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1. Introduction

In this article we consider the singularly perturbed reaction-diffusion equation

—?Au+bu=f inQ:=(0,1)?
(1.1)
uw =0 on 0,

where ¢ is a positive parameter. Assume that b and f are sufficiently smooth and
b(z,y) =262 >0 Y(z,y)€Q,

with a positive constant 5. Under these conditions on the data in problem (1), there
exists a unique solution in H}(Q)n H?(Q) for all f € L*(€). The solution to problem (1))
typically exhibits boundary layers of width O(e|Inel|) along all of 02 in the singularly
perturbed case 0 < ¢ « 1 of interest.

For singularly perturbed problems, it is popular to introduce layer-adapted meshes
, , ] to fully resolve layers. Then uniform convergence with respect to singular
perturbation parameter can be achieved for standard numerical methods. There are two
kinds of layer-adapted meshes widely used in the literature, which are Bakhvalov-type
mesh (B-mesh) and Shishkin-type mesh (S-mesh) (see ]) There are a lot of research
results on convergence theories of finite element methods on S-meshes; see |19, [7, H, Q,
@, Q, @] and references therein.

Although B-meshes usually have better performances than S-meshes, there are very
few articles on uniform convergence of finite element methods on the former. One main
reason is that B-meshes have specific transition points between the fine and coarse parts,
which are independent of mesh parameter. In the meantime, they bring great difficulties
to convergence analysis. For example, Lagrange interpolant does not work well for B-
meshes. Recently, Zhang and Liu E, | proposed an variant of Lagrange interpolant
for finite element methods on B-meshes in the case of convection-diffusion equations and

succeeded to obtain a uniform convergence of optimal order.



For reaction-diffusion problems, they also proved optimal order of uniform convergence
in the natural energy norm in ] However, energy norm is not strong enough to capture
layers as the singular perturbation parameter tends to zero. Thus balanced norms, which

are stronger than standard energy norms and characterize layers in an more appropriate

way, were introduced in [13] for a mixed finite element method and [18] for a finite element

method. The authors [18] introduced an L?-projection to obtain desired estimations by
L*-stability of the L?-projection on Shishkin mesh. To improve estimations in [18], the
authors ﬂg] introduced a new interpolation, which consists a local weighted L? projection
defined on the uniform part of S-meshes. Unfortunately, unlike S-meshes, there is little
development on convergence theories in balanced norms on B-meshes.

In this manuscript we analyze convergence theories in the balanced norm introduced
in [18] for kth (k = 1) order finite element method on Bakhvalov-type rectangular meshes.
For this purpose, we propose a novel interpolant according to the structures of B-meshes
and layer functions. This interpolant consists of a local weighted L? projection defined
on a proper mesh subdomain and the Lagrange interpolant. To prove the convergence of
optimal order in the balanced norm, we must take into account the scales of the meshes
and different stabilities of the L? projection. The optimal order convergence is also sup-
ported by our numerical experiments. Furthermore, we propose another novel interpolant
operator, which consists of the local weighted L? projection operator, a vertices-edges-
element operator and some corrections on the boundary. By careful derivations, we obtain
a supercloseness result, which appears in the literature for the first time. Here “super-
closeness” means that the convergence order for the error between some interpolation of

N

the solution v and the numerical solution " in some norm is greater than the order for

u — ¢ in the same norm.
The rest of the paper is organized as follows. In Section [2] we present a priori in-
formation of the solution to (ILI]), then introduce Bakhvalov-type meshes, finite element

methods and some preliminary results. In Section [Bl we give a new interpolant and prove



uniform convergence of optimal order in the balanced norm. Supercloseness result is
given in Section Ml by means of another novel interpolant. In Section B, numerical results
illustrate our theoretical results.

Let D < Q. In this article, we will write (-, -)p for the inner product in L*(D), | - |p,
1.p and ||y p for the standard norms in L*(D), L*(D), L*(D) and the standard

RESNE
seminorm in H'(D), respectively. If D = Q, the subscript will be omitted from the above
norm designations. Throughout the paper, all constants C' and C; are independent of

and N; the constants C' are generic while subscripted constants C; are fixed.

2. Finite element method on Bakhvalov-type mesh

2.1. Regularity results

To construct layer-adapted meshes and analyze uniform convergence, we need a priori
information of the solution u to (I.I]), such as pointwise estimations of the derivatives of
the solution, the locations and widths of layers.

For this aim, we give the following assumption on the solution u to (ILI) according to

b .

Assumption 1. The solution u of (LLI]) can be decomposed as

4 4
(2.1) u=v0+2w,~+22i Va e Q,

1=1 i=1

where vy 1s the reqular part, each w; is a boundary layer function and each z; is a corner

layer function. For k€ N and k > 1, there exists a constant C' such that

(2.2) o7 otvo(z,y)| < C(L+*Dm ) for0<m+n<k+3,
(2.3) |07 0wy (2, y)| < C(1 + glbtb=my—ne=By/e for 0 <m+n <k+2,
(2.4) |07 002 (2,y)| < Cem e Pt for 0 <m+n <k +2,

m+n

and similarly for the remaining terms. Here denote by 07'd v .

oxrmoyn

1 4
In the following analysis, we will denote > w; + Y. z; by w.
i=1 i=1

4



2.2. Bakhvalov-type meshes

Two Bakhvalov-type meshes will be discussed. Let N € N be divisible by 4. The first
Bakhvalov-type mesh is introduced in [17] and defined by

(2.5)
[ %5 In(1 — 4(1 — £)i/N) fori=0,...,N/4,
zi =y = Y(i/N) =3 dy(i/N — 1/4) + do(i/N — 3/4) for i = N/4,...,3N /4,
1+ 21— 41— &)1 —i/N))  fori=3N/4,...,N,

L p

where o will be defined later and d;, dy are used to ensure the continuity of () at
t =1/4 and t = 3/4. The second Bakhvalov-type mesh is introduced in H | and its

mesh generating function is

([ %5 In(1 — 4t) for t € [0, 9],
(2.6) () = ds(t —9) + dy(t —1+9) forte (9,1—1),
1+%61n(1—4(1—t)) for t e [1—0,1]

where o will be specified later, ¢ = 1/4 — Ce with some positive constant C; independent
of e and N, d3 and d, are chosen so that ¢(t) is continuous at t = ¢ and t = 1 — 9. The
original Bakhvalov mesh [1] can be recovered from (2.6) by setting ¢ = 1/4 — C(¢)e with
0<Cy<C(e) <Cs.

Assumption 2. Assume that ¢ < min{%, 1}N~Y in our analysis. In practice it is not a

restriction.

For technical reasons, we also assume

o 1 o1
2. — < (] < cmax{—, —§.
(2.7) 1oh C 5 ax{ﬁ,4}

Assume N > max{8,2In g}. Under Assumption2and ([2.7), we have 1/4-N"'<9<1/4
and xy/4 < 1/4 for meshes (ZH) and (ZG). The location of ¥ and conditions imposed on



N and C) will simplify our later analysis without changing the essential difficulties in our
analysis.

The mesh points are z; = y; = ¥(i/N) or x; = y; = ¢(i/N) for i = 0,1,...,N. By
drawing lines parallel to the axis through mesh points {(z;,y;)}, we obtain a Bakhvalov-
type rectangular mesh with equidistant cells in the coarse region Qg = (x4, T3 N/4)2 and
anisotropic cells in the layer region Q\Qy. The triangulation is denoted by T¥. Denote
by 7;; for the element [z;,z;41] X [y;,y;4+1] and by 7 for a generic rectangular element,
which dimensions are written as h,, and hy,. Define h; := z,41 — 2; = ;41 — y; for
0<i<N-1

In the following lemma, we collect some important properties possessed by Bakhvalov-
type meshes, which are important for convergence analysis. The reader is referred to [25]

for the detailed proof.

Lemma 1. Let Assumption[d hold true. On Bakhvalov-type mesh [2.0) or ([2.6), one has

(2.8) ho < hi <...<hyjuo,

(2.9) %e < hyjas < %a,

(2.10) Ce < hyju1 <CN7Y,

(2.11) CyN'<h;<CsN™' N/A<i<N/2,

(2.12) /a1 = T3njap = CoeIn N,  wyu = x3y4 = Coeln(1/e).

Note hl = thlfi fOT”i = 0,1, .. ,N/2
Let i* = j* = N/4 —2. Then one has

(2.13) hie=Prile < CePNTF for 0 <i <i* and 0 < p < 0.

Similar bounds hold for the variable y.



2.8. Finite element method

Now we present the finite element method for problem (LI]). First, the weak form of
problem (ILT)) is written as

find v € V such that for all ve V

(2.14)
a(u,v) := 2(Vu, Vv) + (bu,v) = (f,v),

with V := H}(€Q). The natural energy norm derived from a(-,-) is
1/2
[o]le == (20 f} + [lv]?) .
The bilinear form a(-, ) is coercive with respect to this energy norm, i.e.,

(2.15) a(v,v) = min{28* 1}|v|? VYve V.

From the Lax-Milgram lemma, the weak formulation (2I4]) has a unique solution.
Let Qk(7) denote kth rectangular finite element. We introduce the finite element

spaces
VN i={ve H'(Q): v, € Qu(r) Vre TV} and V¥ := VN A Hy(Q).

Clearly, VN, VY = V. When we replace the infinite dimensional space V with the finite

dimensional space V;", we get the kth order finite element method

find uV € V¥ such that for all v} € V¥

(2.16)
a(u™, o) = (f,vM).

Also, it is easy to very the coercivity
(2.17) a(@™, o) = OV |2 YN e VY,
and the Galerkin orthogonality

(2.18) afu—u,oN) =0 Vol eV,



where (2ZI4)) and ([ZI6) have been used. Furthermore, we introduce the balanced norm
in |18], which is defined by

(2.19) ol == (elolf + Jol) .

Clearly, the balanced norm || - |, is stronger than the energy norm | - |. in the case of
0 < € « 1. Furthermore, the former is better suited to capture of layers. For example,
for a typical layer function e=%/¢, |e~®/¢||. and |e=*/¢|, are of order O(¢'/?) and of order
O(1), respectively. These orders imply that the balanced norm | - |, is more appropriate
to (ﬁture layers than the energy norm | - || when 0 < ¢ « 1. The reader is also referred

to | for discussions on these two norms.

3. Uniform convergence

For convergence analysis in the balanced norm, we will present an interpolation oper-
ator, which components will be introduced at first.
Set Qf = (Tnya-1, :)sgN/4+1)2 and O5* = (Tn/a—2, ng/4+2)2. Introduce a weighted

L*-projection 7 as follows: for s € L?()}), find ws € W¥ such that

(b(s — WS),UN)Qak =0 YoV ew?,
where W/ =: {vloz: ve VN3, Of course, one has the L?-stability
(31) frollog < Clolag.

Denote by Z the Langrange interpolation operator from C°(Q) to V. Furthermore,
define x € V¥ by

1 (Sl, tm) € 093,
X(Sla tM) =
0 otherwise,

where {s;,t,,} are the interpolation points of the Lagrange interpolation.



4 4
Recall w = > w; + >, 2. Then the interpolation used in convergence analysis is
i=1 i=1

defined by

(32) P.u = Py + Pw,
where

Ty in QF,
(33) Pl’U() =

Z[(1 — x)vo + x7vo] in Q\Q
and

0 in €,

(3.4) Pyw =

Z[(1 — x)w] in Q\Q.

Clearly, Pu e V¥.
The following lemma provides some pointwise bounds for errors between the Lagrange

interpolant and the L? projection.

Lemma 2. For vy introduced in Assumption[d, one has

1Zvo — 00 oo,008 + [Zvo — 700, 0 + V0 — 700 0,0 < CN-+D,

|V (Zvo — mvo)lay < CNF,  |[V(Zvg — wvo) o, < Ce™/2N~FFY,

Proof. Standard interpolation theory and Lemma [I] implydvo —Z0 oo, + V0 — Zwo [l <

CN~%+)_ From the L®-stability of the L?-projection 7 |5, Theorem 1], one has

|Zvo — wvolls.0x = [m(Zvo — o) wo,05 < ClTvo — voflep 0 < CNHFY,

k+1)
Y

1 Zvo — 700 0,008 < [Zvo — Tvo o0 0 < CN~(

lvo =m0, < o — Zvols 02 + [Zvo — T0gfl oo 0p < CN™HHY,



Holder inequalities, inverse inequalities, the L*-stability of the L2-projection H, The-

orem 1] and Lemma [I] yield

IV (Zvo — WUO)Hﬂg\Qo <meas(QS\QO)1/2HV(IUO - 7TUo)Hoo,Qg\Qo

<Chiy /2, |Tve — 7wyl

0,02%\Qo

—1/2

=Chy /s [m(Zvg = vo) o 0
~1/2

<Chy i [ Tvo — oo

<Ce 2N~k
Inverse inequalities and the L2-stability of the L*-projection (B.1]) yield

IV(Zvg = mvo) |y < ON|Zvg — mvglla, < CN|Zvg — ooy
<CNHI’U() - UOHQ;‘ < CN_k

Remark 1. Define
Vi =A{v e Clonja—1, Tanjar1l; V(s 5500 € Py 5=0,...,N/2+ 1}

with s; = Tn/—14j forj =0,...,N/2+2. In the same way as the proof ofﬂ, Theorem 1],
we could easily prove the L -stability of the L*-projection mp : L*(xn/4—1, Zsnjap1) — Vi,

that is

[zl D, (TN a1 TN ) S C‘|UH007(1'N/4—175[33N/4+1) Yo e Loo(xN/4—1>I3N/4+1)‘

Furthermore, from tensor product we could easily obtain

[70llo0p < Clolloos Vo € LZ(8).

N

The error u — u" is split as follows:

u—u" = (u— Pu)+ (Pu—u")=n+¢.

10



From the coercivity (ZI7) and the Galerkin orthogonality (ZI8) we have
(3.5) Cle)2 < a(Peu —u,€) < e|nloll€]l- + |(bn, ).

In the following analysis, we give the estimations on each term in the right-hand side

of (B1H).

Lemma 3. Let 0 > k + 1. Under Assumptions[d and[@ we have
(b, €)] < Ce'PN=EH 2 Ng].
Proof. Our arguments are based on the following splitting

(0n, &) =(b(vo — Prvo), §) + (b(w — Pw), §)
=(b(vo — o), )z + (b(vo — Zwo), E)anax + (0 Z[x(vo — 7o) ], )ozeax
+ (bw, §) gz + (b(w — Zw), §) g + (b Z(xw), &) gpn
=1+ I +II+1IV+V+ VL

From the definition of 7, we obtain
(3.6) [=0.
From , Lemma 4], one has

1]+ [V] <C (oo = Tooloo ey + I = Twloo oray ) 1€ 010
(8.7) <CN~E D meas!2(0\05) (€0
<Ce2N~EHD 12 N g
Lemmas [[l and 2, (23]) and (24) yield
100 + [V1] <C (1T = 7ol s + 1 ]on g ) €11 e
(3.8) <C (N™ED 4+ N70) bl € e

N/4—2

<Ce2N~E D]

11



From (Z3) and (2Z4]), we get
(3.9) V] < Clwlog [€]ox < CeV2N77J¢].
Collecting ([3.6)—(3.9]), we are done. O

Lemma 4. Let 0 > k + 1. Under Assumptionsd and[@ we have

Inls < CN~F,

Proof. From (B.2)), (B3]) and (B.4) one has

Imlle <llvo = mvollp.0x + [vo = Zuo[peax + [Z(x(vo — 7v0)) b, 024 0z
+ |w = Zwly g0x + [Z(xw) 5,08 0x

=:51 4+ S + 53+ 5, +S5.

To analyze S;, we need the following bounds

[V (vo = o), <V (vo — Zvo) o, + [V (Zvg — 7o), < CNF,
IV (vo — WUO)HQ;;\QO <[V (vo — IUO)HQ(*;\QO + [V(Zvo - WUO)HQg\Qo
<CN* 4 Ce 2N+,
lvg — mvo| gz <[vo — Zwo[ gz + [Zve — mvo| gz

<CN~%*D 4 C|Zvg — mvg||op 0 < CN™HHY,

which could be derived from standard interpolation theories and Lemma Then we

obtain
(3.10) |51 <51/2HV(UO — 7TU0)HQ(’)F + |lvo — 7TU0HQ;§ < Ce\2NF 4 oN—k+D)
Similar to , Lemma 4|, we have

lvo — IUOHOQQ\QS‘ + Jw — Iw”oo,ﬂ\ﬂg‘ < ON-H+HD,

12



Imitating the proof of Lemma 5 in ﬂﬂ] and replacing ﬂﬂ, (3.15)] by |wi1,0.1%[yna 1] <
e 12N-(+D e obtain

—1/2 n7—k
|'lU1 —I’LU1|17Q\Q(>)!< < Ce / N s

and similarly have

W —Zw|y gox < Ce V2N,

Thus we obtain
(311) Sy + 9, < < CN7k,
Inverse inequalities, Lemmas [I] and 2] yield

S3 <"V (Z(x(vo — 7wp))) lznox + IZ(x(vo — 7o) [ gz
(3.12) <C(e 1/2hN}4 2 + DIZ(x(vo = mv0)) | agnag
<C("2hl_y + DRy Tvo — w00 00

<CN k—l—l

Similarly, one has

(3.13) Ss <CN™°.
Collecting (BI0)—-(B.I3), we are done. O
Similar to ﬂg, Theorem 2.6, we obtain the following theorem from Lemmas B and @l

Theorem 1. Let 0 = k + 1. Let Assumptionsd and[2 hold. Then for the exact solution

u to (LI) and the numerical solution u™ to (ZI6) on Bakhvalov-type rectangular mesh

23) or [2.6]), one has
lu —u™ |, < ONTF.

13



4. Supercloseness

In order to derive the supercloseness result in the balanced norm, we need another
novel interpolant, which will be described in the following.

Instead of Langrange interpolant operator used in the previous section, we introduce
an vertices-edges-element interpolation operator A : C°(Q) — VN (see B, |£|]) This
interpolant is used for superconvergence analysis of the diffusion term. First we define
the interpolant operator on the reference element 7 = (—1,1)?, whose vertices and edges
are denoted by a; and é; respectively for i = 1,...,4. Let 9(-,-) € C(7). The operator
A: C(7) — Qu(#) is determined by (k+1)? continuous linear functionals £ : C(7) — R,
which are defined by

b — 0(a;) i=1,....4,

v — f f)qu Vq € Pk_g(é,) iZl,. .. ,4,
U — J vgdedy  Yq e Qp_o(T).

From H, Lemma 3], the operator A is uniquely determined. Then using the affine
transformation to map from 7 to an arbitrary 7 € 7%, one obtains the corresponding
interpolation operator A, : C(7) — Qi(7). At last a continuous global interpolation

operator A: C(Q) — V¥ is defined by setting
(AV)|; == A-(v],) YreT™.

Besides, we denote by F degree of freedom (DoF) of V¥, which originates from the linear
functional F.
Recall i* = j* = N/4 — 2 and Q,, := [0, 1] x [yo, yj+1+1]. The operator S; : C°(Q) —
VN is defined by
0 in Q\Qy,,

(41) Slwl =
Aw1 - Blwl in le,

14



where Byw; satisfies

F(wy)  if Fis the DoF of V¥ attached to [0,1] x {y = yj=:1},
F(Blwl) =

0 otherwise.

If F'is the DoF of V¥ attached to [0, 1] x {y = y;+41}, then it must be one of the following

forms

v — v(x;, Y1) fori=0,...,N,

jH1 [T ; | .
v — e v(s,yjxq1)(s —x;)’ds fori=0,...,N—1and j=0,...,k—2.

i Ti

In fact, Byw; is introduced for the continuity of Sjwy at [0, 1] x {y = y;+*11}. Set Q,, :=
[0, Tix+1] % [Yo, yj+11]. The operator Ty : C°(Q) — V¥ is defined by

0 in O\, ,
(42) lel =
AZl - C121 in QZl’

where the operator C; is defined in a similar way to By except that the degrees of freedom
for C; are attached to [0, z+41] X {y = yj*11} U {x = @+ 41} x [0, y;#41]. The operators
S; and T; for ¢ = 2,3,4 could be defined similarly. Also we give a boundary correction
C(Sywy) € VN for Sjwy, which is defined by

F(wy) if I is the DoF of V¥ attached to I',,,

F(C(Slwl)) =
0 otherwise,

where I'y, := 0Q\0Q,,. With the help of this correction, we have
(Slwl + C(Slwl)) |aQ = Aw1|ag.

By the same token, we could define the corrections C(S;w;) and C(T;z;) for S;w; and T;z;
for i = 1,2, 3,4, respectively.
Introduce the discrete function Duy € V{, which is defined by
F(mvg —wg)  if F is the DoF of V™ attached to 0Q,

F (DUQ) =
0 otherwise,

15



and

Ty in QF,
(4.3) Evp 1=
Avg + Duyg in Q\Q.
Note that (Duvo)|sox = (mvg — Avg) |az. The definition of Dvy ensures the continuity of
Evy on .
Now we are in a position to propose the interpolation used for our supercloseness

analysis, which is defined by

4 4
(44) Psu = 5’00 + Z SZU)Z + Z fTZ‘Zi + C(w),
i=1 i=1
4 4
where C(w) = >, C(Syw;) + Y, C(T;2;). Clearly Poue VY.
i=1 i=1
The following lemma could be found in H

, Lemma 4], which is important for analysis

of the diffusion part.

Lemma 5. Let 7 € TV. Let ve H* (1) and A.v € Qi(7) be its vertices-edges-element

interpolant. Then for each v™ € Q. (1) we have

[ N k+1 "2y N
JT(ATU - v)xvx d[lﬁ'dy < Ch’y,T W HUI HT
and
i N w1 | 0P N
JT(ATU — ’U)yUy dxdy' < Chx,T m . H’Uy HT

For the vertices-edges-element interpolation, we have the following interpolation errors.

Lemma 6. Let 7€ TN, Let v e H*Y(Q). Then there exists a constant C' such that the

vertices—edges—element interpolation Av satisfies

ak+1v

oy

HU - AUHT < C Z hi,Th‘?];,T

itj=k+1

T

Proof. See H, Lemma 7]. O

16



Set
e(D)={reT™: 7n(Q\D) # @, 7€ D}.

The following L*-stabilities will be used later.

Lemma 7. Let ve C°Q). There exists a constant C independent of v such that

|Byo]

0.e(Qy) < Clv]
|(B1v)e|

ICr 21l e(022,) < Cll21]

0,e(Quwy )

0,e(y ) < CHU:(:| 00,e(Quwy )

00,e(Qzy )"
Proof. For 7; j+ with i =0,..., N — 1, one has

Blv|ﬁ.7j* =v(i, Yjrr1) (@, Y) + (Ti1, e @i (2, y)
k—2 ;
m+1 (" m
+ Z WJ 0(8, Yjrea1) (s — 2:)"ds pim(2, y).

m=0 '"i,x T

The inequality [Biv|w,r, « < C[v[ow,r, , follows. In a similar way, we could prove

HClleoo@(QZl)) < CHZl’ 0076(921). Note

S

0(8, Ypesn) = V(T gyest) + f vt yyes)dt for s, € a5, 2],

X
and

k—2
(sz(‘fmy) + Z wi,m(za y) + Qpi+1(x>y)> =0 for (Ia y) € T, g%

m=0

Then we have

(Buo)als, , = f

xT

k—2 )
m+ 1 [¥it!
: : hm+1 J <
2,2

m=0 Tq

X Ti+1

vr(t, Yy 1) At (9i(z,9))e + f Ve (t, Yy 1)t (Qir1(T,9))z

xT

[ue yj*+1>dt) (s — 2:)"ds (i @, 9)s.

xT

and

[(Brv)e|

00,7, % < CMHUJ;|

0,T; % < CHUSU HOO,Tl-,j*

17



where from scaling arguments one has
M =h;  max {H(w(fﬂ Y el oo [(im (2, 9))zlloor, o} < C.

Consider e(f,,) = UN, 7+ and we are done.
The error is split as follows:
uw—u = (u— Pu)+ (Pau—u) =7+ &
From the coercivity (217), the Galerkin orthogonality (2.18) and (4.4]), one has

ClE)2 <a(Pou —u,€) = (Vi) VE) + (0], &)
=2€2¢5ﬂ1 + yg,

(4.5)

gl
e

QN

<
\‘/:f‘r/z

(V(zi —

i=1

4
S =(V(vo — Evp), Z — Siw;), VE) +

Sy =(b(vo — Evo), &) + Z(b((wi — Saw;) + (2 — Tiz)), ) + a(C(w), §).

The terms in the right-hand side of (4.5) will be analyzed in the following two lemmas.

Lemma 8. Let Assumptions[d and[@ hold. Let o =k + 3/2. Then one has

A < 6’573/2(51/2ka + N’(k“))HéHg.

Proof. From Assumption [l we just analyze (V(vy — Evg), VE), (V(wy — Sjwy), VE) and

((z1—=T121)e, éx) The remaining terms can be treated in a similar manner. We split these

terms as follows:

(4.6) (V(vo — Evg), VE) + (V(wy — S1wn), VE) + (21 — Th21)as Ex) 2

18



where

S1 =(V(vo — Avg), V&) ax + (V(wy — Aw), V€)q,, + (21 — Az)a, &,
Sy =((Biw1)z, &) e(@,)»

Sy =((Biw1)y, &)e(ny) + ((C121)0, Ea)ecar,):

Si =(Vw, Vaa,, + ((21)a: &),

S5 =(V(vo — mvp), V&) 10, + (V(v0 — m00), VE)ay,

Ss =(V(Dwo), VE)ayas-

Applying Lemmas [[] and [ to &;, then we have

1

N—1 j*
(w1 = Awn)e, &), | <C Y D REH

=0 7=0

N

0
-1

<C >,

(4.7) i=0

ak+2w1 _
18
ij

Oxok+ly |

*

_ 1/2,1/2
hﬁ;lé‘ (k+1) 6yj/€h2/xh’j/y Hfm

J
Tij

<
(=)

=

j*
1/2 —(k+2) | ¢
<Ce" N~ g,
0

7

0 j=
<C€1/2N7(k+1) HérH

and similarly obtain

(4.8)

[(V(vo — Avo), Varoz | + (w1 — Awn)y, €)a,, | +1((21 = Az1)a, &), TN v,

From Lemma [, one has

S| <N(Burws )l | VE]
<le(Qu) [V [ (Brewn)s oo ey IVE]

(4.9) -
<Ce?||(w1)z s e(up) | VE]

<CeYAN—7|V¢.
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Inverse inequalities yield

1Sal <(|(Brwn)ylle(uy) + [(Crz1)aleqo.)) I VE]
<O IBrwn]le(@y,) + b [Cr21 (0. | VE]
(4.10) <CeH(|e(Qu) 2 [Biwt | so,e(y) + 162012 |Crz1 | o,e(.,) | VE]
<Ce™(|wn] o e0y) + 121 0e(02,)) [ VE]

<Ce V2N—7|VE|.
Assumption [I] and direct calculations yield
(4.11) S| < ([Vwr|aa,, +[Valae.,)|VE] < CeT2N77|VE].
Holder inequalities, inverse inequalities, Lemmas [I] and 2l yield
| S| <ChN/4 1””0 — | Q*\QOHV5H1 o, CN| vy — 7TUoHoo,QoHV§NH1,Qo

(4.12) <Chyl, (N~EDR2 [VEgxa, + CNN~ED|VE g,

N/4— v N/4 1

<Ce 3N~k 4 2NR|g)..

From the definition of Dvy, we have

|Ss] <CHV(DUO)Hoo,an‘|V§H1,e(9\9*
<ChN}4 QHAUO —WUo”ooﬁQg‘ N/4 QHVf” (Q\QF)

(4.13) h
<Ce 2| Avg — 700 0,02 I€ |-

<0673/2N7(k+1) Hé”é:
where Lemmas 2] and [ yield
[Avy — 7rvo||00795k < | Avg — vo||00795k + vo — 7TU0HOO7QS‘ < ON-G+D
Substituting (£7)—(ZI13) into ([A0) and considering o = k + 3/2, we are done.
Lemma 9. Let Assumptions D and[@ hold. Let ¢ = k + 3/2. Then one has
.| < CeV2PN~E+D In12 N||¢]..
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Proof. From ({3H]), we have

Swz 5) + Z(b(zz - Ezl)7g) + CL(C(’LU),g)

i=1

(414) yg = (b(UQ - g’U()

IIMp

First, from (£3]), Holder inequalities and Lemma [Il we obtain

[(b(vo — Evy), é)| < |(b(vo — Auwy), é)g\ﬂﬂ + [(b(Duo), é)g\ﬂﬂ
(4.15) < Cllvg — AUOHoo,Q\Qa" nglﬂ\ﬂg‘ + C|| Avg — 7WOHOO o0k Hng e(Q\0F)

— ng — 1/2
< Ce2N=ED 102 N[ r + ONE DR 1E] e

Second, Holder inequalities and Lemma [ yield

a(C(w),§) < *(VC(w), VE)| +|(bC(w), &)
) <CE|VC(w)|w,e() | VE]1e() + ClIC(W) oo e €1 e(s)
<Cehg N~ h?|VE| ) + ON7 - hY2 €] e

<CeV2N-C-1D|E], + CeVAN-rIm ],

where we have used |C(w)||oe) < CN™7 and Cee N~ < hg < Cre N7
At last, we analyze (b(w; — Syw,),€) and the remaining terms can be discussed in a

similar way. Lemmas [6] and [ yield

N—1 j*

Jwr = Awn[f, = Y7 D7 fwr — Aw?

=0 5=0

N-1 j* ﬁlc+1w1 2
Sy wa
7,y ax
1=0 Tij

J=0 \l+m=Ek+1

Ti,j

N—1 j* 2
<C )’ > bl hre —/3%/%1/%1/2)

i,V 1T 7Y

i=0 j=0 \l+m=k+1

N—1 j* 2
<C Z Z N(l+1/2)€m+1/2N(m+1/2)6m>

i=0 j=0 \l+m=k+1

N—1 j*
<C (81/2N7(k+2))2 < C€N72(k+1).

i=0 j=0
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Lemma [7] yields
1Brwn e,y < Cle(Qu)| 2 [wi]loeen,) < CREENT.

From the Cauchy-Schwarz inequality one obtains

(b(wy — S1w1),§) = (bwr, §)ava,, + (b(wr — Awr), E)q,, + (b Biwi, §)e@u,)
<Clwi o\, HéHQ\le + Clwy — Awiq,, HéHle + \|B1w1He(le)HéHe(le)

(4.17) :
<C(€1/2N_J + e 2Nkt Chjl-fN_U)HgHa

<C€1/2N_(k+1) HgHa

Substituting (ZI5)-(I7) into [@I4), we are done. O

Now we are in a position to present our supercloseness result in the balanced norm.

Theorem 2. Let Assumptions[dl and [ hold. Let o > k+3/2. Let Pyu defined in (&4]) be
the interpolation to the solution u of ([LI)). Let u¥ be the solution of ZI4). Then one
has

| Paw— uM]y < C(e"2N~F + N~ In'2 N).
Proof. From ({3]), Lemmas § and @ we obtain
|€]. < CP(e2NF 4 N=FD 12 Ny,
which implies the following estimations

2|V (P — uM)| < C(eVANF + N~k+D nl/2 N,

|Pa— u| < CEVA(VEN* 4 N~ 112 N,
Thus we are done. 0

Remark 2. From Theorems[d and[2, we could conclude that Theorem[d presents a super-

closeness result. It is the first supercloseness result in the balanced norm in the literature.
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5. Numerical experiment

In this section we present numerical experiments on Bakhvaolv-type rectangular meshes

that support our theoretical results. All calculations were carried out by usinEIntel Visual

).

We present errors and convergence orders in the computed solutions for the boundary

Fortran 11 and the discrete problems were solved using GMRES (see, e.g.,

value problem

—’Au+2u = f(z,y) inQ=(0,1)73
(5.1)
u=>0 on 052,

where the right-hand side f is chosen in such a way that

e*LE/E _|_ 6(1:”)/5) <1 efy/e _|_ 6(1y)/5>

o) = (1- =
is the exact solution. For the computations we will assign values to the parameters in
ZH) and 28). We set 0 = k + 1 when the error |u — u”|, is discussed and o = k + 3/2
when the error ||Pyu — u™ |, is discussed. Also, we set 8 = 1 and C; = 4¢/(33) in ([20).

In our numerical tests, we will consider ¢ = 1073,107%,--- ,107%, k = 1,2,3 and
N =12,24,--- ,768. Our numerical experiments imply that meshes (2.5) and (2.6]) have
same performances. Thus we only present numerical results for mesh (2.3]).

For a fixed € and N, we have evaluated the error eX¢ = |u — uV||, and e} = | Pyu —
u®|,, where P,u is the interpolation of the exact solution u to (5I), which is defined
in (£4) and u" represents its numerical approximation. In the following we present the
erTors

N Ne N Ne

el = max e e = max e
¢ e—10-3,..106 ¢ 7 % o—10-3,.10-6 °

and the corresponding orders of convergence

Inel —Ine2V y  Ined —Ine?V

N _ —
Pe = In 2 - Ps In 2

Numerical results are presented in Table [l and log-log chart [l Table [ lists errors in

the balanced norm on Bakhvalov-type meshes (Z.3]) for ¢ = 1073, ...,107% in the cases of
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k=1 and k = 2. Errors in the balanced norm for the cases k = 3 are plotted in Figure
@ The data in Table I and Figure 0l show optimal uniform convergence of |u —u” |, with
respect to the singular perturbation parameter ¢, which implies that Theorem [l is sharp.
The data also show that the superclosenss result is of order k+ 1 for kth rectangular finite

elements, which support Theorem [l in a sense and also imply Theorem [2] might not be

sharp.
o
Fig.1: Errors in the balanced norm when k = 3.
Table 1: Errors and rates in the balanced norm for £ =1 and k = 2
k=1 k=1 k=1 k=1 k=2 k=2 k=2 k=2
N e pY ey Py e pY ey Py
12 0.397E0 1.04 0.101E0 2.05 0.103E0 2.13 0.336E-1 3.43
24 0.193E0 1.00 0.245E-1 2.11 0.236E-1 2.03 0.312E-2 3.40
48 0.963E-1 1.00 0.566E-2 2.07 0.576E-2 2.01 0.295E-3 3.36
96 0.481E-1 1.00 0.135E-2 2.04 0.143E-2 2.00 0.287E-4 3.29
192 0.241E-1 1.01 0.328E-3 2.02 0.357E-3 2.00 0.295E-5 3.16
384 0.120E-1 1.00 0.808E-4 2.01 0.892E-4 — 0.328E-6 —
768 0.601E-2 — 0.201E-4 — — — — —

24




References

References

1]

[9]

N. S. Bahvalov. On the optimization of the methods for solving boundary value
problems in the presence of a boundary layer. Zh. Vychisl. Mat. Mat. Fiz., 9:841—
859, 1969.

M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems.
Acta Numer., 14:1-137, 2005.

C. Clavero, J. L. Gracia, and E. O’Riordan. A parameter robust numerical method
for a two dimensional reaction-diffusion problem. Math. Comp., 74(252):1743-1758,
2005.

P. Constantinou, S. Franz, L.. Ludwig, and C. Xenophontos. Finite element approxi-
mation of reaction-diffusion problems using an exponentially graded mesh. Comput.

Math. Appl., 76(10):2523-2534, 2018.

M. Crouzeix and V. Thomée. The stability in L, and VVp1 of the Ls-projection onto
finite element function spaces. Math. Comp., 48(178):521-532, 1987.

R. G. Durédn, A. L. Lombardi, and M. I. Prieto. Supercloseness on graded meshes for
()1 finite element approximation of a reaction-diffusion equation. J. Comput. Appl.

Math., 242:232-247, 2013.

S. Franz. Singularly perturbed problems with characteristic layers: Supercloseness

and postprocessing. PhD thesis, Department of Mathematics, TU Dresden, 2008.

S. Franz and H.-G. Roos. Error estimates in balanced norms of finite element methods

for higher order reaction-diffusion problems, 2019.

H. Han and R. B. Kellogg. Differentiability properties of solutions of the equation
—e2Au +ru = f(x,y) in a square. SIAM J. Math. Anal., 21(2):394-408, 1990.

25



[10]

[11]

[16]

[17]

[18]

N. Kopteva. On the convergence, uniform with respect to the small parameter,
of a scheme with central difference on refined grids. Zh. Vychisl. Mat. Mat. Fiz.,
39(10):1662-1678, 1999.

N. Kopteva and S. B. Savescu. Pointwise error estimates for a singularly per-
turbed time-dependent semilinear reaction-diffusion problem. IMA J. Numer. Anal.,

31(2):616-639, 2011.

Q. Lin, N. Yan, and A. Zhou. A rectangle test for interpolated finite elements. In
Proceedings Systems Science and Systems Engineering (Hong Kong, 1991), pages
217-229. Great Wall Culture Publishing, Whittier, CA, 1991.

R. Lin and M. Stynes. A balanced finite element method for singularly perturbed
reaction-diffusion problems. SIAM J. Numer. Anal., 50(5):2729-2743, 2012.

T. Linf. Layer-adapted meshes for reaction-convection-diffusion problems, volume

1985 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2010.

F. Liu, N. Madden, M. Stynes, and A. Zhou. A two-scale sparse grid method for a
singularly perturbed reaction-diffusion problem in two dimensions. IMA J. Numer.

Anal., 29(4):986-1007, 2009.

X. Liu, M. Stynes, and J. Zhang. Supercloseness of edge stabilization on Shishkin
rectangular meshes for convection—diffusion problems with exponential layers. IMA

J. Numer. Anal., 38(4):2105-2122, 2018.

H.-G. Roos. Error estimates for linear finite elements on Bakhvalov-type meshes.

Appl. Math., 51(1):63-72, 2006.

H.-G. Roos and M. Schopf. Convergence and stability in balanced norms of finite
element methods on Shishkin meshes for reaction-diffusion problems. ZAMM Z.

Angew. Math. Mech., 95(6):551-565, 2015.

26



[19]

[20]

[21]

[25]

[20]

[27]

H.-G. Roos, M. Stynes, and L. Tobiska. Robust Numerical Methods for Singularly
Perturbed Differential Equations, volume 24 of Springer Series in Computational

Mathematics. Springer-Verlag, Berlin, second edition, 2008.

M. Stynes. Steady-state convection-diffusion problems. Acta Numer., 14:445-508,
2005.

M. Stynes and L. Tobiska. Using rectangular @), elements in the SDFEM for
a convection-diffusion problem with a boundary layer. Appl. Numer. Math.,

58(12):1789-1802, 2008.

J. Zhang and X. Liu. Analysis of SDFEM on Shishkin triangular meshes and hybrid
meshes for problems with characteristic layers. J. Sci. Comput., 68(3):1299-1316,
2016.

J. Zhang and X. Liu. Supercloseness of the SDFEM on Shishkin triangular meshes
for problems with exponential layers. Adv. Comput. Math., 43(4):759-775, 2017.

J. Zhang and X. Liu. Convergence of a finite element method on a Bakhvalov-type
mesh for singularly perturbed reaction-diffusion equation. Appl. Math. Comput.,
385:125403, 2020.

J. Zhang and X. Liu. Optimal order of uniform convergence for finite element method

on Bakhvalov-type meshes. J. Sci. Comput., 85(1):2, 2020.

J. Zhang and X. Liu. Supercloseness of linear finite element method on Bakhvalov-

type meshes for singularly perturbed convection-diffusion equation in 1D. Appl.

Math. Lett., 111:106624, 2021.

J. Zhang and M. Stynes. Supercloseness of continuous interior penalty method for
convection—diffusion problems with characteristic layers. Comput. Methods Appl.

Mech. Engrg., 319:549-566, 2017.

27



	1 Introduction
	2 Finite element method on Bakhvalov-type mesh
	2.1 Regularity results
	2.2 Bakhvalov-type meshes
	2.3 Finite element method

	3 Uniform convergence
	4 Supercloseness
	5 Numerical experiment

