G = 00, (4.62)
5.6 K+l — FRE Qk+2. 463)

1 1
Taking the inner product of 272, * and 272,  in @.61)-(@.62)) respectively, as well as multiplying
1
272, on the both sides of (@.63)), we have

ekt — [leb]P? = 2022, 27 ) + 20(0" 2, 24, (4.64)
+ % _k %

ey ™ 1 = lleylP + kley ™5 = le, |a)+2771|ev 5 + 2y,7lle, 7|

=27 (Qk+2 2y Zor(GhE 2)+2TK(Q1+2 (—A)2E ), (4.65)

(1) = (e = 20(F*4 870 4 27(042, 24, (4.66)
where L L

ot = Fah PO e PO

\/E(ak+z) \/E(Uk+2) JEO )

and

PR = (e ) - e PO, 00 )

2\/E(ﬁk+ 24E(O*7)

FI(0 ), 6,607,

1
2 JE(O*7)

where
1 1 1 el
F/(ﬁk+§) _ F/(Uk+§) —
VEG@@ ) VEO*)
F/(ﬁk+%) _ F/(ﬁk+%) F/(Uk+%)(E(ﬁk+%) _ E(f]k+%))

(4.67)

+ )
VEG@) \/E<0k+%>\/E<ak+%>( VEG@) + EDH)

k1l k Lo (% 20 el ,0%u
Uttt -yt = Tu,(tk+%) - E(f (t — s) (s)ds + f (tre1 — 8) ﬁ(s)ds). (4.68)

tr kel
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Similar to the proof for (#.49) and (4.50), we have the following estimates

k+
kel _k+ & k+1 k+ F'(U"72) _k+4
(G*2,8,7)) < (|r AL P TR A IR T
[E(0k+%)
2 k—12 k+12 k+12 k12 k12
(||€ 1=+ lley 1% + e 11 + lley ™ 1 + el + llell ), (4.69)

frd _k+3 k+112 \2 ki2 k=112
TI(F*2,e, ?)| < Crlut(tk+1)|oo((er+ )+ (e,) +llell” + lle, |l )+

Ti+1 3
CT4f || (S)||2dS + CT(||€k+1||2 + llesl”® + ||Qk+2||2)- (4.70)

1

Combining (4.69)-(&.70), using Cauchy-Schwarz inequality and Young’s inequality, we get

k+1 k+1 k k+1 k+1 kN2
ek 1P = b1 + e 1P = HebIP + (lel™' 12— 1e) + (e+1)2 = (e
k+1112 k12 k12 k+1 kN2 k+1 k12
scT(ne; P [P + M2 + 11 + ()% 4 ()2 + et |a+|e,,|g)+
T+ 1 3
k+4 2 k+1 2 k+1 k+4 4 oFu 2
CT(HQ1 P10 + 0P + gk )+CT IS @IPds. @D
Tk

Applying (=A)?> on the both sides of (@.61), and then taking the inner product of the resulting

. . a _k+1 .
equation with 7(—=A)2e, *, one arrives at

1R — 12 = (M)A (M) EeE ) + 1(-)E 0L () Re ), (4.72)
1
and taking the inner product of (@62) with 2r(-A)%2, 2, we get
1 1
€512 = 1k, + kel 2 = klek2 + Tnil2, 2 + yorle, 1
a 1 a 1
= —T(G"H (AP ) + (04 (0P + (0P 0N (—a)Re ). (4.73)
Using Lemmas 2.1 and [2.2] one obtains
=) G 2IP < Cr(lelfy +lel ™'y + (') + (e))?), (4.74)
then from (4.73)-(4.74), we get
les s = leyls + ke — weyly < Crlles™ o + legly + ley ™' 5 + ley o+
a _k+s a _k+5
AR + 157y + (@17 4 (€92) + (=) B O I + 11-4)% 0573 P (4.75)

Combining (#.71)) and (4.73)), summing from n = 1 to n = k, and then using Gronwall inequality,
we get

e+1 e+l e+ e+ 1 Jl 2 kN2 4
e + [le" 1 + et |ar + Kley” |a/ +Kle, |5+ (e < CTt (4.76)

which implies [¢¥*!|, < C72. Moreover, we arrive at
1T oo < 6 oo + ll€S Nleo < L+ €57, < M. (4.77)
[4.76) shows that (#.12)) holds for n = k + 1. We have completed the mathematical induction and
thus the proof is completed. O]
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5. Spatial error analysis

In this section, we give the T-independent convergence results for the discrete full scheme. It
implies that we do not need to assume the global Lipshitz condition. Similar to the technique in
[40], from Lemma[2.3|and Lemma2.5] we have ||Pyw|l. < C|wll,. Then we have the boundedness
of PyU" in L., norm, and denote M, = maxo<,<x{PyU"} + 1. For convenience, we denote

B = U" iy = U" = PyU" + PNU" il =l + 6,
ey, = V' =Vy = V"' = PyV"'+ PyV" =y = py + 6. 5.1

Combining the time-discrete system (#.I)-(@.3) and (3.9)-(3.15), we directly get the following
error equations

l’l+2

GO 0 =@, 0), (5.2)
G0, 0) + k(=D 0) + (AT, 0) + 7@ ) + (R0 =0, (5.3)

L o
whereerJr2 = Rz ( O g - £ 2))

\/E(ﬁz) \/E(UH%)

Following from (3.12), we have 6° = 0 and §° = 0. Moreover, for the first step, we have

B
(T/2’ l/’) - (Qv al/’)a (54)
(T/_vz’@ FK(=AY3B2,0) + 71 (A2, @) + 7a(@2, @) + (RE, ) = 0, (5.5)
% _p! Fed) Y
where R; = ( R E(UO)).

Theorem 5.1. Suppose that (3.1)-(3.4) have unique solutions satisfying (3.19) and u},, v}, are the
solutions of (3.9)-(3.11)), 0 < n < K. Then there exist two positive constants T and N*, such that
when v < " and N > N*, we have

6211 + (161> + K|0"|a <CN™ 0<n<Kk, (5.6)
lluylleo < Mo. (5.7)

~1 ~1
Proof. 1. The first step: estimate 6, and 6; .

L1 1
Letting ¢ = 62 and ¢ = 67 in (5.4)-(5.5), we can get
é% 2 _ é% 3 5.8
||u||_ (ChS v), (5.8)

R, 50). (5.9)



L1
Setting ¢ = (-A)26; in (5.8)), the can be rewritten as
L1 L1 L1 L1
1671 + B;  + SnIB T, + Syl = (5.10)

~1
meanwhile R also could be represented by

R

— =

Ri(F,(u?V) - F’(UO) F'(U°)E(uy) = E(U"))

o r B ( s \/W)) 5.11)

From Theorem u 2|and (er )? < C73, thus |R2| is bounded. We denote

K = max{[#|, |R2|} + 1, (5.12)
Combining (5.8)-(5.12)), we can get
~1 ~1 ~1
162117 + 16211 + x162 3

ula

~1 ~1 ~1
2 < CTG; 1P + Clio,ll? + Crllb:|? + Crller .

(5.13)
Thus, by Lemma 2.5 we can have
1831F + 1P + ;12 < N2, (5.14)
From Lemma we have

1 ~L1 ~
IIQNIIOO < 1PyT 2Nl + 1821l < IIPNT 3|l + CN'™ < M, (5.15)
where 7 < 7" and N > o=

2. The second step: estimate 6! and !
Letting ¢ = 0! and ¢ = 6! in (5.2)-(5.3), then it leads to

.
16,11* = 5(4%, 6.),

(5.16)
12 2, 7 12 Tial2
16,11 + 16, ls + 571|9v|% +72§||9v|| (Rl, 0)). (5.17)
Using
RI; :R;(F’(ﬁN) —F’(Uf) F’(UZ)(E(ft;v) E(U?%)) )
VEG?) \/E(Uz)\/E(uN)( JE@) + BT )
and from Theorem , we get the boundedness of IR%I We denote K; = max{ IR%I |7 %I} + 1, and
by virtue of Lemma 2.5 we have
611> + 116,11 +K|91| < CN™. (5.18)
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Moreover, when T < t*and N > C ﬁ,
luyllo < IPNU o + 116l < IPNU 'l + CN'™ < M. (5.19)

3. The third step. Suppose that (5.6)) holds for 0 < n < k and discuss that the case forn = k + 1
holds.

We use the mathematical induction method and assume
luylle < Ms, 0 <n <k, (5.20)

and denote K, = max{lr"+2| |R”+2 |(n = ..k)} + 1. Next, we intend to prove that (5.6)) holds for
n=k+ 1. Letting ¢ = 6. and Q= 0"  in (.2)-(5.3), respectively, we get

—fel —pal
1651 ~ 16417 = (8, 8,"), (5.21)
—r+ L _fa L 1 gyl
I = K1 + k(65 1 = 16513 + Tyl + B IR = —m(R) L 6,7). (5.22)
By using Cauchy-Schwarz inequality and Young’s inequality, we have
kel gyl _ .
IR, 8] < 1BIP + 116512 + 16K + 16517 + Hlok 12 + 1ok~ 11, (5.23)
-k k-
@8] < (|9"|| +057 1P + 167 + 1057 1P). (5.24)

Therefore, we get

1651 = 16511 + 11651 = 1165117 + w1657 15 = 1651) <

CT(H@';II2 + 1652 + 1651 + 116 I + Nl + 1ok 11 + ||0§‘1||2). (5.25)
Summing from n = 1 to n = k and using the discrete Gronwall’s inequality and Lemmal[2.5]

leads to
NG + 101 + KIHf,”IZ% < CN™, (5.26)

which implies that we have completed the mathematics induction. Therefore (5.6)) holds and then
(5.7) is obtained similar as (5.20). We have completed the proof. O
6. The proof of the Theorem 3.3]
For convenience, we denote
ey, =u' —uy =u"— Pyu" + Pyu" —uy =n, + &,
ey, =V —vy =V =Py + P =V = + €.

In the convergence analysis, we use the mathematical induction method. From (I.1)-(1.2)), @.17)-
@19) and (B.13)-(3.13), the error equations at ¢ = ¢ L are the following:

1
&u
7/2°

W) =E )+ (000, ©.1)
20
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(E/VZ,QDHK(( A)? fu,90)+71(( A)? §V,90)+72(§v,s0)+( R2,¢) = (02, ¢), (6.2)
:;2=F5+Q§, 6.3)
where
| ] 0 N F’ 0 | 0 N 700 F’ 0
R; =72 Fu 3 - R (uy) "3 Fu 3 + R2( Fu 3 _ Py , (6.4)
VE@O) JEGS) — VEW) VEWO) \/E(MON)
~1 1 it —ud 1 ~; -
F?= F' (), - F’ N
! 2 E(uo)( (u ) T/2 ) E(MO )( ( N) /2 )
2 \Eu0) 2\ JEWY) R 2\ JEWY) S

~1 ~1 1
Letting ¢ = 27&2 and ¢ = 27&2 in (6.1)-(6.2), and multiplying 27¢é? on the both sides of (6.3),
and using

%
u);

@ (-0)3ED) = 20E, (-D)* §M)+2T(Q1% (=A%

we have

||fu|| —27(§v,§u)+2T(Q% &), 6.6)
IE 1P + KELR + 20711 + 2yl P

—2T<Q2,§v> 2T<R2,§v>+2m(( AEOT, (-A)FED), 6.7)
(e ) —2T(F2, )+2T(Q3,é,). (6.8)

From (6.4)-(6.8)), |7 / | < N71)2 ﬁ 4 |lu||>ds, using the Cauchy-Schwarz inequality and Young’s
inequality, we could have

5302, 1EBI2 4 BB IR z32
le; " + &1+ 11E ] +K|§u|% < C7K,,

where K., = IIm,II2 + N2l )2 ﬁoz ||ut||2dS+ IIQ§II2 +110; P+ ||Q2||2 + IQl bt toz 154()IPds.
Then we get |27 2 + & + & I + K& < C(* + N“2m),

Then, we prove the equation (3.20) holds for = 1. From (L.I)-(1.2), @.14)-(4.16) and (B3.9)-

(3-TT]), the error equations for n = 0 follow that

G.E2.0) = @y + (0. ), 6.9)

6.67.0) + k(—=D)IE. ) + 71 (-A)PE) . 0) + 1a(ElL @) + (RE.¢) = (O2. 9). (6.10)
21



Sl = F* + 02, 6.11)

where
1 ~n+l
1 F'(ii2 L Fl(iy, *
Rl =t ) ) (6.12)
E(@?) E(@i})
1 1 , o1 I 1 L1 1
Fr = ———(F'(@?), 6u?) — ——=(F" (i), S,:u,). (6.13)

2 E@™?) 2+ E(ﬁfv)

Since the proof for n = 0 is similar to the following proof, we just presents the results for k=0. It
follows that

1 1 1 1 1 ~1
le}|* + ||§1||2 + €N + KISII% < Cr(IpIP + 07 + 1051 + N1QFIP + 1Q3 1P + 10312 + 117211 + €I
+T f |l— (s)llzds+CN Zm =l f llu,|*ds) < C(x* + N72™).

to

Next, we assume the (3.20) holds for n = 2, ..., k and will prove that the equation (3.20) holds
for n = k + 1. From (T.1)-(1.2), @.14)-@.16) and (3.9)-(3.11)), we can get

(6@"*2 W = @)+ (0, (6.14)
(&cf" L0+ K(=AET @) + 7 (“MIET ) + 1@ o) + Ry 0 = (0 0), (6.15)
F"+2+Q"+2, (6.16)
where
pd g P P
R, \/E(T \/E(uih (6.17)
Pt L ey surth - ;(F (u”“) 6,un+2) (6.18)

2 \E@") 2EG?)

Lettmg Y =218,  and @ =27E," T in (6.14)-(6.13)), and multiplying 2Téf+% on the both sides of
(6.16)), and using

G (~ABET) = (@7 (—ARE) + (01 (A SETY),

we can get
IR - P = 20 @7, E ) + 20(Q" 7, g—“"*% (6.19)
€ > — ||§”|| + k(€ ~ 1€ + 2onlE) |a+2’}’27'||§" |12
= 20(QF LB - 20(RLET) 4+ 2mk(—A)F QT (~A)TEY), (6.20)

22



(") = (M) = 20(F™2, 2! 2)+2T(Q"+2,-i’+2 (6.21)

where
+) @y P L F T
R; pa— n+2( F (l/t ) (u ) e ( ) ’ (622)
\/E<u"+z> \/EC”“) B
Fn+% :( (~n+2) _ F'(ft;lv 7),5,un+%)+ (;F (,Jl 2) 5ten+2), (6.23)
2 E(@@#" ) 2\/E(ﬁnN+7) 2,/E(~"+2)
1 | 1 el
"™ F’(aN 2y =
E(i™7)
F’(IZ’H—%) _ F'(ftr;—%) F,(Mn+2)(E(un+2) E(JH—%))

(6.24)

@) \/EC"”)\/E(%)( VE@*) + \/E(N””))

1 n 1 n
(——==ry .08 ) = (——=Fay o +6E)

2VE@?) 2\ EG)

:( 1 F(~n+2) 6t77n+2) ( 1 F(~n+2) §n+2 n+2). (6.25)

2VE@?) 2\EGET)

1
From Theorem we get !, and i, * are bounded. Following the proof of [#70) and from
(6:23)-(6.23)), [#.68)), we obtain

1 n n n tn
|(—F(~ "), 6, ) < C(IE IS < CN7"7 ! f | ds, (6.26)
2\/E(~"+2) In

TR, §V+Z)I<CT(|I§"+IIIZ+H§ P+ (@) + (e +||§u*2||2)
cT(nn"”n 11 + P + g ‘||) 6.27)

= _n+ + n+l 1 1
TI(F"*2, e 2)|<CT(|I§" P N7 0P+ NEIE + ENE + ler P + ey

Tt 1 63 n+ "
+||77v“||2+||m||2+||Q1+2||2)+CT4 f ||—(s)||2ds+CN 2m f ) Pds. (6.28)
th Iy

For convenience, we let E" := |e"> + ||&"|1> + [|&"]]* + «|&" 27 Then, from (6.19)-(6.28), we get

E"™' —E"< Ct(E"™"' + E") + CTR, (6.29)

n+ n+ n+ n+ n+
where R = [l |7 + [l + 10 + 1l IP + 1105 2||2+||Q1 2||2+||Q3 2||2+|Q 2f,/2+||77u 2P +

BT IP+7 [ 124 (s)lPds +CN 2! St k2 Pds. By virtue of discrete Gronwall’s inequal-
ity, one arrives at E*! < C(N™" + 7*), which shows that the equation (3:20) holds for n = k + 1
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and we have completed the mathematics induction. Thus, without losing generality, we conclude
ler? + €11 + IEIP + kéls < Ot + N7, (6.30)

Using Lemma [2.5]and the triangle inequality, we have
" =l + 1" = VyIP + 1" = R'P < C@* + N7,k — s < C(r*+ N2, (6.31)

The proof of Theorem [3.3]is end when 7 < 7", N > N*.
For the other three cases, we denote S := (7*)* + (N*)~2".

1. When 7 > 7%, N < N*, there holds 7* + N™>" > §,. By using the continuous and discrete
energy dissipation, i.e., H(t) < H(ty) and H* < H°, we can get

2 2 2
[l =y |7 + IV = VRll™ + 17" = R
< NI + Nyl + "I+ Iyl + 1P + IR + au + cluyl

< (% +2)(H(ty) + H°) < C(r* + N72™),

2
Klu" — u’]\,lzg < Klu"lz% + Kluanz% < (Z+2)(H(ty) + H°) < C(r* + N2,
K
where C = (2 + 2)(H(ty) + H")/S .
2. When 7 < 7, N < N*, it obviously follows that
CIN" >80 >1"+ (N,

_ (N*)—2)71+(T* )4

where C| = TR In this case, we also have

" = P+ (V" = VyIP + 17 = R < (% +2)(H(tp) + H?) < C(* + N7,
Klu" — M'M% < C(t* + N2my,
where C = (2 + 2)(H(tp) + H)C,/S.
3. When 7 > 7, N > N*, there holds
Cot* >80 > () + (N)™",

_ (N*)—2n1+(7_*)4

where C, = T In this case, we also have

2
" = > + V" = VyllP + 17 = R'? < (5 + 2)(H(to) + H?) < C(z* + N7°™),
K
K" — uyle < C(t* + Nv2m),
where C = (2 + 2)(H(ty) + H))C»/S.

In this work, « is suitable positive constant and does not effect the error estimate of our scheme.
Therefore, we complete the proof of Theorem 3.3 [J

Remark 6.1. Since the FGWE reduces to classical generalized wave equation when a = 2, the un-
conditional energy dissipation and convergence analysis for the FGWE in this paper can naturally
be applied to that of conventional generalized wave equation.
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7. Numerical experiments

In this section, we will present some numerical examples to confirm the discrete energy dissi-
pation property and the accuracy of the full discrete SAV Fourier spectral schemes.

Example 1. In this example, we take Q = (—16,16) X (—16,16), T = 1, k = 1. we consider F(u) =
1 — cosu, and take the initial value u(x,y,0) = sin(nx/16)cos(ny/16) and the corresponding
u(x,y,0) =0.

e case I: vy =0, y, =0.
e case2: yi =1, y, = 1.

Since we have not the exact solution, and thus we choose sufficiently small time step K = 1000
and N = 256 to get ‘exact’ solution. For simplicity, Table 1 for case 1 just presents the errors of
lleZ]lcos lleslleos [lef]lo 1n time and show that the fully discrete SAV scheme is second order accuracy
in time. Table 2 presents the spatial error of case 1 and we get spectral accuracy. Similar to the
computational accuracy for case 1, we also present the temporal accuracy in Table 3 and spatial
accuracy for case 2 in Table 4. Next, we will verify the conservation or dissipation property of
the SAV Fourier spectral method. Fig. [I|shows the time evolution of the discrete energy H" with
different values y; and y, for @ = 1.2 and @ = 1.8 and associate errors of H" for the conservation
case is presented in Fig. 2l We observe that the damping parameters y; and 7y, efficiently effect
the dissipation property for SAV scheme for long time simulation.

Example 2.

Uy + (=A)2u + Y1 (=A) 7w, + you, + F'(u) = 0, (x,y,1) € Q% (0,71,
1
I/l(x, Y O) = E arCtan(eXp(_ \Y x2 + }’2))’ ul‘(xa Y, O) = 07

where Q = (-10, 10) x (—10, 10). We present the profiles of numerical solution uy with different
potential energy F(u) = uz(‘—l‘u2 - %) for @ = 1.2 and different values of y; = y, at T = 8, which
shows that y;, v, have impacts on the profiles of wave. In addition, we need to confirm the fully
discrete energy dissipation-preserving or conservation property of numerical solution. Figs. [3]
presents the discrete energy H" with different values of y; and y, in long time simulation. They
also show that the influence of coefficients y; and y, of the damping term, i.e., when y;,y, — 0,
the energy discrete energy H" decays more slowly.

8. Conclusion

In this paper, we proposed a linearly implicit scheme to solve the nonlinear fractional general
wave equation, and we used the SAV approach in time and Fourier spectral method in space. The
resulting system is a linear system at each time step and FFT solver can be adopted in space, so that
the scheme could be efficient to implement. The energy conservation or dissipation property of
the scheme was strictly proved. In addition, we rigorously proved the unconditional convergence
for the scheme by the temporal-spatial error splitting technique and got the second order accuracy
in time and spectral accuracy in space. Finally, some numerical results were given to confirm our
theoretical analysis.
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Table 1: The L* errors of u, v and r in time for case 1 of Exampleﬂ]at time 7 = 1.

a=12, N=256

At

ll€ulleo

rate

llev|leo rate

llerlloo

rate

1/10
1/20
1/40

5.4953e-05
1.3671e-05
3.4055e-06

2.0228
2.0400

3.8436e-05
9.4748e-06 2.0262
2.4215e-06 2.0200

7.0286e-05
1.8739¢-05
4.8090e-06

1.9071
1.9622

a=15, N=256

At

ll€ulleo

rate

lley|loo rate

llerlloo

rate

1/10
1/20
1/40

2.6766e-05
6.5081e-06
1.6014e-06

2.0400
2.0229

4.0322e-05
1.0764e-05 1.9053
2.7703e-06 1.9581

9.4683e-05
2.5043e-05
6.4132e-06

1.9186
1.8011

a=18, N=256

At

ll€ulleo

rate

lley|loo rate

llerlloo

rate

1/10
1/20
1/40

1.1679e-05
2.6560e-06
6.2907e-07

2.0070
2.0051

4.4344e-05
1.1815e-05 2.0202
3.0389%¢-06 1.9681

1.0619e-04
2.8057e-05
7.1860e-06

1.9202
1.9650

a=20, N=256

At

ll€ulleo

rate

lleylloo rate

llerlloo

rate

1/10
1/20
1/40

6.0094e-06
2.3176e-06
6.8385e-07

4.6442e-05

1.1018e-04

1.3745
1.7608

1.2362e-05
3.1787e-06

1.9095
1.9594

2.9115e-05
7.4597e-06

1.9200
1.9645

Table 2: The errors Ieul% and |le,|| in space for case 1 of ExampleE]at time T = 1.

N

le.l;

rate

llevl|

rate

4
8
16
32

2.4856e-02
1.2884e-03
1.5766e-07
3.6791e-10

4.2699
12.9965
8.7432

4.7569e-03
1.6427e-04
3.3921e-08
3.6608e-11

4.8558
12.2416
9.8558

4
8
16
32

2.0858e-02
1.2541e-03
1.7644e-07
3.6622e-10

4.0559
12.7952
8.9123

4.9288e-03
1.7487e-04
3.6692e-08
7.8163e-11

4.8169
12.2185
8.8748

4
8
16
32

1.7418e-02
1.2128e-03
1.9317e-07
3.3982e-10

3.8442
12.6162
9.1509

5.0534e-03
1.8282¢-04
3.8413e-08
7.3433e-11

4.7888
12.2165
9.0310

4
8
16
32

a=20

1.5416e-02
1.1831e-03
2.0333e-07
2.8541e-10

3.7038
12.5065
9.4766

5.1169¢-03
1.8693e-04
3.9072e-08
7.8163e-10

4.7747
12.2241
5.6435
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Table 3: The L* errors of u, v and r in time for case 2 of Exampleﬂ]at time 7 = 1.

a=12, N=256

At

ll€ulleo

rate

llev|leo rate

llerlloo

rate

1/10
1/20
1/40

1.1203e-04
2.7924e-05
6.9647¢-06

2.0043
2.0034

1.2852e-04
3.2131e-05 1.9999
8.0258e-06 2.0012

1.6015e-05
3.9645¢e-05
9.8517e-06

2.0142
2.0087

a=15, N=256

At

ll€ulleo

rate

lley|loo rate

llerlloo

rate

1/10
1/20
1/40

8.3862e-05
2.0836e-05
5.1883e-06

2.0088
2.0057

9.8031e-05
2.4533e-05 1.9985
6.1308e-06  2.0005

1.2404e-04
3.0467e-05
7.5528e-06

2.0255
2.0121

a=18, N=256

At

ll€ulleo

rate

lley|loo rate

llerlloo

rate

1/10
1/20
1/40

6.4938e-05
1.6072e-05
3.9939¢-06

2.0144
2.0087

7.9646e-05
1.9955e-05 1.9985
6.1308e-06  2.0005

1.0115e-04
2.4672e-05
6.0930e-06

2.0355
2.0177

a=20, N=256

At

ll€ulleo

rate

lleylloo rate

llerlloo

rate

1/10
1/20
1/40

5.5967e-05
1.3813e-05
3.4273e-06

7.1465e-05

9.0572e-05

2.0185
2.0108

1.7920e-05
4.4825e-06

1.9956
1.9992

2.2004e-05
5.4268e-06

2.0413
2.0196

Table 4: The errors Ieul% and |le,|| in space for case 2 of ExampleE]at time T = 1.

N

le.l;

rate

llevl|

rate

4
8
16
32

1.6873e-02
7.8623e-04
7.0047e-08
1.6426e-10

4.4236
13.4543
8.7361

2.6620e-03
7.5409¢-05
1.3512e-08
4.7132e-11

5.1416
12.4462
8.1633

4
8
16
32

1.4409e-02
7.7021e-04
7.3050e-08
2.6752e-10

4.2255
13.3640
8.0930

2.8344e-03
8.2058e-05
1.3431e-08
1.2130e-10

5.1102
12.5768
6.7908

4
8
16
32

1.2195e-02
7.4937e-04
7.4484e-08
1.7250e-10

4.0244
13.2964
8.7541

2.9658e-03
8.7406e-05
1.2990e-08
1.1949¢-10

5.0845
12.7161
6.7643

4
8
16

32

a=20

1.0871e-02
7.3373e-04
7.4571e-08
4.3006e-10

3.8891
13.2643
7.4381

3.0354e-03
9.0363¢e-05
1.2546e-08
1.1855e-10

5.0700
12.8142
6.7255
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Figure 1: The values of the discrete energy H” for different y; and vy, with time evolution for ¢; = 1.2 and @, = 1.8.
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Figure 2: The error of the discrete energy H” for conservative form,i.e., y; = 0, ¥, = 0 with time evolution for
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