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Abstract We consider the minimization problem with the truncated quadratic regularization,
which is a nonsmooth and nonconvex problem. We cooperated the classical preconditioned iterations
for linear equations into the nonlinear difference of convex functions algorithms with extrapolation.
Especially, our preconditioned framework can deal with the large linear system efficiently which
is usually expensive for computations. Global convergence is guaranteed and local linear conver-
gence rate is given based on the analysis of the Kurdyka- Lojasiewicz exponent of the minimization
functional. The proposed algorithm with preconditioners turns out to be very efficient for image
restoration and is also appealing for image segmentation.
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1 Introduction

In this paper, we consider the truncated quadratic regularization with gradient operator for image
restoration and segmentation

arg min
x∈X

F (x) = f(x) + P I(x), P I(x) :=

m∑
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λ

µ
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x∈X
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where λ and µ are positive constants, X := Rm×n is a finite dimensional discrete image space,
∇ = [∇1,∇2]T and f(x) := ‖Ax − x0‖22/2 with A : X → Y0 = Rm0×n0 being a linear and
bounded operator and x0 being the noisy or degraded image. Here and subsequently, the | · | norm
denotes the usual Euclid norm which is also the length of the corresponding vector. For example,

|(∇x)i,j | =
√

(∇1x)2
i,j + (∇2x)2

i,j for the isotropic case in (ITQ) and |(∇lx)i,j | is the absolute

value of (∇lx)i,j with l = 1 or l = 2 in (ATQ). P I or PA is the isotropic or anisotropic truncated
quadratic regularizations (abbreviated as ITQ or ATQ). The truncated quadratic (also called as
half-quadratic) regularization has various applications in signal, image processing and computer
vision [4, 5, 10, 11, 20, 38]. It was originated from the maximal posterior estimates for the Markov
random fields within the probabilistic setting mainly the Bayesian framework [18]. It also appeared
as the weak membrane energy and the corresponding graduated non-convexity algorithm developed
in [11]. The nonsmooth and nonconvex truncated quadratic regularization without gradient operator
was also found in robust statistic where it can kill the outliers completely [19, 40]; see Figure 1 for
the absolute value function and the truncated quadratic function. The discrete truncated quadratic
regularization can also be seen as the discrete version of the continuous variational Mumford-Shah
functional [14, 30, 31, 40]. We refer to [42] for the general framework of truncated regularization
which covered the truncated quadratic problem. Due to so many important applications in imaging
and other fields, there are already a lot of studies on algorithmic developments for this problems
[20, 33]. Generally, there are two categories of algorithms. One is the stochastic approximation
approach including the simulated annealing and the other is the deterministic approach. There are
many kinds of deterministic optimization algorithms including the graph-cut algorithm [10] and
the graduated non-convexity algorithm (GNC) [11]; see [13, 32] for its recent development. Fast
algorithms are also developed in [4, 5, 15, 16] which benefit from the alternating minimization
technique by introducing some auxiliary variables [20, 29].

Inspired by the recent developments of the difference of convex algorithms (DCA) [21–23, 41] and
the powerful Kurdyka- Lojasiewicz (KL) analysis for nonconvex optimizations [1–3, 24, 39] together
with the preconditioned techniques in convex splitting algorithms [6–8], we tackle this problem
by the proposed preconditioned DCA algorithm with extrapolation. DCA is now widely used for
analyzing and computing noncovex models in image and signal processing. For example, a weighted
difference of anisotropc and isotropic TV model is proposed in [26] for better reconstruction and
a more delicate l1-αl2 model is further developed in [25]. For (ITQ) or (ATQ), we will employ the
following difference of convex functions (DC) throughout this paper, P l(x) = P l1(x) − P l2(x) with
l = I or l = A and

P I1 (x) =

m∑
i=1

n∑
j=1

µ

2
(|(∇x)i,j |2 +

λ

µ
), P I2 (x) =

m∑
i=1

n∑
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µ

2
max (|(∇x)i,j |2,

λ

µ
), (1.1)
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µ

2
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(|(∇lx)i,j |2 +
λ

µ
), PA2 (x) =

m∑
i=1

n∑
j=1

µ

2

2∑
l=1

max (|(∇lx)i,j |2,
λ

µ
).

Note that both f(x), P I1 (x) and P I2 (x) (or PA1 (x) and PA2 (x)) are convex functions. P I1 (or PA1 ) is
continuous differentiable with locally Lipschitz gradient and P I2 (or PA2 ) is proper closed function.
Our motivation mainly comes from the challenging problem for solving the linear subproblems
appeared in DCA, which is the most expensive step for DCA in a lot of applications [21]. For
example, splitting decomposition algorithm with error control is employed in [21]. We proposed a
preconditioned framework and cooperated the preconditioned iteration for linear systems into the
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total nonlinear DCA iterations. In this framework, only one or few preconditioned steps are needed
for the linear subproblems without solving it inexactly or exactly. Especially, the global convergence
and the local linear convergent rate of DCA can also be obtained. Usually, the computational amount
of one time or few times preconditioned iterations is quite less. For example, the computation effort
of one Jacobi or one symmetric Gauss-Seidel iteration for large scale linear system is nearly negligible
compared to solving the linear sytem even with moderate accuracy, especially for large scale linear
system.

Our contributions belong to the following parts. First, we propose a preconditioned DCA for
the truncated quadratic regularization with gradient operator including both the isotropic and
anisotropic cases. With the classical preconditioning technique, we can deal with the large linear
system efficiently for the nonlinear DCA algorithm with any finite time preconditioned iterations.
No error control is needed for solving large linear systems while the convergence can be guaranteed.
For example, in the proposed preconditioned framework, one can still obtain global convergence
of the DCA by employing 10 specially designed symmetric red-black Gauss-Seidel iterations for
the linear subproblem during each DCA iteration. Second, with detailed analysis of the Kurdyka-
 Lojasiewicz exponent of the minimization functional, together with the global convergence of the
iterative sequence, we also prove the local linear convergence rate of the proposed preconditioned
DCA. Third, our global convergence and local convergence rate analysis is based on the difference
of convex structure (1.1) where P1 (P I1 or PA1 ) has locally Lipschitz gradient and P2 (P I2 or P I2 )
is closed and convex. This is different from the case in [39] where P1 is closed and convex and
P2 has locally Lipschitz gradient. Fourth, we also explore the feature of the truncated quadratic
regularization for image segmentation within the proposed preconditioned DCA framework, which
was already studied by a lot of algorithms including the graduated non-convexity algorithm [11],
the graph-cut based discrete optimization method [10], and the primal-dual first-order method [38].
Besides the image segmentation, it is known that the truncated quadratic regularization can also
be used for image denoising. However, there is no systematic comparisons with the total variation
regularization. We give some comparisons between the truncated quadratic regularization and the
total variation for image denoising with detailed parameters.

The rest of the paper is organized as follows. In section 2, after some preparations and the
calculation of the Kurdyka- Lojasiewicz exponent, we give the global convergence and present the
local linear convergence rate of the proposed preconditioned and extrapolated DCA. In section 3,
we give a systematic numerical study on the image denoising and image segmentation. Finally, we
give some discussions on section 4.

2 Preconditioned DCAe: convergence and preconditioners

2.1 Preliminaries and KL exponent analysis

Let h : Rn → R ∪ {+∞} be a proper lower semicontinuous function. Denote domh := {x ∈ Rn :
h(x) < +∞}. For each x ∈ domh, the limiting-subdifferential of h at x ∈ Rn, written ∂h, is defined
as follows [28, 35],

∂h(x) :=

{
ξ ∈ Rn : ∃xn → x, h(xn)→ h(x), ξn → ξ, lim

y→x
inf
y 6=xn

h(y)− h(xn)− 〈ξn, y − xn〉
|y − xn|

≥ 0

}
.

It is known that the above subdifferential ∂h reduces to the classical subdifferential in convex
analysis when h is convex. It can be seen that a necessary condition for x ∈ Rn to be a minimizer of h
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Fig. 1: Absolute value function and truncated quadratic function in R.

is 0 ∈ ∂h(x) [1]. For the global and local convergence analysis, we also need the Kurdyka- Lojasiewicz
(KL) property and KL exponent.

Definition 1 (KL property and KL exponent) A proper closed function h is said to satisfy
the KL property at x̄ ∈ dom ∂h if there exists a ∈ (0,+∞], a neighborhood O of x̄, and a continuous
concave function ψ : [0, a)→ (0,+∞) with ψ(0) = 0 such that:

(i) ψ is continuous differentiable on (0, a) with ψ′ > 0.
(ii) For any x ∈ O with h(x̄) < h(x) < h(x̄) + a, one has

ψ′(h(x)− h(x̄)) dist(0, ∂h(x)) ≥ 1. (2.1)

A proper closed function h satisfying the KL property at all points in dom ∂h is called a KL function.
If ψ in (2.1) can be chosen as ψ(s) = cs1−θ for some θ ∈ [0, 1) and c > 0, we say that h satisfies KL
properties at x̄ with exponent θ. This means that for some c̄ > 0, we have

dist(0, ∂h(x)) ≥ c̄(h(x)− h(x̄))θ. (2.2)

If h satisfies KL property with exponent θ ∈ [0, 1) at all the points of dom ∂h, we call h is a KL
function with exponent θ.

The following uniformized KL property proved in [9] is also important for our discussions.

Lemma 1 Assume h is a proper closed function and Γ is a compact set. If h is a constant on Γ
and satisfies the KL property at each point of Γ , then there exist ε, a > 0 for any ψ as in definition
1,

ψ′(h(x)− h(x̂)) dist(0, ∂h(x)) ≥ 1, (2.3)

for any x̂ ∈ Γ and any x satisfying dist(x, Γ ) < ε and h(x̂) < h(x) < h(x) + a.

The minimization problem (ITQ) or (ATQ) is a standard DC programming and can be solved by
DCA. From now on, we will denote x as the vectorized x. We will still use the same notations A,
∆, A∗ and ∇ (or F , f and P ) as the matrix version of the linear mappings (the functions) after
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vectorization. Let’s take the problem (ITQ) for example. The standard DCA iteration reads as
follows,

xt+1 := arg min
x

f(x) + P I1 (x)− 〈ξt, x〉, ξt ∈ ∂P I2 (x)|x=xt , (2.4)

where P I1 , f and P I1 are the same functions in (1.1) and the term 〈ξt, x〉 essentially represents
the linearization of the convex function P I1 (x) through its subgradient. It can be seen by replacing
〈ξt, x〉 by 〈ξt, x− xt〉+P I2 (xt) in (2.4) without changing the minimization problem (2.4). By direct
calculation, the minimizer xk+1 of (2.4) can be obtained by solving the following linear equation
during each DCA iteration

(A∗A− µ∆)x = ξt +A∗x0. (2.5)

It is very expensive and challenging to solve this kind of equation especially for large linear systems
during each iteration even with error control. In [21], “preconditioned decomposition algorithm” is
employed to solve the equation with error control while A is the identity operator in (2.5). Inspired
by the preconditioned framework for the convex splitting algorithm [6–8], our motivation is to
introduce the powerful and classical preconditioning technique for linear systems such as (2.5) and
cooperate them into the nonlinear DCA.

We introduce the preconditioned iterations for (2.5) through proximal terms with special metric
(or weight). Let’s first introduce the inner product and norm induced by the positive definite and
self-adjoint operator (metric) M ,

〈x, y〉M := 〈x,My〉, ‖x‖2M := 〈x,Mx〉.

Moreover, we will also employ the extrapolation framework that can bring out certain acceleration
[39] for a lot of cases. The extrapolation strategy is originated from Nesterov’s accelerated gradient
method. To this end, let’s introduce the extrapolation parameter β such that {βt} ⊆ [0, 1) and
supt βt < 1. The extrapolation step is done by yt = xt + βt(x

t − xt−1) where the previous iteration
xt−1 is incorporated. With these preparations, we now give our algorithmic framework, i.e., the
Algorithm 1. Henceforth, we will consider the proposed Algorithm 1 with efficient preconditioners
for solving the problem.

Algorithm 1 Preconditioned difference-of-convex algorithm with extrapolation (preDCAe) for
arg minx F (x) = f(x) + P1(x)− P2(x)

x0 ∈ domP1, {βt} ⊆ [0, 1), with supt βt < 1. Set x−1 = x0.
Iterate the following steps for t = 0, 1, · · · ,

ξt ∈ ∂P2(xt), (2.6)

yt = xt + βt
(
xt − xt−1

)
(2.7)

xt+1 = arg min
y

{〈
∇f(yt)− ξt, y

〉
+

1

2
‖y − yt‖2M + P1(y)

}
. (2.8)

Unless some stopping criterion is satisfied, stop

Supposing the Lipschitz constant of f in Algorithm 1 is L, if choosing M = LI with I denoting
the identity operator (or the identity matrix when vectoring x), Algorithm 1 reduces to the proximal
extrapolation DCA proposed in [39] with different conditions on P1 and P2. We employ the metric
induced by M , which can bring out great flexibility to deal with the linear system with efficient
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preconditioners. Let’s take the following Lemma 2 for example to illustrate our motivation, where
we can reformulate (2.8) as the classical preconditioned iteration [36].

Lemma 2 With appropriately chosen linear operator M ≥ L0I with positive constant L0 ≥ L, the
iteration (2.8) actually can be reformulated as the following classical preconditioned iteration

xt+1 := yt +M−1
p [bt − Tyt], (2.9)

where

bt = L0y
t −∇f(yt) + ξt, T = L0I − µ∆, Mp = M − µ∆ ≥ T.

Proof Denote bt1 = ξt −∇f(yt). By the structure of PA1 or P I1 in (1.1), we see

M(y − yt)− µ∆y − bt1 = 0.

We thus have

xt+1 = (M − µ∆)−1(bt1 +Myt)

= (M − µ∆)−1((M − µ∆)yt + bt1 + µ∆yt)

= yt + (M − µ∆)−1[bt1 + L0y
t − (L0I − µ∆)yt],

= yt + (M − µ∆)−1[bt − (L0I − µ∆)yt], (2.10)

which leads to (2.9) with notation Mp := M − µ∆. Mp is actually a preconditioner for T to solve
the following linear equation

Tx = bt. (2.11)

ut

The following remark will give more interpretation of the preconditioned iteration (2.9).

Remark 1 Suppose the discretization of the operator T = L0I−µ∆ in Lemma 2 is D−E−E∗ (still
denoting it as T and using ∆ as the discretized ∆) where D is the diagonal part, −E represents
the strict lower triangular part and E∗ is the transpose of E. If choosing Mp as the symmetric
Gauss-Seidel preconditioner for T , it is well-known that [36] (chapter 4.1) (or [6])

Mp = T + E∗D−1E.

By Lemma 2, since Mp = (M − µ∆), we thus have the explicit form of M

M = Mp + µ∆ = T + E∗D−1E + µ∆ = T + E∗D−1E + L0I − (L0I − µ∆) = E∗D−1E + L0I.

We also see M ≥ L0I as in Lemma 2. However, we do not need to calculate the explicit form of
M or M−1

p , since the update (2.9) is exactly the one time symmetric Gauss-Seidel iteration for the
linear equation Ty = bt [36]. This means that xt+1 as in (2.9) is also equivalent to (2.8) through
one time symmetric Gauss-Seidel iteration.
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For image denosing problem, with f(x) = ‖x− x0‖22/2 with Lipschitz constant 1, if we choose
L0 = I in Lemma 2, the linear equation (2.11) coincides with the original linear equation of DCA
(2.5). For image deblurring problem, one possible choice is that we can still use algorithm 1 with
f(x) = ‖Ax− x0‖22/2, where the symmetric Gauss-Seidel preconditoners can still be employed for
the corresponding perturbed Laplacian equation with using ∇f(yt) explicitly in (2.8). Here, we
provide another choice. Taking the (ATQ) for example, letting

f = 0, P1(y) = ‖Ay − x0‖22/2 + PA1 (y), P2(y) = PA2 (y), (2.12)

we have the following proposition, whose proof is completely similar to Lemma 2 and is thus omitted.

Proposition 1 With appropriately chosen linear operator M ≥ L0I with positive constant L0 ≥ L
and the data in (2.12), the iteration (2.8) in Algorithm 1 can be reformulated as the following
classical preconditioned iteration

xt+1 := yt +M−1
p [bt − Tyt], (2.13)

where

bt = L0y
t +A∗x0 + ξt, T = L0I +A∗A− µ∆, Mp = M +A∗A− µ∆ ≥ T.

The condition M ≥ L0I comes from the positive definite requirement of M , which is important
for the following convergence analysis. However, we can choose very small L0 for the deblurring
problem and T can thus approximate the original linear system (2.5). Throughout this paper, if
f = 0 in (2.12) with Lipschitz constant L = 0, we further assume M ≥ L0I with constant L0 > 0.

With Lemma 2, Remark 1, and Proposition 1, it can be seen that one can cooperate the classical
preconditioned iteration into the DCA framework through the proximal mapping with metric. We
thus can deal with linear systems with powerful tools from the classical preconditioning techniques
for linear algebraic equations. Now let’s turn to the KL analysis for the convergence with our
preconditioning framework. We begin with the KL exponent of the quadratic functions with an
elementary proof.

Lemma 3 The quadratic function q(x) = 1
2x

TQx − uTx + s is a KL function with KL exponent
of 1

2 , where Q is a symmetric positive semidefinite matrix. Moreover, supposing that the minimal
positive eigenvalue of M is λM , then there exist small positive ε and η, such that for any x satisfying
|x− x̄| ≤ ε and q(x̄) < q(x) < q(x̄) + η, we have

q(x)− q(x̄) = |q(x)− q(x̄)| ≤ 1

2λM
|∇q(x)|2.

Proof First, noting that 1
2x

TQx− uTx+ s and 1
2x

TQx− uTx have the same KL exponent, we just
need to prove the case of the function q(x) = 1

2x
TQx − uTx without loss of generality. We first

consider the case x̄ such that ∇q(x)|x=x̄ = 0, i.e., Qx̄ = u. Supposing λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 are
the eigenvalues of Q, we know λM = min{λi, λi > 0} by assumption. There exists an orthogonal
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matrix P such that Q = P−1Diag[λ1, · · · , λn]P . Furthermore,

|q(x)− q(x̄)| = |1
2
〈Q(x− x̄), x− x̄〉|

=
1

2
(x− x̄)TP−1

λ1

. . .

λn

P (x− x̄) ≤ 1

2λM
(x− x̄)TP−1

λ
2
1

. . .

λ2
n

P (x− x̄)

=
1

2λM
〈Q(x− x̄), Q(x− x̄)〉 =

1

2λM
〈Qx− u,Qx− u〉 =

1

2λM
|∇q(x)|2.

Now, let’s turn to the case |∇q(x̄)| = |Qx̄− u| = δ0 > 0. Supposing |x− x̄| ≤ ε, we see

|q(x)− q(x̄)| = |1
2
xTQx− uTx− 1

2
x̄TQx̄+ uT x̄|

= |〈1
2

(x− x̄)TQ(x− x̄) + 〈Qx̄− u, x− x̄〉|

≤ 1

2
‖Q‖ε2 + δ0ε.

(2.14)

For |∇q(x)|2, we have

|∇q(x)|2 = |Qx− u|2 = |Qx−Qx̄+Qx̄− u|2

= |Qx−Qx̄|2 + 2〈Q(x− x̄), Qx̄− u〉+ |Qx̄− u|2 ≥ δ2
0 − ‖Q‖2ε2 − 2δ0‖Q‖ε.

(2.15)

To obtain |q(x)− q(x̄)| ≤ 1
2λM
|∇f(x)|2, one can choose

(δ2
0 − ‖Q‖2ε2 − 2δ0‖Q‖ε)

1

2λM
≥ δ2

0

2

1

2λM
≥ 1

2
‖Q‖ε2 + δ0ε,

which leads to

ε ≤ ∆0 := min

 δ0
‖Q‖

,
δ0
‖Q‖

(

√
‖Q‖
2λM

+ 1− 1)

 .

We thus have |q(x)− q(x̄)| ≤ 1
2λM
|∇q(x)|2 for all |x− x̄| ≤ ∆0. The proof is complete. ut

Remark 2 Lemma 3 can be seen as a special case of Corollary 5.1 of [24], which originated from
[27] for the convex quadratic problem.

We now discuss the KL exponent of the truncated quadratic regularization functional (ITQ)
and (ATQ). We will employ the recent study on KL analysis of the functions which can be written
as minimization of a finite number of KL functions with KL exponent 1/2; see [24]. Let’s turn to
the following theorem.

Theorem 1 Assuming the linear operators A : X → Y0 = Rm0×n0 , Kl : X → Yl = Rml×nl×cl ,
l = 1, · · · , k are linear, bounded operators and µl, τl are positive parameters, then the KL exponent
of the following general truncated quadratic regularization functional F (x) is 1/2,

F (x) =
‖Ax− x0‖22

2
+

k∑
l=1

ml∑
i=1

nl∑
j=1

µl
2

min(|(Klx)i,j |2, τl). (2.16)
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Proof Let’s first vectorize x and x0 as the column vector x ∈ Rmn and x0 ∈ Rm0n0 correspondingly.
We will still use A, Kl, l = 1, · · · , k as the discrete matrix versions of the corresponding linear
operators. The equation (2.16) then becomes

F (x) =
‖Ax− x0‖22

2
+

k∑
l=1

mlnl∑
i=1

µl
2

min(|(Klx)i|2, τl), (2.17)

where (Klx)i denote the i-th component of Klx. Note the fact that

min(a, b) + min(c, d) = min(a+ c, a+ d, b+ c, b+ d), ∀a, b, c, d ∈ R.

Similarly, for the summation withN :=
∑k
l=1mlnl terms with each term of the form min(|(Klx)i|2, τl)

as in (2.17), we can rewrite F (x) as follows

F (x) =
‖Ax− x0‖22

2
+ min

1≤i≤2N
Pi(x). (2.18)

Pi(x) comes from summing the selected term |(Klx)i|2 or τl from min(|(Klx)i|2, τl) for l = 1, · · · , k
and i = 1, · · · ,mlnl. For example, we can choose

P1(x) =

k∑
l=1

mlnl∑
i=1

τl, P2(x) =

k∑
l=1

mlnl∑
i=1

|(Klx)i|2.

All the other Pi(x) with i = 3, · · · , 2N can be chosen similarly. Furthermore, it can be readily
checked that each Pi(x), i = 1, · · · , 2N , is a convex quadratic function. It is straightforward that
(2.18) can be written as

F (x) = min
1≤i≤2N

Fi(x), Fi(x) :=
‖Ax− x0‖22

2
+ Pi(x), i = 1, · · · , 2N . (2.19)

Actually, we can reformulate each Fi(x) in the form of quadratic function as in Lemma 3. Taking
the function F2(x) for example, let

Λ = [A/
√

2,K1,1, · · · ,K1,m1n1
, · · · ,Kl,1 · · · ,Kl,mlnl

, · · · ,Kk,1 · · · ,Kk,mknk
]T ,

b = [x0/
√

2, 0, · · · , 0]T ∈ RN0 , N0 := m0n0 +

k∑
l=1

mlnlcl,

where Ki1,i2x = (Ki1x)i2 , i1 = 1, · · · , k, and i2 = 1, · · · ,mi1ni1 . We can thus rewrite F2(x) as
follows

P2(x) = ‖Λx− b‖22,
which is clearly a quadratic function. Since each Fi(x) is a quadratic function as in Lemma 3,
then each Fi(x) has KL exponent 1/2 by Lemma 3. With [24] (Theorem 3.1) and noting F (x) is a
continuous function, we conclude that F (x) is a KL function with an exponent 1/2, since it can be
written as minimization of Fi(x) with KL exponent of 1/2 in (2.19). ut

Remark 3 For the isotropic model (ITQ), we can choose m0 = m, n0 = n, K1 = [∇1,∇2] with
m1 = n, n1 = n, c1 = 2 and k = 1 as in (2.16). For the anisotropic model (ATQ), we can choose
m0 = m, n0 = n, K1 = ∇1 and K2 = ∇2 with m1 = m2 = m, n1 = n2 = n, c1 = c2 = 1 and k = 2
as in (2.16).
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Henceforth, we will make extensive use of the following auxiliary function

E(x, y) = f(x) + P (x) +
1

2
‖x− y‖2M = F (x) +

1

2
‖x− y‖2M . (2.20)

Let’s calculate the exponent of KL inequality of the auxiliary function E(x, y) in (2.20) at the
stationary point. We do this through the relationship between the original function F (x) and the
auxiliary function E(x, y).

Lemma 4 If a proper closed function F (x) has the KL property at a stationary point x̄ with an
exponent of 1

2 , then the auxiliary function E(x, y) = F (x) + 1
2‖x− y‖

2
M has the KL property at the

stationary point (x̄, x̄) with the exponent of 1
2 .

Proof Because x̄ is a stationary point of F (x), we have 0 ∈ ∂F (x̄). Supposing 0 ∈ ∂E(x̄, ȳ) =
(∂F (x̄) +M(x̄− ȳ),M(ȳ − x̄))T , we have x̄ = ȳ by M ≥ L0I. Since F has the KL property at x̄
with the exponent 1

2 , there exist c1, ε and η > 0 such that

(F (x)− F (x̄)) ≤ c1 dist2(0, ∂F (x)), (2.21)

whenever x ∈ dom ∂F (x), ‖x− x̄‖ ≤ ε and F (x̄) < F (x) < F (x̄) + η. We thus have

|E(x, y)− E(x̄, x̄)| ≤ |F (x)− F (x̄)|+ 1

2
‖x− y‖2M

≤ c1 dist2(0, ∂F (x)) +
1

2
‖x− y‖2M

(2.22)

for any (x, y) satisfying x ∈ dom ∂F , ‖x− x̄‖ ≤ ε, ‖y− x̄‖ ≤ ε and E(x̄, x̄) < E(x, y) < E(x̄, x̄) + η.
Furthermore, if there exists a positive constant c2 such that

c1 dist2(0, ∂F (x)) +
1

2
‖x− y‖2M ≤ c2 dist2(0, ∂E(x, y))

= c2 dist2((0, 0)T , (∂F (x) +M(x− y),M(y − x))T ),
(2.23)

we get the lemma. For any ε > 0, we have

dist2(0, ∂E(x, y)) = 2‖M(y − x)‖2 + inf
ξ∈∂F (x)

(‖ξ‖2 + 〈ξ, x− y〉M )

≥ 2‖M(y − x)‖2 + inf
ξ∈∂F (x)

[
‖ξ‖2 − (α‖ξ‖2 +

1

α
‖M(x− y)‖2)

]
= (2− 1

α
)‖M(y − x)‖2 + (1− α) dist2(0, ∂F (x))

≥ (2− 1

α
)λM‖y − x‖2M + (1− α) dist2(0, ∂F (x))

(2.24)

where the first inequality follows from the inequality ab ≥ −(αa2 + 1
αb

2), ∀α > 0 and λM is the
minimum positive eigenvalue of M as before. Setting 1

2 < α < 1, we have 1−α > 0 and 2− 1
α > 0.

With (2.22) and (2.24), to obtain (2.23), one can fix c2 as follows

1

2
≤ c2(2− 1

α
)λM , c1 ≤ c2(1− α)⇒ c2 ≥ max(

c1
1− α

,
α

(4α− 2)λM
) ≥ 0. (2.25)

We thus get
|E(x, y)− E(x̄, x̄)| ≤ c2 dist2(0, ∂E(x, y)), (2.26)

and the lemma follows. ut
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2.2 Global convergence and local convergence rate

Recall that x̄ is a stationary point of F if 0 ∈ ∂F (x̄). We will first study a property of the iteration
(2.8). We further assume F is level-bounded (see Definition 1.8 [35]), i.e., lev≤αF := {x : F (x) ≤ α}
is bounded (or possibly empty). We employ the similar idea in [39] with different conditions on P1

and P2 here.

Proposition 2 The right hand-side of (2.8): g(x) := 〈∇f(yt)− ξt, x〉 + 1
2‖x − y

t‖2M + P1(x) is a
strongly convex function. Moreover, g(xt+1) ≤ g(xt) − 1

2‖x
t+1 − xt‖M when xt+1 is a stationary

point of g(x).

Proof For any ξ1 ∈ ∂P1(x), by the convexity of 1
2‖x− y

t‖M and P1(x) on x, we have

g(y)− g(x) =
〈
∇f(yt)− ξt, y − x

〉
+

1

2
‖y − yt‖2M −

1

2
‖x− yt‖2M + P1(y)− P1(x)

≥
〈
∇f(yt)− ξt, y − x

〉
+

1

2
‖y − x‖2M +

〈
x− yt, y − x

〉
M

+ 〈ξ1, y − x〉

=
〈
∇f(yt)− ξt +M(x− yt) + ξ1, y − x

〉
+

1

2
‖y − x‖2M (2.27)

≥
〈
∇f(yt)− ξt +M(x− yt) + ξ1, y − x

〉
+
L

2
‖y − x‖2, ∀x, y ∈ dom g.

Since

∇f(yt)− ξt +M(x− yt) + ξ1 ∈ ∂g(x),

we see g(x) is a strongly convex function with a modulus that is not less than L0. Setting x = xt+1

and y = xt, by the fact that 0 ∈ ∂g(x)|x = xt+1, according to (2.8), together with (2.27), we have

g(xt+1) ≤ g(xt)− 1

2
‖xt+1 − xt‖M . (2.28)

ut

We will first show that the sequence {xt} generated by the proposed algorithm 1 converges to a
stationary point of E(x, y).

Theorem 2 Let xt be a sequence generated by preDCAe for solving the minimization problem
(ITQ) or (ATQ). Then the following statements hold:

(i) lim
t→∞

‖xt+1 − xt‖M = 0,

(ii) The limit lim
k→∞

E(xt, xt−1) =: ζ exists and E ≡ ζ on Υ . Henceforth, we denote Υ as the set of

accumulation points of the sequence (xt, xt−1).

Proof We first prove (i). By Proposition 2, we can get

〈
∇f(yt)− ξt, xt

〉
+

1

2
‖xt+1 − yt‖2M + P1(xt+1)

≤
〈
∇f(yt)− ξt, xt+1

〉
+

1

2
‖xt − yt‖2M + P1(xt)− 1

2
‖xt+1 − xt‖2M . (2.29)
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On the other hand, since ∇f is Lipschitz continuous with a modulus of L, we have

f(xt+1) + P (xt+1) ≤ f(yt) + 〈∇f(yt), xt+1 − yt〉+
L

2
‖xt+1 − yt‖2 + P1(xt+1)− P2(xt+1)

≤ f(yt) + 〈∇f(yt), xt+1 − yt〉+
1

2
‖xt+1 − yt‖2M + P1(xt+1)− P2(xt+1)

≤ f(yt) + 〈∇f(yt), xt+1 − yt〉+
1

2
‖xt+1 − yt‖2M + P1(xt+1)− P2(xt)− 〈ξt, xt+1 − xt〉

≤ f(yt) + 〈∇f(yt), xt − yt〉+
1

2
‖xt − yt‖2M + P1(xt)− P2(xt)− 1

2
‖xt+1 − xt‖2M

≤ f(xt) + P (xt) +
1

2
‖xt − yt‖2M −

1

2
‖xt+1 − xt‖2M , (2.30)

where the second inequality follows from M ≥ L0I ≥ LI, the third one comes from the fact that
ξt ∈ ∂P2(xt), the fourth inequality follows from (2.28) and the fifth one by the convexity of f . From
(2.30), we have

f(xt+1) + P (xt+1) ≤ f(xt) + P (xt) +
1

2
β2
t ‖xt − xt−1‖2M −

1

2
‖xt+1 − xt‖2M .

Then, we can obtain that

1

2
(1− β2

t )‖xt − xt−1‖2M ≤
[
f(xt) + P (xt) +

1

2
‖xt − xt−1‖2M

]
−
[
f(xt+1) + P (xt+1) +

1

2
‖xt+1 − xt‖2M

]
= E(xt, xt−1)− E(xt+1, xt). (2.31)

Since βt ∈ [0, 1), we see from (2.31) that f(xt) + P (xt) + 1
2‖x

t − xt−1‖2M is nonincreasing. We can
thus get that

f(xt) + P (xt) ≤ f(xt) + P (xt) +
1

2
‖xt − xt−1‖2M ≤ f(x0) + P (x0), ∀t ≥ 0,

which shows that xt is bounded by the level-boundedness of F (Definition 1.8 of [35] and [39]) and
F (x) ≥ 0. Then summing up both sides of (2.31) from t = 0 to ∞, we obtain

1

2

∞∑
t=0

(1− β2
t )‖xt − xt−1‖2M ≤ f(x0) + P (x0)− lim inf

t→∞

[
f(xt+1) + P (xt+1) +

1

2
‖xt+1 − xt‖2M

]
≤ f(x0) + P (x0) <∞.

Since supt βt < 1, we deduce from the above inequation that
∑∞
t=1 ‖xt − xt−1‖2M < ∞ and

limt→∞ ‖xt+1 − xt‖2M = 0. This proves (i).
Now we prove (ii), it can be seen that the sequence E(xt, xt−1) is nonincreasing form (2.31).

Together with the fact that Υ is a nonempty compact set due to xt is bounded, we conclude that
ζ := limk→∞E(xt, xt−1) exists. Now, let’s show E ≡ ζ on Υ . Taking any (x̄, x̄) ∈ Υ , there exists a
convergent subsequence (xti , xti−1) such that limi→∞(xti , xti−1) = (x̄, x̄). Using the fact that xti

is the minimizer of the subproblem in (2.8), we have

P1

(
xti
)

+
〈
∇f

(
yti−1

)
− ξti−1, xti

〉
+

1

2
‖xti − yti−1‖2M

≤ P1(x̄) +
〈
∇f

(
yti−1

)
− ξti−1, x̄

〉
+

1

2
‖x̄− yti−1‖2M .
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Rearranging terms above, we obtain

P1

(
xti
)

+
〈
∇f

(
yti−1

)
− ξti−1, xti − x̄

〉
+

1

2
‖xti − yti−1‖2M ≤ P1(x̄) +

1

2
‖x̄− yti−1‖2M . (2.32)

Furthermore, we observe

‖x̄− yti−1‖M = ‖x̄− xti + xti − yti−1‖M ≤ ‖x̄− xti‖M + ‖xti − yti−1‖M
= ‖x̄− xti‖M +

∥∥xti − xti−1 − βti−1

(
xti−1 − xti−2

)∥∥
M

≤ ‖x̄− xti‖M + ‖xti − xti−1‖M + ‖xti−1 − xti−2‖M .

Since ‖xt+1 − xt‖M → 0 and limi→∞ xti = x̄, we have

‖x̄− yti−1‖M → 0 and ‖xti − yti−1‖M → 0.

Moreover, with (2.32), we obtain

ζ = lim
i→∞

f
(
xti
)

+ P
(
xti
)

= lim
i→∞

f
(
xti
)

+ P
(
xti
)

+
〈
∇f

(
yti−1

)
− ξti−1, xti − x̄

〉
+

1

2

∥∥xti − yti−1
∥∥2

M

≤ lim sup
i→∞

f
(
xti
)

+ P1(x̄)− P2

(
xti
)

+
1

2

∥∥x̄− yti−1
∥∥2

M
= F (x̄).

Since F is lower semicontinuous, we have

F (x̄) ≤ lim inf
i→∞

F
(
xti
)

= lim
i→∞

F
(
xti
)

= ζ. (2.33)

Consequently, F (x̄) = lim infi→∞ F (xti) = ζ. Noting that for any (x̄, x̄) ∈ Υ , we have E(x̄, x̄) =
F (x̄) = ζ. We thus conclude E ≡ ζ on Υ and (ii) follows. ut

Theorem 3 Any accumulation point of xt is a stationary point of F . Furthermore, we have∑∞
k=1 ‖xt − xt−1‖≤ ∞.

Proof With the same assumption of Theorem 2, let x̄ be an accumulation of xt. By the first-order
optimality condition of the subproblem (2.8), we get

−M(xt+1 − yt) ∈ ∇P1(xt+1) +∇f(yt)− ξt.

With the fact yt = xt + βt(x
t − xt−2), we obtain that

−M [(xt+1 − xt)− βt(xt − xt−1)] ∈ ∇P1(xt+1) +∇f(yt)− ξt. (2.34)

Because of the convexity of P2 and the the boundeness of xt, by passing to a subsequence if necessary,
then limi→∞ ξt exists without loss of generality, which belongs to ∂P2(x̄) due to the closedness of
∂P2 (Theorem 8.6 [35]). Using the fact that ‖xt+1 − xt‖2M → 0 from Theorem 2 (ii) together with
the closedness of ∇P1 and ∇f , we get upon passing to the limit in (2.34) that

0 ∈ ∇P1(x̄) +∇f(x̄)− ∂P2(x̄).

Then, considering the subdifferential of the function E(x, y) at the point (xt, xt−1), we have

∂E
(
xt, xt−1

)
=
(
∇f(xt) +∇P1(xt) +M(xt − xt−1)− ∂P2(xt),−M(xt − xt−1)

)T
. (2.35)
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On the other hand, with (2.34) and the fact ξt ∈ ∂P2(xt), we have

(M(xt − xt+1 + (1 + βt)(x
t − xt−1)) +∇f(xt)−∇f(yt) +∇P1(xt)−∇P1(xt+1),

−M(xt − xt−1))T ∈ ∂E(xt, xt−1).

Together with the fact that ∇f,∇P1 is Lipschitz continuous on a bounded set and M ≥ LI, we see
that there exists C0 > 0 such that

dist((0, 0), ∂E(xt, xt−1)) ≤ C0(‖xt − xt−1‖M + ‖xt+1 − xt‖M )

≤ C(‖xt − xt−1‖+ ‖xt+1 − xt‖),
(2.36)

where the constant C depending on M and C0. We rewrite (2.31) as

E(xt, xt−1)− E(xt+1, xt) ≥ D0‖xt − xt−1‖2M ≥ D‖xt − xt−1‖2. (2.37)

Then, we first consider the case that there exists a t > 0 such that E(xt, xt−1) = ζ. Since E(xt, xt−1)
is decreasing with the limit ζ, we thus have E(x̄t, x̄t−1) = ζ for any t̄ > t. Hence,

∑∞
t=0 ‖xt −

xt−1‖M < ∞ follows easily. We next consider the case that E(xt, xt−1) > ζ, ∀t > 0. Since E is a
KL function and E ≡ ζ on Υ , by Lemma 1, there exist an ε > 0 and a continuous concave function
ψ with a > 0 such that

ψ′(E(x, y)− ζ)dist((0, 0), ∂E(x, y)) ≥ 1, ∀(x, y) ∈ U, (2.38)

where U = {(x, y) ∈ Rn × Rn : dist((x, y), Υ ) < ε}∩ {(x, y) ∈ Rn × Rn : ζ < E(x, y) < ζ + a}. More-
over, we can get that there exists T > 0 such that

ψ′
(
E(xt, xt−1)− ζ

)
· dist

(
(0, 0), ∂E(xt, xt−1)

)
≥ 1, ∀t ≥ T. (2.39)

Due to limt→∞ dist((xt, xt−1), Υ ) = 0, there thus exists T1 > 0 such that dist((xt, xt−1), Υ ) < ε
whenvere t ≥ T1. From the concavity of ψ, we see that[

ψ
(
E(xt, xt−1)− ζ

)
− ψ

(
E(xt+1, xt)− ζ

)]
· dist

(
(0, 0), ∂E(xt, xt−1)

)
≥ ψ′

(
E(xt, xt−1)− ζ

))
· dist

(
(0, 0), ∂E(xt, xt−1)

)
·
[
E(xt, xt−1)− E(xt+1, xt)

]
≥ E(xt, xt−1)− E(xt+1, xt).

Combining this with (2.36) and (2.37), we can get that for any t ≥ T ,

‖xt − xt−1‖2 ≤C
D

[
ψ
(
E(xt, xt−1)− ζ

)
− ψ

(
E(xt+1, xt)− ζ

)]
·
(
‖xt − xt−1‖+ ‖xt−1 − xt−2‖

)
.

Moreover, we can see further that (by the inequality a ≤
√
cd ⇒ a ≤ c+ d

4 for a, b, c ≥ 0)

1

2
‖xt − xt−1‖ ≤C

D

[
ψ
(
E(xt, xt−1)− ζ

)
− ψ

(
E(xt+1, xt)− ζ

)]
+

1

4

(
‖xt−1 − xt−2‖ − ‖xt − xt−1‖

)
.

(2.40)

Summing up the above relation from t = T to ∞, we have

∞∑
t=T

‖xt − xt−1‖ ≤ 2C

D
ψ
(
E(xT , xT−1)− ζ

)
+

1

2
‖xT−1 − xT̄−2‖ <∞. (2.41)

Thus {xt} is a Cauchy sequence and its global convergence follows. ut
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Remark 4 Actually, the proofs in Theorems 2 and 3 have a lot of differences from the proofs in [39].
These are mainly because of two reasons. The first is the proximal term ‖y − yt‖2M/2 designed for
preconditioning which is different from [39] where M = LI. The second is the conditions on the
functions P1 and P2 are different from [39] as mentioned in section 1.

We next consider the convergence rate of the sequence {xt} under the condition that the auxiliary
function E is a KL function at the stationary point whose ψ takes the form ψ(s) = cs1−θ for θ = 1

2 ,
which can be guaranteed by Theorem 1 and Lemma 4. This kind of convergence rate analysis is
standard; see [1, 2, 24, 39] for more comprehensive analysis. We follow a similar line of arguments
for the local convergence analysis based on the KL property.

Theorem 4 Let xt be a sequence generated by preDCAe for solving (ITQ) or (ATQ) and suppose
that xt converges to some x̄. Since E is a KL function with ψ in KL inequality taking the form
ψ(s) = cs1−θ for θ = 1

2 and c > 0 at the stationary point, then there exist c1 > 0, t0 > 0 and
η ∈ (0, 1) such that ‖xt − x̄‖ < c1η

t for ∀t > t0.

Proof If there exists t0 > 0 such that E(xt0 , xt0−1) = ζ, then one can show that xt is finitely
convergent as before and the local linear convergence holds trivially. Hence, we only consider the
case when E(xt, xt−1) > ζ, ∀t > 0. Define ∆t = E(xt, xt−1)− ζ and St =

∑∞
i=t ‖xi+1 − xi‖, where

St is well-define thanks to Theorem 2 (ii). Then, using (2.40), we have for any t > T that

St = 2

∞∑
i=t

1

2
‖xi+1 − xi‖ ≤ 2

∞∑
i=t

1

2
‖xi − xi−1‖

≤ 2

∞∑
i=t

[
C

D

[
φ(E(xi, xi−1)− ζ)− φ(E(xi+1, xi)− ζ)

]
+

1

4
(‖xi−1 − xi−2‖ − ‖xi − xi−1‖)

]
≤ 2C

D
φ(E(xt, xt−1)− ζ) +

1

2
‖xt−1 − xt−2‖

=
2C

D
φ(∆t) +

1

2
(St−2 − St−1) ≤ 2C

D
φ(∆t) +

1

2
(St−2 − St),

where the last inequality follows from the fact that St is nonincreasing. By (2.39) with ψ(s) = cs
1
2 ,

for all sufficiently large t,
c

2
∆
− 1

2
t dist((0, 0), ∂E(xt, xt−1)) ≥ 1.

Rewriting (2.36) by the definition of St, we see that for all sufficiently large t,

dist((0, 0), ∂E(xt, xt−1)) ≤ C(St−2 − St).

We thus can get

(∆t)
1
2 ≤ Cc

2
(St−2 − St).

Combining this with St ≤ 2C
D φ(∆t) + 1

2 (St−2 − St), we see that for all sufficiently large t,

St ≤ C1(St−2 − St) +
1

2
(St−2 − St) = (C1 +

1

2
)(St−2 − St), (2.42)
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where C1 = c2C2

D . Hence,

‖xt − x̄‖ ≤
∞∑
i=t

‖xi+1 − xi‖ = St ≤ St1−2η
t−t1+1, η :=

√
2C1 + 1

2C1 + 3
, (2.43)

which completes the proof. ut

Remark 5 As L0 in Lemma 2 is sufficiently large, the upper bound of the convergence rate η in
(2.43) would decrease as the condition number of M increases.

Proof Suppose the minmial and maximal eigenvalues of M are λM and λ̄M . We can see that the
convergence rate is related to c, C and D from (2.43). Firstly, we see that c is not related to M
for large L0, since c1

1−α ≥
α

(4α−2)λM
by (2.25), (2.26) and M ≥ L0I when L0 is large enough. Note

that here c is related to c2 in (2.26). Furthermore, we can choose D = λMD0 from (2.37) and

C =
√
λ̄MC0 from (2.36) and the fact λ̄M‖x‖2 ≥ ‖x‖2M ≥ λM‖x‖2. Since C0, D0 is not related to

M , we see C1 = c2C2

D =
c2C2

0

D0

λ̄M

λM
would increase when the condition number of M increases. Thus

the upper bound of the convergence rate
√

1− 2
2C1+3 is decreased when the condition number of

M increases. ut

2.3 Preconditioners and Preconditioned DCAe

Let’s first consider the convex subdifferentials ∂P I2 or ∂PA2 by the following lemma for more general
case.

Lemma 5 The subdifferential of the convex function p(x) := max(|Kx|2, τ)/2 is as follows{
K∗χsK,τKx | s ∈ [0, 1]

}
= ∂x(

1

2
max(|Kx|2, τ)), (2.44)

where the constant τ > 0 and χsK,τ is the generalized Clarke derivatives of max(·, 1.0),

χsK,τ =


1, |Kx|/

√
τ > 1.0,

s, |Kx|/
√
τ = 1.0, s ∈ [0, 1],

0, |Kx|/
√
τ < 1.0.

(2.45)

Furthermore, we have

∂

(
l∑
i=1

µi
2

max(|Kix|2, τi)

)
=

{
l∑
i=1

µiK
∗
i χ

si

Ki,τiKix : si ∈ [0, 1], i = 1, · · · , l

}
. (2.46)

Henceforth, we choose si ≡ 1, i = 1, · · · , l throughout this paper.

Proof We mainly need to consider (2.45). Since for each pi(x) := µi

2 max(|Kix|2, τi), i = 1, · · · , l,
dom pi = X which is the whole domain, then by [34] (Theorem 23.8), we have

∂(

l∑
i=1

pi(x)) =

l∑
i=1

∂pi(x).
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Let’s consider the Clarke’s generalized subdifferential of p(x). Denote p1(x) = 1
2 |Kx|

2 and p2(x) = 0.
It can be seen that p(x) is a PC1 function [37]. It can be easily checked that while |Kx| >

√
τ ,

〈∇x(
1

2
|Kx|2), y〉 = 〈Kx,Ky〉,

where the inner product above is understood in the usual vector inner product such as aT b. We
thus have (∇xp1)(y) = χsK,τ 〈Kx,Ky〉 with s = 1 for |Kx| >

√
τ . ∇xp2(x) = 0 follows easily. We

thus conclude that [37] (Proposition 4.3.1)

∂xp(x) = co{∇xp1(x),∇xp2(x)},

where the notation “co” denotes the convex hull of the corresponding set [17]. Since for convex func-
tions, the Clarke generalized subdifferential concides with their convex subdifferential [17] (Propo-
sition 2.2.7), we have (2.44). ut

Now we turn to the preconditioners for image denoising. According to Lemma 2, we call a precon-
ditioner Mp feasible for T if and only if

Mp ≥ T = L0I − µ∆,

where L0 is the same as in Lemma 2. For operators of type T = αI − β∆ for α, β > 0 where
∆ = div∇ can be interpreted as a discrete Laplace operator with homogeneous Neumann boundary
conditions [6, 7]. In other words: solving Tx = b correspond to a discrete version of the boundary
value problem {

αx− β∆x = b,
∂x
∂ν |∂Ω = 0.

(2.47)

Besides Remark 1, here are some examples from the classical iterative methods for linear systems.

Example 1

– Obviously, Mp = T with L0 = L is a feasible preconditioner for T in (2.51). This choice
reproduces the original proximal DCA with M = LI without preconditioners.

– The choice Mp = cI with c ≥ L + µ‖∇‖2 also yields a feasible preconditioner. This is cor-
responding to the Richardson method, where the update for xk+1 can be seen as an explicit
step.

We employ the efficient symmetric Red-Black Gauss-Seidel (SRBGS) iterations as the precondi-
tioner [6, 7]. Of course, several steps of this preconditioner can also be performed; see the following
Proposition 3. Furthermore, we denote the n-fold application of the symmetric Red-Black to the
initial guess x and right-hand side b by [6, 7]

SRBGSnα,β(x, b) = (I +M−1
p (1b − T ))nx (2.48)

making it again explicit that Mp and T depend on α and β.

Proposition 3 ([6]) Let Mp be a feasible preconditioner for T and n ≥ 1. Then, applying the
preconditioner n times, i.e.,{

xk+(i+1)/n = xk+i/n +M−1
p (bk − Txk+i/n)

i = 0, . . . , n− 1

corresponds to xk+1 = xk +M−1
p,n(bk − Txk) where Mp,n is a feasible preconditioner.
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It is proved in [6] that Mp,n ≥ T . We thus conclude that the corresponding metric in the proximal
term in (2.8) Mn is positive definite, since Mn = Mp,n+µ∆ ≥ T+µ∆ ≥ L0I. Proposition 3 provides
great flexibility for choosing how many inner preconditioned iterations for the linear subproblems.

Remembering ∇x = [∇1x,∇2x]T and |∇x|2 = |∇1x|2 + |∇2x|2, let’s denote

χx =

1, |∇x| ≥
√

λ
µ ,

0, |∇x| <
√

λ
µ ,

χx,1 =

1, |∇1x| ≥
√

λ
µ ,

0, |∇1x| <
√

λ
µ ,

χx,2 =

1, |∇2x| ≥
√

λ
µ ,

0, |∇2x| <
√

λ
µ .

With these preparations, we give the following Algorithm 2. For color images, denoting the color

Algorithm 2 preDCAe for image denoising or segmentation of the truncated model (ITQ) or
(ATQ) with A = I

x0 ∈ domP1, {βt} ⊆ [0, 1), with supt βt < 1. Choose L0 ≥ L and set x−1 = x0.
Iterate the following steps for t = 0, 1, · · · ,

ξt =

{
∇∗χxt∇xt, for the isotropic case,

(∇∗1χxt,1∇1 +∇∗2χxt,2∇2)xt, for the anisotropic case,
(2.49)

yt = xt + βt(x
t − xt−1),

bt = (L0 − I)yt +∇f |y=yt + ξt, (2.50)

xt+1 = SRBGSnα,β(yt, bt), T := (L0I − µ∆). (2.51)

Unless some stopping criterion is satisfied, stop

image as x = (x1,x2,x3)T , the truncated quadratic regularization models are as follows

arg min
x

F(x) =
‖Ax− x0‖22

2
+

m∑
i=1

n∑
j=1

µ

2
min(|(∇x)i,j |2,

λ

µ
), isotropic case (2.52)

arg min
x

F(x) =
‖Ax− x0‖22

2
+

m∑
i=1

n∑
j=1

3∑
k=1

µ

2
min(|(∇xk)i,j |2,

λ

µ
), i = 1, 2, 3, anisotropic case

where |∇x|2 =
∑3
i=1 |∇xi|2 and |∇xi|2 = |∇1xi|2 + |∇2xi|2, i = 1, 2, 3 and A is a linear and

bounded operator. It can be seen that the functional of the isotropic case in (2.52) is still within
the form of Theorem 1. For the anisotropic case, denoting K1 = Diag[∇, 0, 0], K2 = Diag[0,∇, 0]
and K3 = Diag[0, 0,∇], then the functional

3∑
i=1

µ

2
min(|∇xi|2,

λ

µ
) =

3∑
i=1

µ

2
min(|Kix|2,

λ

µ
),

is still of the form in Theorem 1 before the summation over all the pixels as in (2.52). The global
convergence and local linear convergence rate also follow. The corresponding algorithm is completely
similar to Algorithm 2 and we omit here.
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3 Numerics

In this section, we will consider the image denoising and image segmentation problem. All ex-
periments are performed in Matlab 2019a on a 64-bit PC with an Inter(R) Core(TM) i5-6300HQ
CPU(2.30Hz) and 12 GB of RAM.

3.1 Image Denoising

We will compare with the well-known total variation (TV) regularization

arg min
x∈X

F (x) =
1

2
‖Ax− f‖22 + α‖∇x‖1, (3.1)

For image denoising, A = I. The first-order primal-dual algorithm is employed for the minimization
problem (3.1) [12]. We will also compare with the appealing truncated regularization framework
developed in [42] including the truncated TV (shorten as TR-TV), truncated logarithmic regu-
larization (shorten as TR-LN), the truncated quadratic regularization (shorten as TR-l2), and the
weighted difference of anisotropic and isotropic total variation mode (Ani-iso-DCA) [26]. The TR-l2
models are the same as (ITQ) and (ATQ). As in [42], ADMM (Alternating direction method of
multipliers) type method is employed to solve the TR-TV, TR-l2, and TR-LN. It is already shown
TR-TV and TR-LN can give promising PSNR especially for isotropic cases [42]. Here we focus on
the anisotropic cases. The extrapolation parameter {βt} is chosen according to [39] for the proposed
preconditioned DCA, where

βt = (θt−1 − 1)/θt, θt = (1 +
√

4θ2
t−1 + 1)/2, θ−1 = θ0 = 1. (3.2)

Restarting strategy is necessary for satisfying the condition {βt} ∈ [0, 1) and supt βt < 1. The
adaptive βt in (3.2) can bring out certain acceleration experimentally. With appropriate parameters
of λ and β, it can be seen that the truncated regularization (ITQ) and (ATQ) can obtain high quality
denoised images; see Figure 2 for the anisotropic truncated quadratic case (ATQ) and Figure 3 for
the isotropic truncated quadratic case (ITQ). Especially, there is no staircasing effect for (ITQ) or
(ATQ) as the total variation. From Figure 4, it can be seen that the (ATQ) can get better PSNR
with less iterations and less computation time compared with the anisotropic TV.

From Table 1 which is focused on the anisotropic cases, it can be seen that both (ATQ) and
TR-LN are very competitive with high PSNR values for most cases compared with TV. The TR-
TV can get higher SSIM for some cases. Although the same model with the same parameters λ
and µ for (ATQ), our proposed preconditioned DCA can get higher PSNR and SSIM compared
with ADMM used in [42]. The preconditioned DCA may exploit more potential of the model (ATQ)
compared to the ADMM employed in [42]. For the comparison with computational efficiency, Figure
7 tells that while the proposed preconditioned DCA can decrease the energy quickly and achieve a
better PSNR value much fast compared with both iteration number and iteration time, the ADMM
employed in [42] can obtain a lower energy with enough iterations. Tables 1 also shows that the
Ani-iso-DCA [26] is also competitive compared to TV. However, it is not as promising as ATQ and
TR-LN models.

For the global convergence with preconditioners, Figure 5 tells that the proposed preconditioned
DCA is faster than DCA with solving the linear subproblem very accurately by the DCT (Discrete
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cosine transform) compared both with iteration number and computational time. This is surprising
that the proposed preconditioned DCA not only can save the computational efforts but also can
improve the performance of DCA with more efficient algorithms. For the local convergence rate,
Figure 6(a) tells that for the whole nonlinear DCA iterations, for the linear system appeared, the
SRBGS preconditioner is very efficient compared to solving the linear subproblems very accurately
with DCT. The proposed preconditioned DCA can get faster local linear convergence rate with
less computations compared to the original proximal DCA with highly accurate DCT solver. The-
oretically, the proposed preconditioned DCA not only provides an efficient inexact framework with
any finite time preconditioned iterations for DCA with global convergence guarantee, but also can
potentially give a faster local convergence rate compared to the original DCA with a very accurate
solver.

Figure 8 shows that the proposed preconditioned DCA can be used for image segmentation with
various examples, which is not surprising since the truncated quadratic model is widely studied and
used for image segmentation problems [10, 11]. Figure 8 also shows that the truncated quadratic
model can give better segmentation than TV.

3.2 Image deblurring

For image deblurring, by Proposition 1, we just need to design a preconditioner for the discrete
version of the following equation

Tnx = bt, Tn := (L0I +A∗A− µ∆n),
∂x

∂ν
= 0, (3.3)

where we use ∆n to denote the Laplacian operator with emphasis on the Neumann boudary con-
dition. The above equation is usually solved directly by FFT (fast fourier transform). However,
considering the FFT is based on the periodic boundary condition which does not match the Neu-
mann boundary condition, it can be circumvented through preconditioning technique [7],

Tpx = bt, Tp := (L0I +A∗A− µ∆p), x with periodic boundary condition, (3.4)

where ∆p denotes the Laplacian operator with emphasis on the periodic boundary condition. It is
proved that Tp ≥ Tn [7]. We can use Tp as a preconditioner for Tn as follows

xt+1 = yt + T−1
p (bt − Tnyt) = T−1

p (bt + Tpy
t − Tnyt) = T−1

p (bt − µ(∆p −∆n)yt).

Since Tp = A∗A−µ∆n+M by Proposition 1, we have the proximal metric M = Tp−Tn+L0I ≥ L0I.
Denoting the periodic convolution kernel of −∆ is κ∆ along with F and F−1 being the discrete
Fourier and inverse Fourier transform [7], with these preparations, we now give our Algorithm 3 for
image deblurring.

For image deblurring of anisotropic cases, we will compare with TV, i.e., Au = u ∗ κ in (3.1)
with first-order primal-dual algorithm [12], the TR-TV and TR-l2 models in [42] with ADMM who
can get stable PSNR during iterations. We also compared with the DCA without preconditioning
by xt+1 = T−1

p (bt) and we denote it as ATQ-Npre. In ATQ-Npre, the different boundary conditions
of Tp and Tn are ignored, and FFT together with inverse FFT is directly applied to the Neumann
boundary condition Tn.

Figure 9 tells that we can get high quality deblurred images with (ATQ) with our precondi-
tioned DCA, i.e., Algorithm 3 for degraded images blurred by motion filter or Gaussian filter. Here
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Algorithm 3 preDCAe for image deblurring of the truncated model (ITQ) or (ATQ) with Ax =
x ∗ κ and A∗x = x ∗ κ′ with κ being the convolution kernel

x0 ∈ domP1, {βt} ⊆ [0, 1), with supt βt < 1. Choose L0 > 0 and set x−1 = x0.
Iterate the following steps for t = 0, 1, · · · ,

ξt =

{
∇∗χxt∇xt, for the isotropic case,

(∇∗1χxt,1∇1 +∇∗2χxt,2∇2)xt, for the anisotropic case,
(3.5)

yt = xt + βt(x
t − xt−1),

bt = L0y
t + x0 ∗ κ′ + ξt, (3.6)

xt+1 = F−1
( F(bt)

|F(κ)|2 + µF(κ∆) + L0

)
. (3.7)

Unless some stopping criterion is satisfied, stop

Table 1: Comparison for anisotropic image denoising models. The noisy images are as follows: Lena1, Lena2 with size
512× 512, Monarch1 and Monarch2 with size 768× 512. The usual zero mean Gaussian white noise of variance σ = 0.1 for
Lena1 or Monarch1 and σ = 0.05 for Lena2 or Monarch2. The parameters for the corresponding models are as follows. For
(ATQ), we choose µ = 3, λ = 0.01 for σ = 0.1 cases and µ = 1.5, λ = 0.005 for σ = 0.05 cases. For the anisotropic TV
model, the regularization parameter α is chosen as the variance of the noise, i.e., α = σ. For the truncated regularization, the
parameters of TR-TV are α = 10, β = 600, τ = 0.6 for σ = 0.1 cases and α = 40, β = 6000, τ = 0.2 for σ = .05 cases. The
parameters of TR-l2 are α = 2/3, β = 6000, τ = 0.0577 for σ = 0.1 cases and α = 4/3, β = 6000, τ = 0.0577 for σ = 0.05
cases. The parameters of TR-LN are α = 10, β = 600, τ = 0.5, θ = 1 for σ = 0.1 cases and α = 40, β = 600, τ = 0.5, θ = 1
for σ = 0.05 cases. The parameters of Ani-iso-DCA are µ = 5, λ = 0.5 for σ = 0.1 cases and µ = 15, λ = 1 for σ = 0.05
cases.

Lena1 Monarch1 Lena2 Monarch2
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ATQ model 29.308 0.784 29.620 0.836 32.380 0.859 33.203 0.898
TV model 29.227 0.800 29.143 0.873 31.850 0.854 32.613 0.919

TR-TV 29.250 0.801 29.169 0.875 32.601 0.854 33.178 0.893
TR-l2 29.079 0.741 27.851 0.768 31.950 0.832 30.975 0.853

TR-LN 29.285 0.800 29.361 0.873 32.615 0.850 33.223 0.887
Ani-iso-DCA 29.113 0.793 29.227 0.864 32.293 0.859 33.000 0.909

we choose L0 = 10−10 to approximate the original linear system (2.5) of the standard DCA. Ta-
ble 2 shows that (ATQ) with the proposed algorithm can get competitive PSNR and SSIM. Our
preconditioned DCA can still obtain better PSNR or SSIM compared the TR-l2 by ADMM. Both
Table 2 and Figure 6(b) shows that (ATQ) with preconditioned DCA in Algorithm 3 can get better
PSNR, SSIM and lower energy compared to the DCA without preconditioning, i.e., ATQ-Npre. The
performance of Ani-iso-DCA [26] is similar to the denoising case, which is competitive compared to
TV.

We also found that Algorithm 3 with small L0 can get much better PSNR and SSIM than
Algorithm 1 for imaging deblurring where the A∗A is put into the backward step. Since whose
PSNR and SSIM are much lower according to our experience, we did not present the corresponding
numerical results.

4 Discussion and Conclusions

In this paper, we give a thorough study on the proposed preconditioned DCA with extrapolation.
We analysis it through the proximal DCA with metric proximal terms. We show that our framework
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(a) Noisy image with σ = 0.1 (b) ATQ model with λ = 3, µ =
0.01

(c) TV model, α = 0.1

(d) Noisy image with σ = 0.05 (e) ATQ model with λ = 1.5, µ =
0.005

(f) TV model, α = 0.05

Fig. 2: Images (a) and (d) show the corresponding noisy images of the standard Lena image of size 512 × 512 corrupted
by Gaussian noise of Gaussian variance σ = 0.1 and σ = 0.05, i.e., Lena1 and Lena2 image in Table 1. Images (b) and (e)
show the denoised images of (a) and (d) with ATQ by parameters µ = 3, λ = 0.01 and µ = 1.5, λ = 0.005 correspondingly.
Images (c) and (f) are denoised images of (a) and (d) by the anisotropic TV through the first-order primal-dual algorithm
with the corresponding parameters α = 0.1 and α = 0.05.

Table 2: Comparison for anisotropic image deblurring models. The first columns are different degraded images. The
Kodim251 and Llama1 are both degraded with Gaussian filter with size 11 × 11 and Gaussian noise of variance σ = .01.
The Kodim252 and Llama2 are both degraded with motion filter with size 40× 50 and Gaussian noise of variance σ = .01.
The corresponding parameters are as follows. We choose µ = 0.01 and λ = 10−4 for both ATQ or ATQ-Npre, α = 10−3 for
TV, α = 2000, β = 6000, τ = 0.5 for TR-TV [42] which turns out better than β = 600 as in [42], α = 400, β = 500, τ = 0.1

for TR-l2 [42], µ = 2, λ = 5× 10−3 for Kodim251 and Llama1 cases, and µ = 5 × 10−2, λ = 5 × 10−5 for Kodim252 and

Llama2 cases. The parameters of Ani-iso-DCA are µ = 5× 10−2, λ = 5× 10−5 for Gaussian filter and µ = 2, λ = 5× 10−3

for motion filter. The Kodiam25 image is taken from http://www.cs.albany.edu/~xypan/research/snr/Kodak.html.

Kodim251 Llama1 Kodim252 Llama2
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ATQ model 24.211 0.602 27.771 0.750 23.943 0.603 26.820 0.712
TV model 23.655 0.537 26.960 0.704 23.480 0.537 26.081 0.669

TR-TV 23.959 0.571 27.371 0.728 23.936 0.583 26.643 0.700
TR-l2 24.112 0.600 27.284 0.707 23.919 0.604 26.450 0.671

ATQ-Npre 24.134 0.599 27.654 0.747 23.835 0.600 26.758 0.710
Ani-iso-DCA 21.832 0.406 24.349 0.562 20.685 0.356 22.962 0.514

http://www.cs.albany.edu/~xypan/research/snr/Kodak.html
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(a) Original image: Tucan (b) Noisy image with σ = 0.1 (c) ITQ model with λ = 3, µ =
0.01

Fig. 3: Images (a) shows the original 400× 355 Tucan image. Image (b) is a noisy image corrupted by 10% Gaussian noise.
Image (c) shows the denoised image by (ITQ) with parameters µ = 3, λ = 0.01.

0 50 100 150 200

Iteration Number

28

28.2

28.4

28.6

28.8

29

29.2

29.4

29.6

29.8

30

 P
S

N
R

TV

ATQ

(a) PSNR comparison with iteration number be-
tween ATQ and anisotropic TV

0 1 2 3 4 5 6 7 8 9

Computational time (secs)

23

24

25

26

27

28

29

30

31

 P
S

N
R

TV

ATQ

(b) PSNR comparison with iteration time between
ATQ and anisotropic TV

Fig. 4: Figures (a) or (b) shows the PSNR comparisons with iteration number or computational time between (ATQ) and
the anisotropic TV. The computations are based on the Monarch image of size 768 × 512. The parameters of (ATQ) are
µ = 3, λ = 0.01 and the parameter of the anisotropic TV is α = 0.1.

is very efficient to deal with linear systems, while the global convergence and the local convergence
rate can also be obtained. Numerical results show that the proposed preconditioned DCA is very
efficient for truncated regularization applying to image denoising and image segmentation. We will
consider other challenging tasks or applications with our preconditioned DCA framework.

Acknowledgements H. Sun acknowledges the support of NSF of China under grant No. 11701563. The authors also

would like to thank all the anonymous referees for their detailed comments that helped us to improve the manuscript.



24 Shengxiang Deng, Hongpeng Sun

0 50 100 150 200 250 300

Iteration Number

10 -15

10 -10

10 -5

10 0

R
e

la
ti
v
e

 E
n

e
rg

y

DCT

SRBGS

(a) Comparison with iteration number between
SRBGS preconditioner and the DCT slover

0 2 4 6 8 10

Computational time (secs)

10 -15

10 -10

10 -5

10 0

R
e

la
ti
v
e

 E
n

e
rg

y

DCT

SRBGS

(b) Comparison with iteration time between SR-
BGS preconditioner and the DCT slover

Fig. 5: Figures (a) or (b) shows the comparison with iteration number or computational time between preconditioned DCA
with 10 times symmetric Red-Black Gauss-Seidel (SRBGS) iterations and the DCT solver. The DCT solver can be seen
as an approximately exact solver without preconditioners, i.e., M = LI. The computation is based on Monarch with size
768× 512 for the model (ATQ) with parameters µ = 3, λ = 0.01.
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Fig. 6: Figure (a): The local linear convergence rate. The computation is by the model (ATQ) for the Monarch image
of size 768 × 512 with parameters µ = 3, λ = 0.01. L0 is as in Lemma 2 and DCT represents the case M = LI without
preconditoner and solving the corresponding linear equation with DCT solver. The preconditioned DCA for different L0

are both with 10 times symmetric Red-Black Gauss-Seidel (SRBGS) iterations. η ∈ (0, 1) is a constant. Figure (b): The
energy of precondition ATQ is lower that of ATQ without preconditioning (ATQ-Npre) for deblurring the Llama1 image

with Motion filter blur and parameters µ = 0.01, λ = 10−4 as in Table 2.
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(e) Original Monarch
image

(f) ITQ model with
µ = 100, λ = 0.01
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(p) TV model with
α = 2

Fig. 8: Images (a), (d), (g), (j) show the original gray image Shooter with size 768 × 512, gray image Monarch with size
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