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Abstract

The Cadzow’s algorithm is a signal denoising and recovery method which was designed for
signals corresponding to low rank Hankel matrices. In this paper we first introduce a Fast
Cadzow’s algorithm which is developed by incorporating a novel subspace projection to reduce
the high computational cost of the SVD in the Cadzow’s algorithm. Then a Gradient method and
a Fast Gradient method are proposed to address the non-decreasing MSE issue when applying
the Cadzow’s or Fast Cadzow’s algorithm for signal denoising. Extensive empirical performance
comparisons demonstrate that the proposed algorithms can complete the denoising and recovery
tasks more efficiently and effectively.

1 Introduction

Cadzow’s algorithm [4] was proposed by J. A. Cadzow in 1988. The algorithm was initially devel-
oped for signal denoising, but has already been extended to many other applications, including time
series forecasting [14], the filtering of digital terrain models [12], and seismic data denoising and
reconstruction [24, 22, 25, 26, 21, 6]. For simplicity, we consider the 1D signal denoising problem.
Here the task is to estimate a target signal x ∈ CN from the corrupted measurements

y = x + e, (1.1)

where e ∈ CN denotes additive noise. It is not hard to see that, without any additional assumptions,
one cannot expect a universally better estimator than the one simply given by the noisy vector y.
Thus, effective denoising methods typically rely on certain inherent simple structures hidden in the
target signal. For example, the method of wavelet denoising assumes that the representation of x
under certain wavelet transform has many entries that are close to zero [8, 9]. By contrast, the
method of Cadzow’s denoising is based on the low rank property of the Hankel matrix associated
with the target signal.
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Let z = [z0, · · · , zN−1]> be a complex-valued vector of length N . Let H be a linear operator
which maps z into an L×K (L+K = N + 1) matrix Hz whose (i, j)-th entry is equal to zi+j , i.e.,

Hz =


z0 z1 z2 · · · zK−1

z1 z2 z3 · · · zK
z2 z3 z4 · · · zK+1
...

...
...

...
...

zL−1 zL zL+1 · · · zN−1

 , (1.2)

where the numbering of vector and matrix entries starts from 0 rather than the more standard 1.
Matrices of the form (1.2) are known as Hankel matrices in which each skew-diagonal is constant.
Here we will refer to the Hankel matrix Hz as the Hankelization of z. Furthermore, the Moore-
Penrose pseudoinverse ofH, denotedH†, is a linear map from L×K matrices to vectors of length N .
Given a matrix Z ∈ CL×K , the vector H†Z ∈ CN is obtained by averaging each skew-diagonal of
Z. More precisely, letting wa (a = 0, · · · , N−1) be the number of entries on the a-th skew-diagonal
of an L×K matrix,

wa = # {(i, j) | i+ j = a, 0 ≤ i ≤ L− 1, 0 ≤ j ≤ K − 1} , (1.3)

the a-th entry of H†Z, denoted [H†Z]a is given by

[H†Z]a =
1

wa

∑
i+j=a

[Z]ij .

For example, consider the following 3× 3 matrix,

Z =

1 2 3
4 5 6
7 8 9

 ,
we have

w0 = 1, w1 = 2, w2 = 3, w3 = 2, w4 = 1,

and

[H†Z]0 = 1, [H†Z]1 =
2 + 4

2
, [H†Z]2 =

3 + 5 + 7

3
, [H†Z]3 =

6 + 8

2
, [H†Z]4 = 9.

Moreover, it is not hard to show that H†H = I, where I is the identity operator from CN to CN .
We are now in position to introduce the Cadzow’s algorithm which is based on the fact that

signals of interest arising from a wide range of applications have low rank Hankelization. That is,
for the denoising problem (1.1) we can assume rank(Hx) = r, where r � min(L,K). Additive
noise often increases the rank of Hx and hence it is very typical that rank(Hy) = min(L,K).
Consequently, an intuitive way of estimating x from y is to do rank reduction. Starting from
z0 = y, the Cadzow’s algorithm iteratively updates the estimate via the following rule:

zk+1 = H†TrHzk, k = 0, · · · . (1.4)
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Here Tr computes the truncated SVD of an L×K matrix, that is,

Tr(Z) =
r∑
j=1

σjujv
∗
j , where Z =

min(L,K)∑
j=1

σjujv
∗
j is an SVD with σ1 ≥ σ2 ≥ . . . ≥ σmin(L,K).

It is worth noting that the Cadzow’s algorithm is also known as multichannel singular spectrum
analysis (MSSA) which was proposed by Broomhead and King in 1986 for the analysis of time series
from dynamical system [3]. In particular, the first iteration of the Cadzow’s algorithm is usually
referred to as singular spectrum analysis (SSA) which is also very important in many applications;
see for example [16, 17, 13, 14].

We can also interpret the Cadzow’s algorithm as the method of alternating projections in the
matrix domain. To this end, letMr andMH be the set of rank-r and Hankel matrices, respectively.
For any matrix Z ∈ CL×K , it follows from the Eckart-Young theorem that the projection of Z onto
Mr is given by Tr(Z). Moreover, it can be easily verified that the projection of Z onto MH is
given by HH†Z. Therefore, if we let Zk = Hzk, after multiplying H on both sides of (1.4), it can
be seen that the Cadzow’s algorithm is equivalent to

Zk+1 = PMH
PMrZk, k = 0, · · · , (1.5)

where PMr and PMH
denote the projection onto Mr and MH , respectively.

As suggested in [21], the Cadzow’s algorithm can be adapted for signal recovery problems when
there are missing entries. Recall that x is our target signal. Suppose in some situations we are not
able to observe all the entries of x, but can only observe those entries with indices in Ω, where Ω
is a subset of {0, · · · , N − 1}. Moreover, let PΩ(x) denotes the samples of x on Ω, namely,

[PΩ(x)]j =

{
xj if j ∈ Ω

0 otherwise.

A natural question is whether it is possible to reconstruct x from PΩ(x). This is an ill-posed
problem without any restrictions on x. However, when Hx is low rank, it has been shown that
the missing entries can be completed through convex methods [7] as well as non-convex methods
[5]. In [21], a variant of the Cadzow’s algorithm was proposed for signal recovery. The algorithm
iteratively fills the missing entries in the following way: z0 = PΩ(x),

zk+1 = PΩ(x) + (I − PΩ)H†TrHzk, k = 0, · · · . (1.6)

Roughly speaking, the algorithm refines the estimation of the unknown entries using the entries of
H†TrHzk on Ωc. In addition, when noise exists on the observed entries, i.e., under the measurement
model PΩ(y) = PΩ(x) + PΩ(e), one can use an appropriate linear combination of PΩ(y) and
PΩ(H†TrHzk) to estimate PΩ(x) rather than simply filling back the noisy entries. Interested
readers are referred to [21] for details.

1.1 Examples where low rank Hankelization appears

As shown previously, the low rank structure of Hankel matrices plays a key role in the development
of the Cadzow’s algorithm and its variant. In this subsection we present several real examples
where low rank Hankelization appears.
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Time series satisfying an LRF Let x = [x0, · · · , xN−1]> be a time series of length N . We say
x satisfies a linear recurrent formula (LRF) if

xj = a1xj−1 + · · ·+ arxj−r, j = r, · · · , N − 1, (1.7)

for some coefficients a1, · · · , ar. Let L < N be an integer which is usually referred to as the window
length, and letK = N−L+1. Define the L-lagged vectors xj = [xj , · · · , xj+L−1]>, j = 0, · · · ,K−1.
If we construct an L×K matrix X as follows

X = [x0, · · · ,xK−1],

it is easy to see that X is indeed a Hankel matrix and in fact we have Hx = X. Moreover, since
x is a time series which obeys (1.7), Hx is a matrix of rank at most r. Time series satisfying an
LRF is a very important model for many real applications, see [13] for more details.

Spectrally sparse signals Consider the 1D spectrally sparse signal x(t) consisting of r complex
sinusoids without damping factors

x(t) =
r∑
j=1

dje
i2πfjt, (1.8)

where fj ∈ [0, 1) is the normalized frequency, and dk ∈ C is the corresponding complex amplitude.
Let x = [x(0), · · · , x(N − 1)]> be the discrete samples of x(t) at t ∈ {0, · · · , N − 1}. Letting
yj = ei2πfj , because x is obtained from a spectrally sparse signal, it can be shown that [18, 29] Hx
admits the Vandermonde decomposition of the form

Hx = ELDET
R,

where

EL =


1 1 · · · 1
y1 y2 · · · yr
...

...
...

...

yL−1
1 yL−1

2 · · · yL−1
r

 , ER =


1 1 · · · 1
y1 y2 · · · yr
...

...
...

...

yK−1
1 yK−1

2 · · · yK−1
r


and D is a diagonal matrix whose diagonal entries are d1, . . . , dr. The Vandermonde decomposition
of Hx implies that rank(Hx) = r provided dj 6= 0 and fj 6= fj′ when j 6= j′.

Periodic stream of Diracs In the previous two examples, low rank Hankelization occurs in
the time domain. There are also examples where low rank Hankelization occurs in the Frequency
domain. Consider the following 1-periodic of Diracs studied in [2]:

x(t) =

r∑
j=1

∑
j′∈Z

xjδ(t− tj − j′), (1.9)

where xj ∈ R and tj ∈ [0, 1). Since x(t) is 1-periodic, it can be represented using the Fourier series;
that is

x(t) =
∑
k∈Z

x̂ke
i2πkt, where x̂k =

r∑
j=1

xje
−i2πktj .
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Let x̂ be a vector consisting of N consecutive values of x̂k and define

x̂(ω) =
r∑
j=1

xje
−i2πtjω. (1.10)

We can view x̂ as a discrete sample vector from x̂(ω). Noticing the similarity between (1.8) and
(1.10), it is not hard to see that rank(Hx̂) = r.

1.2 Main contributions and outline

The main contributions of this paper are two-fold. Firstly, a Fast Cadzow’s algorithm has been
developed through the introduction of an additional subspace projection; see Section 2. Numerical
experiments in Section 3 establish the computational advantages of the Fast Cadzow’s algorithm
over the Cadzow’s algorithm. Secondly, to address the non-decreasing MSE issue of the Cadzow’s
and Fast Cadzow’s algorithms for signal denoising, a Gradient method and its accelerated variant
are introduced in Section 4. The algorithms are then tested for different denoising problems to
justify the effectiveness of the gradient algorithms. Section 5 concludes this paper with a short
discussion.

2 Fast Cadzow’s algorithm

In general, the complexity of computing the SVD of an L×K (L+K − 1 = N) matrix is O(N3)
when L and K are proportional to N , causing the computation of the SVD (i.e., the Tr operation)
to be the dominant cost in the Cadzow’s iteration (1.4). This has limited the computational
efficiency of the Cadzow’s algorithm, especially for high dimensional problems. In this section, we
present an accelerated variant of the Cadzow’s algorithm, dubbed Fast Cadzow’s algorithm, for
the denoising problem as well as the recovery problem from missing entires; see Algorithm 1 for
a formal description. We only focus on the discussion of the algorithm for the denoising problem
since the same idea is used for the recovery problem.

Algorithm 1 Fast Cadzow’s algorithm

Input: z0 = y
1: for k = 0, 1, · · · do
2: Compute a matrix subspace Tk
3: if {for signal denoising} then
4: zk+1 = H†TrPTkHzk
5: else {for recovery from missing entries}
6: zk+1 = PΩ(x) + (I − PΩ)H†TrPTkHzk
7: end if
8: end for

Output: zk

Recall that the denoising problem is about estimating a signal x from the noisy measurements
y = x + e. We assume the Hankel matrix Hx associated with x is rank r. The Fast Cadzow’s
iteration is overall similar to the Cadzow’s iteration, except that there is an additional projection
PTk in the Fast Cadzow’s algorithm, where PTk denotes the operator of projecting a matrix onto a
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Figure 1: Pictorial illustrations of Cadzow’s algorithm (left) and Fast Cadzow’s algorithm (right).

subspace Tk; see (2.2) on how to compute PTk for a particular choice of Tk. In other words, after
the Hankel matrix Hzk is constructed, we first project it onto Tk, followed by the truncation to the
best rank r approximation. The motivation behind Algorithm 1 is that after PTk is introduced the
resulting matrix can be more structured. Thus it can be expected that the SVD of the matrix can
be computed in a fast way. Notice that if we choose Tk to be CL×K in each iteration, Algorithm 1
is indeed the Cadzow’s algorithm; see Figure 1 for pictorial illustrations of the Cadzow’s algorithm
and the Fast Cadzow’s algorithm. Next, we will see how to choose the subspace Tk in a clever way
such that the truncation operator Tr can be performed efficiently.

2.1 Choice for Tk

Our choice of Tk is inspired by the Riemannian optimization methods for low rank matrix recovery
[28, 27], which is closely related to the manifold structure of low rank matrices. To motivate
this choice, assume zk has already been computed via zk = H†TrPTk−1

Hzk−1 in the (k − 1)-th
iteration. Let Lk = TrPTk−1

Hzk−1. Noticing that Lk is a matrix of rank r, it has the reduced SVD
Lk = UkΣV ∗k , where Uk and Vk are L× r and K× r orthogonal matrices, respectively. In the k-th
iteration, Tk is selected to be the direct sum of the column and row subspaces of Lk, i.e,.

Tk = {UkB
∗ + CV ∗k | B ∈ CK×r, C ∈ CL×r}. (2.1)

From the perspective of differential geometry, the set of fixed rank r matrices forms a smooth
manifold and Tk is the tangent space of the manifold at Lk.

Given a matrix Z ∈ CL×K , the projection of Z onto Tk is given by

PTk(Z) = UkU
∗
kZ + ZVkV

∗
k −UkU

∗
kZVkV

∗
k . (2.2)

In the first iteration (i.e., k = 0) of Algorithm 1, we simply choose T0 ∈ CL×K . That is, the first
iteration of the Fast Cadzow’s algorithm coincides with that of the Cadzow’s algorithm, which is an
SSA step. Noting that zk = H†Lk and HH†Lk ≈ Lk when Lk is close to a Hankel matrix, we have
Hzk ≈ Lk in this situation. It follows that PTkHzk ≈ Hzk since Lk ∈ Tk. Therefore, the projection
of Hzk onto Tk can capture most of its energy and we can expect that the Fast Cadzow’s algorithm
should exhibit similar behavior to the Cadzow’s algorithm. The numerical results in Section 3 will
confirm this intuition.
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2.2 Computational complexity

The true novelty of introducing the additional projection PTk is that after this projection the SVD
of the matrix can be computed more efficiently. In a nutshell, the SVD of an L×K matrix can be
reduced to the SVD of a 2r × 2r matrix. In this subsection we will investigate the computational
complexity of the Fast Cazdow’s algorithm, together with the details for computing the SVD.

For ease of exposition we split the single Fast Cadzow’s iteration into three steps:
Wk = PTkHzk
Lk+1 = TrWk

zk+1 = H†Lk+1.

(2.3)

Letting Hk = Hzk which will not be formed explicitly, by (2.2), we have

Wk = UkU
∗
kHk + HkVkV

∗
k −UkU

∗
kHkVkV

∗
k

= UkU
∗
kHkVkV

∗
k + UkU

∗
kHk(I − VkV

∗
k ) + (I −UkU

∗
k )HkVkV

∗
k

= UkGV ∗k + UkB
∗ + CV ∗k , (2.4)

where G = U∗kHkVk, B = (I − VkV
∗
k )H∗kUk and C = (I − UkU

∗
k )HkVk. In a practical im-

plementation Wk will be stored in the form of (2.4). Since Hk is a Hankel matrix, both HkVk
and H∗kUk can be computed using r fast matrix-vector multiplications without forming Hk. This
costs O(Nr logN) flops assuming L ∼ K ∼ N . Once HkVk and H∗kUk are known, G, B and
C can be computed using a few matrix-matrix products with O(Nr2) flops. Thus, it requires
O(Nr2 +Nr logN) flops to compute G, B and C in (2.4).

Next we show how to reduce the SVD of Wk to the SVD of a 2r × 2r matrix starting from
the decomposition (2.4). Let B = Q1R1 and C = Q2R2 be the QR decompositions of B and C,
respectively. Then, it is not hard to see that

Q1 ⊥ Vk, Q2 ⊥ Uk.

Moreover, we have

Wk = UkGV ∗k + UkR
∗
1Q
∗
1 + Q2R2V

∗
k

=
[
Uk Q2

] [G R∗1
R2 0

] [
Vk Q1

]∗
. (2.5)

Let M be the middle 2r × 2r matrix and suppose its SVD is given by[
G R∗1
R2 0

]
= UGΣGV

∗
G .

Since both
[
Uk Q2

]
and

[
Vk Q1

]
are orthogonal matrices, the SVD of Wk is given by

Wk =
([
Uk Q2

]
UG

)
ΣG

([
Vk Q1

]
VG
)∗
.

From the above discussion, we can see that computing Lk+1 from Wk (or equivalently, computing
the SVD of Wk) requires O(Nr2 + r3) flops which account for the QR decompositions of B and C,
and the SVD of M . Moreover, when L = K (i.e., matrices are square), nearly half computational
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costs and storage can be saved by using the Takagi factorization. Interested readers can find the
details in [5].

It remains to investigate the cost for computing zk+1 = H†Lk+1. Let Lk+1 = Uk+1Σk+1V
∗
k+1

be the SVD of Lk+1 which can be obtained by truncating the SVD of Wk. We have

H†Lk+1 =
r∑
j=1

Σk+1(j, j)H† [Uk+1(:, j) (Vk+1(:, j))∗] .

Noting that[
H† [Uk+1(:, j) (Vk+1(:, j))∗]

]
a

=
1

wa

∑
p+q=a

Uk+1(p, j)V k+1(q, j), a = 0, · · · , N − 1,

where wa is defined in (1.3), H†Lk+1 can be computed by fast convolution using O(N logN) flops.
Thus, computing zk+1 from Lk+1 requires O(Nr logN) flops.

Putting it all together, the dominant per iteration computational cost of the Fast Cadzow’s
algorithm is O(Nr2 + Nr logN + r3). In addition, O(Nr) space is required to store the matrices
appearing in the SVD and the QR decompositions.

2.3 High dimensional problems

We have presented the Cadzow’s and Fast Cadzow’s algorithms for the 1D problem. However, the
algorithms can also work for high dimensional problems based on the multi-fold Hankel structures.
For ease of exposition we discuss the two-dimensional case briefly but emphasize that the situation
in general higher dimensional cases is similar.

Let X ∈ RN1×N2 be a 2D signal, and let (L1,K1) and (L2,K2) be two pairs of positive numbers
which satisfy L1 + K1 − 1 = N1 and L2 + K2 − 1 = N2. The Hankel matrix corresponding to X,
denoted HX, is defined as follows:

HX =


HX(0, :) HX(1, :) HX(2, :) · · · HX(K1 − 1, :)
HX(1, :) HX(2, :) HX(3, :) · · · HX(K1, :)
HX(2, :) HX(3, :) HX(4, :) · · · HX(K1 + 1, :)

...
...

...
...

...
HX(L1 − 1, :) HX(L1, :) HX(L1 + 1, :) · · · HX(N1 − 1, :)

 ,

where HX(i, :) ∈ RL2×K2 is the Hankel matrix for the i-th row of X. In other words, we first form
the Hankel matrix for each row of X and then form the block Hankel matrix HX using the row
Hankel matrices.

AssumingHX is a low rank matrix, the Cadzow’s and Fast Cadzow’s algorithms can be similarly
developed for the 2D denoising and reconstruction problems. The details will be omitted. Moreover,
there are real signals whose Hankel matrices are low rank, for example if X is a 2D spectrally sparse
signal or a frequency slice of seismic data after the Fourier transform [18, 29, 20].

3 Numerical Experiments

In this section we evaluate the empirical performance of the Fast Cadzow’s algorithm against the
Cadzow’s algorithm. In our implementations of the algorithms L and K (or Li and Ki for higher
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dimensions) are chosen in such a way that the resulting Hankel matrix is approximately square.
Numerical results demonstrate that the two algorithms exhibit similar denoising and reconstruction
performance while the Fast Cadzow’s algorithm can be substantially faster. We compare the two
algorithms on three different settings:

• in Subsection 3.1, the algorithms are tested on randomly generated spectrally sparse signals;

• in Subsection 3.2, the algorithms are tested on periodic stream of Diracs in which the low
rank structure is hidden in the Fourier domain;

• in Subsection 3.3, the algorithms are tested on seismic data denoising and reconstruction.

The experiments are executed from Matlab 2018a on a desktop with two Inter i5 CPUs (1.60GHz
and 1.80GHz respectively) and 8GB memory.

To utilize the fast Hankel matrix-vector multiplication, we use the Krylov subspace-based SVD
solver from the PROPACK package [19] to compute the partial SVD of Hzk in the Cadzow’s algo-
rithm. It would be difficult to summarize the computational cost of such a method for computing
the partial SVD and optimistically we can say that the cost is O(Nr2 +Nr logN) flops. Though it
has the same order as the SVD method for the Fast Cadzow’s algorithm, it is worth noting that the
constant hidden in O(Nr2 + Nr logN) is not clear since the performance of the Krylov’s method
depends heavily on properties of the input matrix and on the amount of effort spent to stabilize the
algorithm [15]. In contrast, the constants in the costs O(Nr2) and O(Nr logN) for computing the
SVD in the Fast Cadzow’s algorithm are exactly known since for example O(Nr logN) only comes
from the computations of HkVk, H∗kUk and H†Lk. Moreover, our numerical experiments show
that the Fast Cadzow’s algorithm is still two to four times faster even after the fast partial SVD
package is used for the Cadzow’s algorithm.

Remark on the application of randomized SVD in Cadzow’s algorithm We may also
use randomized SVD [23, 15] to compute the low rank approximation of Hzk in the Cadzow’s
algorithm. In fact, both randomized SVD and the accelerated method used in the Fast Cadzow’s
algorithm are based on the subspace projection. The two methods differ mainly in the manner they
choose the subspace. The randomized SVD computes a subspace in each iteration randomly while
the method used in the Fast Cadzow’s algorithm exploits the geometric structure of the low rank
matrix manifold and utilizes the tangent space in each iteration. Letting Hk = Hzk, consider the
following randomized SVD procedure in [15] for computing a good rank-r approximation of Hzk:

1. Generate an L× 2r random Gaussian matrix Ω and compute Z = (HkH
∗
k)qHkΩ.

2. Compute the reduced QR factorization of Z: [Q,R] = qr(Z).

3. Compute the reduced SVD of B = Q∗A: [UB,ΣB,VB] = svd(B).

4. Construct the rank-r approximation of Hk as follows: Hk ≈ [Uk,Σk,Vk] with Uk = QUB,
Σk = ΣB, and Vk = VB.

The matrix power (HkH
∗
k)q in the first step is introduced to accelerate the decay of the singular

spectrum of the matrix, and typical choices for q are q = 1 or q = 2 in practice. By counting the
number of flops, it is not hard to see that the cost of computing the left and right matrices in
(2.5) is overall similar to that of computing HkΩ and B in the above randomized SVD procedure.
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However, due to the extra cost incurred by the matrix power (HkH
∗
k)q and the fact that B is an

2r ×K matrix while the middle matrix in (2.5) is only a 2r × 2r matrix, the total computational
cost of the randomized SVD is higher than that of the accelerated method in the Fast Cadzow’s
algorithm. Moreover, since B becomes an unstructured matrix after projection, we cannot apply
the fast matrix-vector product when computing its partial SVD. Indeed, our numerical tests show
that the Cadzow’s algorithm with the randomized SVD is not as efficient as the Cadzow’s using the
PROPACK package for the computation of the partial SVD. Here we will omit the computational
results of the Cadzow’s algorithm with the randomized SVD.

3.1 Spectrally sparse signal denoising and reconstruction

The definition of spectrally sparse signals can be found in Section 1.1. We first test the performance
of the algorithms on signal denoising. The test signals are generated in the following way: the
frequency of each harmonic is uniformly sampled from [0, 1), and the argument of the weight is
uniformly sampled from [0, 2π) while the amplitude is chosen to be 1+100.5c with c being uniformly
sampled from [0, 1].

Table 1: Average computational time (seconds), average number of iterations and average mean
square error of Cadzow and Fast Cadzow over 10 random problem instances per (N, r) for N ∈
{4096, 128× 128, 64× 64× 64} and r ∈ {5, 10, 20}.

r 5 10 20

MSE Iter Time MSE Iter Time MSE Iter Time

N = 4096

Cadzow 3.16e-02 10.3 0.48 4.17e-02 11.1 0.80 6.15e-02 11.4 1.75

Fast Cadzow 3.16e-02 10.3 0.19 4.17e-02 11.1 0.38 6.15e-02 11.4 0.81

N = 128× 128

Cadzow 2.02e-02 14.6 0.61 2.95e-02 15.1 1.09 4.19e-02 15.8 2.98

Fast Cadzow 2.02e-02 14.6 0.28 2.95e-02 15.1 0.47 4.19e-02 15.8 1.04

N = 64× 64× 64

Cadzow 0.70e-02 13.1 10.45 0.96e-02 13.8 18.18 1.35e-02 14.0 40.98

Fast Cadzow 0.70e-02 13.1 4.61 0.96e-02 13.8 9.66 1.35e-02 14.0 20.25

We consider the additive noise model in which a true signal x is corrupted by a noisy vector e
in the form of

e = ε · ‖x‖ · w

‖w‖
,

where ε is referred to the noise level and w follows the standard multivariate normal distribution.
Letting zk be the output of the algorithms, the mean squared error (MSE) defined by

MSE =
‖zk − x‖
‖x‖

will be used to evaluate their performance. Tests are conducted for 1D, 2D and 3D spectrally sparse
signals with N ∈ {4096, 128×128, 64×64×64}, r ∈ {5, 10, 20}, and ε = 0.5. The Cadzow’s and Fast
Cadzow’s algorithms are terminated whenever ‖zk+1 − zk‖/‖zk‖ ≤ 10−6. For each pair of (N, r)
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10 randomly generated problem instances are tested. Then we compute the average computation
time, the average number of iterations and the average MSE for each algorithm; see Table 1. From
the table we can see that the Cadzow’s and Fast Cadzow’s algorithms achieve similar MSE and it
also takes them roughly the same number of iterations to converge. However, the Fast Cadzow’s
algorithm is at least two times faster than the Cadzow’s algorithm since the additional subspace
projection can reduce the computational cost of the SVD.

Table 2: Average computational time (seconds), average number of iterations and average mean
square error of Cadzow and Fast Cadzow over 10 random problem instances per (n, r) for N ∈
{4096, 128× 128, 64× 64× 64} and r ∈ {5, 10, 20}.

r 5 10 20

MSE Iter Time MSE Iter Time MSE Iter Time

N = 4096

Cadzow 8.47e-11 35.9 1.85 9.09e-11 38.0 3.08 1.10e-10 41.1 8.43

Fast Cadzow 8.47e-11 35.9 0.61 9.09e-11 38.0 1.35 1.10e-10 41.1 3.45

N = 128× 128

Cadzow 7.45e-11 35.3 1.50 8.63e-11 36.4 2.73 9.63e-11 38.2 8.00

Fast Cadzow 7.45e-11 35.3 0.63 8.63e-11 36.4 1.09 9.63e-11 38.2 2.57

N = 64× 64× 64

Cadzow 7.12e-11 34.0 30.08 7.55e-11 34.1 47.98 9.02e-11 34.2 108.86

Fast Cadzow 7.12e-11 34.0 11.61 7.55e-11 34.1 22.76 9.02e-11 34.2 47.28

Next we compare the two algorithms on reconstruction problems when there are missing entries.
The overall setup is similar to the denoising case except that instead of having x being contaminated
by additive noise we only observe 50% of its entries uniformly at random. Note that the variant of
the Cadzow’s algorithm for handling missing entries is presented in (1.6). In the tests the algorithms
are terminated when ‖zk+1−zk‖/‖zk‖ ≤ 10−10. The average computational results over 10 random
simulations are presented in Table 2. Clearly, both of the algorithms are able to exactly recover
the missing entries and the Fast Cadzow’s algorithm is substantially faster.

The algorithms can also handle missing entries and additive noise simultaneously. The basic
idea is to make an appropriate linear combination between observed measurements and the update.
More precisely, we consider the following variants of the algorithms:

(Cadzow) zk+1 = α · PΩ(y) + (I − α · PΩ)H†TrHzk, (3.1)

(Fast Cadzow) zk+1 = α · PΩ(y) + (I − α · PΩ)H†TrPTkHzk, (3.2)

where α ≥ 0 is a tuning parameter. In our tests we choose α = 0.8 as suggested by Gao et al.
[10], and the algorithms are terminated when ‖zk+1 − zk‖/‖zk‖ ≤ 10−6. The numerical results for
this setting are summarized in Table 3. Again, the performance of the Fast Cadzow’s algorithm is
comparable to that of the Cadzow’s algorithm but the former one is computationally more efficient.

3.2 Denoising in the reconstruction of periodic stream of Diracs

Methods for efficient signal acquisition and reconstruction are fundamental in signal processing. In
[2], a novel paradigm has been proposed for sampling and reconstruction of a τ -periodic stream of
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Table 3: Average computational time (seconds), average number of iterations and average mean
square error of Cadzow and Fast Cadzow over 10 random problem instances per (n, r) for N ∈
{4096, 128× 128, 64× 64× 64} and r ∈ {5, 10, 20}.

r 5 10 20

MSE Iter Time MSE Iter Time MSE Iter Time

N = 4096

Cadzow 4.32e-02 27.5 1.10 6.13e-02 28.5 1.83 8.40e-02 30.4 5.08

Fast Cadzow 4.32e-02 27.5 0.43 6.13e-02 28.5 0.95 8.40e-02 30.5 2.54

N = 128× 128

Cadzow 2.86e-02 27.0 1.13 4.02e-02 27.6 1.77 5.91e-02 28.8 4.35

Fast Cadzow 2.86e-02 27.0 0.50 4.02e-02 27.7 0.84 5.91e-02 29.2 1.84

N = 64× 64× 64

Cadzow 1.01e-02 20.3 15.33 1.38e-02 20.8 24.55 1.97e-02 21.0 53.39

Fast Cadzow 1.01e-02 20.3 6.95 1.38e-02 20.8 13.50 1.97e-02 21.0 28.23

x(t)

Convolution

yn

Additive

ỹn
Denoise

ˆ̃yk

Cadzow/

of ŷk or x̂kFFT

Fast Cadzow

Annihilating
filter

xj

tj

noise

with sinc kernel

Estimate

Figure 2: Sampling and reconstruction of 1-periodic stream of Diracs.

Diracs. The new paradigm can achieve the minimum samples at the signal’s rate of innovation.
The overall sampling and reconstruction procedure is illustrated in Figure 2.

For simplicity consider the 1-periodic stream of Diracs x(t) described in (1.9). Noticing that
xj and tj (j = 1, . . . , r) are the only 2r unknowns in x(t), the goal is to devise a sampling and
reconstruction scheme such that xj and tj can be retrieved from about 2r samples. In [2], the
signal is first convolved with a sinc kernel of bandwidth B where B is an odd integer and then the
samples are obtained at a equally-spaced grid. This can be formally expressed as

yn = 〈x(t), sinc(B(nT − t))〉 =
r∑
j=1

xjφ(nT − tj), n = 1, 2, · · ·N, (3.3)

where T = 1/N , and φ(t) is the Dirichlet kernel:

φ(t) =
sin(πBt)

B sin(πt)
. (3.4)

A annihilating filter method has been proposed to reconstruct x(t) from the N samples {yn}.
A key ingredient in the method is the construction of a filter which can annihilate e−i2πtj . Recall
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that x(t) is a periodic signal with discretized Fourier coefficients {x̂k}. It has been shown in [2] that
the annihilation filter can be identified as a null space vector of a Toeplitz matrix involving a set
of consecutive values of x̂k. Then the reconstruction of x(t) from the samples finally boil down to
the problems of estimating x̂k from yn. To this end, it is shown in [2] that the Fourier coefficients
{ŷk} of {yn} coincide with a subset of {x̂k}.

If there is no noise, the annihilating filter method is able to reconstruct x(t) exactly from the
minimum number of measurements. However, noise is prevalent during the sampling process. We
will consider the additive noise model; namely, ỹn = yn + noise is observed. When noise exists
a common strategy is to oversample the measurements and then do denoising. This is where the
Cadzow’s or Fast Cadzow’s algorithm plays a role. In Section 1.1 we have shown that the Hankel
matrix corresponding to a subset of x̂k is low rank. Noticing the agreement between {ŷk} and {x̂k},
it follows immediately that the Hankel matrix associated with {ŷk} is also low rank. Therefore, the
Cadzow’s or Fast Cadzow’s algorithm can be used for the task of denoising.

Table 4: Average computational time (seconds), average number of iterations and average mean
square error of Cadzow and Fast Cadzow over 1500 random problem instances for ε ∈ {0.1, 0.3, 0.5}.

ε 0.1 0.3 0.5

MSE Iter Time MSE Iter Time MSE Iter Time

Cadzow 5.62e-02 16.35 0.0234 1.79e-01 17.57 0.0251 3.29e-01 18.43 0.0266

Fast Cadzow 5.62e-02 16.42 0.0055 1.79e-01 17.69 0.0060 3.29e-01 18.64 0.0065

The denoising problem studied here differs from the one in the last subsection as the Hanke-
lization of the signal is not low rank but the Hankelization of its Fourier coefficients is low rank.
Next we compare the performance of the Cadzow’s and Fast Cadzow’s algorithms in this situation
following the setup from [2]. Tests are conducted for x(t) with r = 7, where xj is uniformly sam-
pled from [0.5, 1.5] and tj is uniformly sampled from [0, 1). The window length of the sinc kernel
is chosen to B = 71 and N = B samples are observed. We test three different noise levels and
1500 randomly generated problem instances are simulated for each noise level. The algorithms
are terminated when ‖zk+1 − zk‖/‖zk‖ ≤ 10−6. The average computational results are shown in
Table 4. Even though both of the algorithms are very fast in the experiments due to the small
problem size, the Fast Cadzow’s algorithms is about four times faster.

3.3 Seismic data denoising and reconstruction

Seismic denoising and seismic recovery from missing traces are two major tasks in seismic data
processing and different techniques have been developed. The Cadzow’s algorithm which was
called the f -x eigen filtering has been proposed to attenuate random noise from seismic records by
Trickett [24, 22, 25, 26, 21]. It is based on the idea that if seismic data consists of r linear events
then the associated Hankel matrices of the constant-frequency slices are of rank r. The algorithm
was extended in [21] to the problem of reconstructing missing traces (see (1.6)), which can be viewed
as a non-convex version of the method of projection onto convex sets (POCS, [1]). Moreover, a
generalized version of the algorithm was also presented in [21] for simultaneously denoising and
reconstruction of the seismic data, which is actually the one listed in (3.1).

As an accelerated variant of the Cadzow’s algorithm, the Fast Cadzow’s algorithm is equally
applicable for seismic data processing. We compare the performance of the two algorithms on a
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4D volume with 8× 8× 8× 8 traces and each trace contains 512 time samples. Thus, this is a 5D
data array with one time dimension and four spatial dimensions. The data consists of three linear
events, so we set r = 3 in the algorithms. Tests have been conducted for the denoising problem with
ε = 1 as well as for the recovery problem with 50% missing traces. As is typical in the literature
on seismic data processing, the algorithms are run for a total number of 10 iterations. The MSE
and computational time are presented in Table 5. In addition, the seismic profile of one data
slice with three fixed spatial dimensions has been plotted in Figure 3 and 4 for seismic denoising
and recovery, respectively. From the table and the figures we can see that the two algorithms
have comparable performance. However, the table does show that the MSE of the Fast Cadzow’s
algorithm is slightly better than that of the Cadzow’s algorithm for seismic denoising. Moreover,
the Fast Cadzow’s algorithm is two times faster for the denoising problem and four times faster for
the recovery problem.

Table 5: Mean square error and computational time (seconds) of Cadzow and Fast Cadzow over
seismic denoising and seismic recovery from missing traces.

Seismic denoising Seismic recovery

MSE Time MSE Time

Cadzow 9.58e-02 78.34 9.88e-04 139.13

Fast Cadzow 8.88e-02 37.08 9.88e-04 34.76
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Figure 3: A slice of (a) noiseless data, (b) noisy data, (c) data returned by Cadzow denoising,
and (d) data returned Fast Cadzow denoising. Vertical: time dimension; Horizontal: one spatial
dimension with the other three being held fixed.
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Figure 4: A slice of (a) data with missing traces, (b) data returned by Cadzow recovery, and (c) data
returned by Fast Cadzow recovery. Vertical: time dimension; Horizontal: one spatial dimension
with the other three being held fixed.

4 A gradient variant for denoising

4.1 Motivation and new algorithms

When applying the Cadzow’s algorithm or the Fast Cadzow’s algorithm for signal denoising, it has
been observed that the MSE does not always decrease as the algorithm iterates. For example, in
[25] Trickett notes that

Cadzow recommended iterating between the rank reduction and averaging steps, but I
have not found it to give better results for this application.

Gillard also notes in his paper [11] that

In the simulation study within this paper, it has been demonstrated that repeated itera-
tions of Cadzows basic algorithm (in an attempt to separate the noise from the signal)
may result in an increased RMSE from the true signal.

As an illustration, the MSE plots of the Cadzow’s and Fast Cadzow’s algorithms corresponding to
two random instances on 1D spectrally sparse signal denoising with N = 256, r = 5, and ε = 0.5
are presented in Figure 5. For both algorithms, we can see that the MSE in the left plot decreases
but the MSE in the right plot increases. In other words, it is possible that the MSE of the two
algorithms may increase for signal denoising, which motivates us to find some new alternatives.

To explain this phenomenon, we will study the equivalent form of the Cadzow’s algorithm in
(1.5). It is trivial that the update can be rewritten as

Zk+1 = PMH
PMrZk
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Figure 5: (a) MSE decreasing case, (b) MSE increasing case.

= PMH
PMr(Zk + t(Y −Zk)), t = 0,

where Zk = Hzk and Y = Hy = H(x + e). Thus, the Cadzow’s algorithm can be interpreted as a
projected gradient method for the following optimization problem

min
1

2
‖Z − Y ‖2F subject to rank(Z) ≤ r and Z is Hankel, (4.1)

though with a step length t = 0. Note that the objective function in the above optimization problem
is equal to

N−1∑
a=0

wa|za − ya|2,

where wa is the number of entries on the a-th skew-diagonal of an L×K matrix; see (1.3). Thus,
the Cadzow’s algorithm for signal denoising indeed solves an optimization problem which puts
different weights on different entries of the signal. Moreover, the Fast Cadzow’s algorithm should
share the same property as the Cadzow’s algorithm. Since the weights for the middle entries are
larger than those at the two ends, one may expect that after the Cadzow’s or Fast Cadzow’s
denoising the component-wise MSE (defined as |zk(i)−x(i)|/|x(i)|, i = 0, · · · , N −1) of the middle
entries should be smaller. The plot in Figure 6 confirms this speculation, which shows the average
component-wise MSE out of 1500 random tests after applying the Cadzow’s and Fast Cadzow’s
algorithms for 1D spectrally sparse signal denoising with N = 256, r = 5, and ε = 0.5.

In order to address the unbalanced weight issue, we consider the following optimization problem
with re-weighted objective function:

min
1

2
‖
√
W � (Z − Y )‖2F subject to rank(Z) ≤ r and Z is Hankel, (4.2)

where
√
W means taking the square-root of each entry of W , � denotes the component-wise
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Figure 6: The average component-wise MSE after the Cadzow’s and Fast Cadzow’s denoising.
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Algorithm 2 Gradient Method

Input: z0 = y
1: for k = 0, 1, · · · do
2: zk+1 = H†TrH

(
zk + 1

D � (y − zk)
)

3: end for
Output: zk

A projected gradient method with step length t = 1 can then be developed for (4.2) as follows:

Zk+1 = PMH
PMr(Zk + W � (Y −Zk)).

The equivalent form of the algorithm in the vector domain, dubbed Gradient method, is presented
in Algorithm 2, where 1/D = [1/w0, · · · , 1/wN−1]>.

Of course we can use the same technique as in the Fast Cadzow’s algorithm to accelerate
Algorithm 2, leading to the Fast Gradient method; see Algorithm 3. In the remainder of this
section we compare the algorithms on different signal denoising problems, focusing on the denoising
performance of the algorithms. About the computation efficiency, it is clear that the dominant per
iteration computational cost of the Gradient method is the same as that of the Cadzow’s algorithm,
and the dominant per iteration computational cost of the Fast Gradient method is the same as that
of the Fast Cadzow’s algorithm.
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Algorithm 3 Fast Gradient Method

Input: z0 = y
1: for k = 0, 1, · · · do
2: Compute a matrix subspace Tk
3: zk+1 = H†TrPTkH

(
zk + 1

D � (y − zk)
)

4: end for
Output: zk

4.2 Empirical evaluations

We first compare the four algorithms, Cadzow, Fast Cadzow, Gradient and Fast Gradient, on
spectrally sparse signal denoising (see Section 3.1) with N ∈ {256, 16× 16, 16× 16× 16}, r = 5 and
noise level ε = 0.5. All the algorithms are run for the maximum of 15 iterations. For each N , 1500
random problem instances are tested. The average per iteration MSE of each algorithm against the
number of iterations is presented in Figure 7. Overall the MSE of the Cadzow’s and Fast Cadzow’s
algorithms for the 1D denoising problem increases as the algorithm iterate. In contrast, the MSE
of the Gradient and Fast Gradient methods decreases as the algorithms iterate. For the 2D and
3D denoising problems, though on average the MSE of all the algorithms shows a decreasing trend,
the Gradient and Fast Gradient methods can achieve smaller MSE.
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Figure 7: Average per iteration MSE out of 1500 random tests for spectrally sparse signal denoising.

In addition, we also examine each individual test and consider one to be a positive test if the
MSE of an algorithm at the last iteration is smaller than that at the first iteration. The portion of
positive tests for each test algorithm is presented in Table 6. It can be observed that the number
of positive tests of the Gradient and Fast Gradient methods is larger than that of the Cadzow’s
and Fast Cadzow’s algorithms, especially for the 1D denoising problem.

Table 6: Portion of positive tests for the four test algorithms.

N = 256 N =16×16 N = 16×16×16

Cadzow 0.4200 0.8300 0.9907

Fast Cadzow 0.4193 0.8293 0.9907

Gradient 0.9947 1.0000 1.0000

Fast Gradient 0.9947 1.0000 1.0000

It is also interesting to compare the average component-wise MSE of the outputs of the four
algorithms; see Figure 8 for the 1D case. The figure shows that, to some extent, the Gradient and
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Fast Gradient methods are able to alleviate the issue of unbalanced weights over different entries.
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Figure 8: The average component-wise MSE after denoising.

Next we test the algorithms for the denoising problem arising from the reconstruction of Diracs;
see Section 3.2. Roughly speaking, the Fourier transform of the test signal has a low rank Han-
kelization. Thus we first do denoising in the Frequency domain and then get the denoised signal
via the inverse FFT. Here we repeat 1500 random tests for the noise level ε = 0.5. The average
MSE against the number of iterations is plotted in Figure 9. Meanwhile, the portion of positive
tests of each algorithm is contained in Table 7. Obviously, the average MSE of the Gradient and
Fast Gradient methods decreases while the MSE of the Cadzow’s and Fast Cadzow’s algorithms
increases, and there are more positive tests after the Gradient and Fast Gradient denoising. More-
over, Figure 9 also shows the denoising results of the four different algorithms in the time domain
from a single random test. It can be seen that the Gradient and Fast Gradient methods exhibit
better denoising performance in the region where t < 0.4.
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Figure 9: Left: Average per iteration MSE out of 1500 random tests for denoising Dirac samples
in the Frequency domain; Right: Denoising results in the time domain.

Lastly, we compare the algorithms on the seismic denoising problem from Section 3.3. The
MSE plot against the number of iterations is presented in Figure 10. The plot shows that overall
all the algorithms have decreasing MSE, but the MSE of the Gradient and Fast Gradient methods
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Table 7: Portion of positive tests for the four test algorithms.

Cadzow Fast Cadzow Gradient Fast Gradient

N = 71 0.3013 0.2887 0.8167 0.8240

is smaller. It is also worth noting that for seismic data denoising the accelerated algorithms have
noticeable smaller MSE than their non-accelerated counterparts.

0 5 10 15 20

Iter

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

M
S

E
Cadzow

Fast Cadzow

Gradient

Fast Gradient

Figure 10: MSE for seismic data denoising.

5 Conclusion

In this paper we consider the signal denoising and recovery problems for signals corresponding
to low rank Hankel matrices. New algorithms have been proposed which can complete the tasks
more efficiently and effectively. For future work, we would like to study the theoretical convergence
analysis of the proposed algorithms under certain random models. It may also be interesting to see
whether it is possible to design better adaptive re-weighting schemes for the gradient methods.
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