Skip to main content
Log in

Coupled Iterative Analysis for Stationary Inductionless Magnetohydrodynamic System Based on Charge-Conservative Finite Element Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper considers charge-conservative finite element approximation and three coupled iterations of stationary inductionless magnetohydrodynamics equations in Lipschitz domain. Using a mixed finite element method, we discretize the hydrodynamic unknowns by stable velocity-pressure finite element pairs, discretize the current density and electric potential by \(\varvec{H}(\mathrm{div},\varOmega )\times L^{2}(\varOmega )\)-comforming finite element pairs. The well-posedness of this formula and the optimal error estimate are provided. In particular, we show that the error estimates for the velocity, the current density and the pressure are independent of the electric potential. With this, we propose three coupled iterative methods: Stokes, Newton and Oseen iterations. Rigorous analysis of convergence and stability for different iterative schemes are provided, in which we improve the stability conditions for both Stokes and Newton iterative method. Numerical results verify the theoretical analysis and show the applicability and effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gerbeau, J., Le Bris, C., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2006)

    MATH  Google Scholar 

  2. Moreau, R.: Magneto-Hydrodynamics. Kluwer Academic Publishers, Berlin (1990)

    Book  Google Scholar 

  3. Gunzburger, M., Meir, A., Peterson, J.: On the existence, uniquess and finite element approximation of solutions of the equations of sationary, incompressible magnetohydrodynamic. Math. Comput. 56, 523–563 (1991)

    Article  Google Scholar 

  4. Abdou, M.A., Ying, A., Morley, N., et al.: On the exploration of innovative concepts for fusion chamber technology. Fusion Eng. Des. 54, 181–247 (2001)

    Article  Google Scholar 

  5. Davidson, P.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  6. Li, L., Ni, M.: A charge-conservative finite element method for inductionless MHD equations. Part I: convergence. SIAM J. Sci. Comput. 41, B796–B815 (2019)

    Article  MathSciNet  Google Scholar 

  7. Planas, R., Badia, S., Codina, R.: Approximation of the inductionless MHD problem using a stabilized finite element method. J. Comput. Phys. 230, 2977–2996 (2011)

    Article  MathSciNet  Google Scholar 

  8. Badia, S., Martín, Alberto F., Planas, R.: Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem. J. Comput. Phys. 274, 562–591 (2014)

    Article  MathSciNet  Google Scholar 

  9. Peterson, J.S.: On the finite element approximation of incompressible flows of an electrically conducting fluid. Numer. Methods Partial Differ. Equ. 4, 57–68 (1988)

    Article  MathSciNet  Google Scholar 

  10. Layton, W., Lenferink, H.W.J., Peterson, J.S.: A two-level Newton, finite element algorithm for approximating electrically conducting, incompressible fluid flows. Comput. Math. Appl. 28, 21–31 (1994)

    Article  MathSciNet  Google Scholar 

  11. Ervin, V.J., Layton, W.J.: A posteriori error estimation for two level discretizations of flows of electrically conducting, incompressible fluids. Comput. Math. Appl. 31, 105–114 (1996)

    Article  MathSciNet  Google Scholar 

  12. Yuksel, G., Ingram, R.: Numerical analysis of a finite element Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers. Int. J. Numer. Anal. Model. 10, 74–98 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Yuksel, G., Isik, O.R.: Numerical analysis of Backward-Euler discretization for simplified magnetohydrodynamic flows. Appl. Math. Model. 39, 1889–1898 (2015)

    Article  MathSciNet  Google Scholar 

  14. M, Ni., Munipalli, R., Morley, N.B., et al.: A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: on a rectangular collocated grid system. J. Comput. Phys. 227, 174–204 (2007)

    Article  MathSciNet  Google Scholar 

  15. Ni, M., Munipalli, R., Huang, P., et al.: A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: on an arbitrary collocated mesh. J. Comput. Phys. 227, 205–228 (2007)

    Article  MathSciNet  Google Scholar 

  16. Long, X.: The analysis of finite element method for the inductionless MHD equations. PhD Dissertation, University of Chinese Academy of Sciences, pp. 1–123 (2019)

  17. Hiptmair, R., Li, L., Mao, S., Zheng, W.: A fully divergence-free finite element method for magnetohydrodynamic equations. Math. Models Methods Appl. Sci. 28, 1–37 (2018)

    Article  MathSciNet  Google Scholar 

  18. Hu, K., Ma, Y., Xu, J.: Stable finite element methods preserving \(\nabla \cdot \varvec {B}=0\) exactly for MHD models. Numer. Math. 135, 371–396 (2017)

    Article  MathSciNet  Google Scholar 

  19. Greif, C., Li, D., Schoetzau, D., Wei, X.: A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 199, 2840–2855 (2010)

    Article  MathSciNet  Google Scholar 

  20. He, Y., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 198, 1351–1359 (2009)

    Article  MathSciNet  Google Scholar 

  21. He, Y.: Stability and convergence of iterative methods related to viscosities for the 2D/3D steady Navier–Stokes equations. J. Math. Anal. Appl. 423, 1129–1149 (2015)

    Article  MathSciNet  Google Scholar 

  22. Dong, X., He, Y., Zhang, Y.: Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 276, 287–311 (2014)

    Article  MathSciNet  Google Scholar 

  23. Zhang, G.D., He, Y., Yang, D.: Analysis of coupling iterations based on the finite element method for stationary magnetohydrodynamics on a general domain. Comput. Math. Appl. 68, 770–788 (2014)

    Article  MathSciNet  Google Scholar 

  24. Su, H., Feng, X., Huang, P.: Iterative methods in penalty finite element discretization for the steady MHD equations. Comput. Methods Appl. Mech. Eng. 304, 521–545 (2016)

    Article  MathSciNet  Google Scholar 

  25. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Springer, New York (1986)

    Book  Google Scholar 

  26. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  Google Scholar 

  27. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  Google Scholar 

  28. Layton, W., Meir, A., Schmidtz, P.: A two-level discretization method for the stationary MHD equations. Electron. Trans. Numer. Anal. 6, 198–210 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Ortega, J.M.: The Newton–Kantorovich theorem. Am. Math. Mon. 6, 658–660 (1968)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and referees for their valuable comments and suggestions which helped us to improve the results of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianqian Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we compare the result obtained in Theorem 16 and the one by application of the Newton–Kantorovich theorem. The following theorem is cited from [29].

Theorem 23

Let X and Y be Banach spaces and \(F:D\subset \) \(X\rightarrow Y.\) Suppose that on an open convex set \(D_{0}\subset D,F\) is Fréchet differentiable and that \(\left\| F^{\prime }(x)-F^{\prime }(y)\right\| \le K\Vert x-y\Vert \) for \(x,y\in D_{0}.\) For some \(x_{0}\in D_{0}\) assume that \(\varGamma _{0}=\) \(\left[ F^{\prime }\left( x_{0}\right) \right] ^{-1}\) is defined on Y and \(\left\| \varGamma _{0}\right\| \le \beta .\) Set \(\left\| \varGamma _{0}Fx_{0}\right\| \le \eta \) and suppose that \(\tau =\beta K\eta \le 1/2\). Set

$$\begin{aligned} t^{*}=(\beta K)^{-1}(1-\sqrt{1-2\tau }) \end{aligned}$$

and

$$\begin{aligned} t^{**}=(\beta K)^{-1}(1+\sqrt{1-2\tau }) \end{aligned}$$

and suppose that

$$\begin{aligned} S=\left\{ x:\left\| x-x_{0}\right\| \le t^{*}\right\} \subset D_{0}. \end{aligned}$$

Then the Newton iterates

$$\begin{aligned} x_{k+1}=x_{k}-\left[ F^{\prime }\left( x_{k}\right) \right] ^{-1}Fx_{k},\quad k=0,1,2,\cdots , \end{aligned}$$
(77)

are well-defined, lie in S,  and converge to a solution \(x^{*}\) of \(Fx=0\) which is unique in \(D_{0}\cap \left\{ x:\left\| x_{0}-x\right\| <t^{**}\right\} .\) Moreover, if \(\tau <\frac{1}{2}\) the order of convergence is at least quadratic.

To make the presentation clear, we consider the reduced formulation of Method II in the discrete kernel space \(\varUpsilon _h\). Given \(\varXi _{h}^{n-1}\in \varUpsilon _{h}\), find \(\varXi _{h}^{n}\in \varUpsilon _{h}\) satisfying for all \(\varTheta _{h}\in \varUpsilon _{h}\),

$$\begin{aligned} \mathcal {A}(\varXi _{h}^{n},\varTheta _{h})+\mathcal {C}(\varXi _{h}^{n},\varXi _{h}^{n-1},\varTheta _{h})+\mathcal {C}(\varXi _{h}^{n-1},\varXi _{h}^{n},\varTheta _{h})-\mathcal {C}(\varXi _{h}^{n-1},\varXi _{h}^{n-1},\varTheta _{h})=\langle L,\varTheta _{h}\rangle . \end{aligned}$$
(78)

The reduced formulation of the finite element approximation (21) in \(\varUpsilon _h\) reads: Find \(\varXi _{h}\in \varUpsilon _{h}\) satisfying for all \(\varTheta _{h}\in \varUpsilon _{h}\),

$$\begin{aligned} \mathcal {A}(\varXi _{h},\varTheta _{h})+\mathcal {C}(\varXi _{h},\varXi _{h},\varTheta _{h})= \langle L,\varTheta _{h}\rangle . \end{aligned}$$

The equivalence to original formulation follows from the inf-sup condition (27). In the operator level, it can be rewritten as

$$\begin{aligned} F\varXi _{h}=0, \end{aligned}$$
(79)

where \(F:\varUpsilon _h\rightarrow \varUpsilon _h^{\prime }\) is defined by

$$\begin{aligned} \left\langle F\varXi _{h},\varTheta _{h}\right\rangle :=\mathcal {A}(\varXi _{h},\varTheta _{h})+\mathcal {C}(\varXi _{h},\varXi _{h},\varTheta _{h})-\langle L,\varTheta _{h}\rangle ,\forall \varXi _h,\varTheta _h\in \varUpsilon _h. \end{aligned}$$

Then the Fréchet derivative of F at \(\varXi _h\), \(F^{\prime }(\varXi _{h})\in \mathcal {L}\left( \varUpsilon _h,\varUpsilon _h^{\prime }\right) \), is given by

$$\begin{aligned} \left\langle \left( F^{\prime }(\varXi _{h})\right) \varPhi _{h},\varTheta _{h}\right\rangle :=\mathcal {A}(\varPhi _{h},\varTheta _{h})+\mathcal {C}(\varPhi _{h},\varXi _{h},\varTheta _{h})+\mathcal {C}(\varXi _{h},\varPhi _{h},\varTheta _{h})\quad \forall \varPhi _{h},\varTheta _h\in \varUpsilon _h. \end{aligned}$$

Note that (77) corresponds to (78).

Next, we identify the key parameters in Newton-Kantorovich theorem successively. For the estimation for K, by the definition of \(F^{\prime }\), it yields that for any \(\varXi _{h}^{\star },\varXi _{h}^{\star \star }\in \varUpsilon _{h}\)

$$\begin{aligned}&\left\| F^{\prime }(\varXi _{h}^{\star })-F^{\prime }(\varXi _{h}^{\star \star })\right\| _{\mathcal {L}\left( \varUpsilon _h,\varUpsilon _h^{\prime }\right) }\\&\quad =\sup _{\varPhi _{h},\varTheta _h\in \varUpsilon _h}\frac{\left\langle \left( F^{\prime }(\varXi _{h}^{\star })-F^{\prime }(\varXi _{h}^{\star \star })\right) \varPhi _{h},\varTheta _{h}\right\rangle }{\left\| \varPhi _{h}\right\| _{1}\left\| \varTheta _{h}\right\| _{1}}\\&\quad =\sup _{\varPhi _{h},\varTheta _h\in \varUpsilon _h}\frac{\left| \mathcal {C}(\varPhi _{h},\varXi _{h}^{\star }-\varXi _{h}^{\star \star },\varTheta _{h})+\mathcal {C}(\varXi _{h}^{\star }-\varXi _{h}^{\star \star },\varPhi _{h},\varTheta _{h})\right| }{\left\| \varPhi _{h}\right\| _{1}\left\| \varTheta _{h}\right\| _{1}}\\&\quad \le 2\lambda _{2}\left\| \varXi _{h}^{\star }-\varXi _{h}^{\star \star }\right\| _{1}. \end{aligned}$$

It mean that \(K=2\lambda _{2}\).

Then, we estimate \(\beta \). From (65) and the definition of \(F^{\prime }\), we have that for any \(\varPhi _h \in \varUpsilon _h\),

$$\begin{aligned} \left\langle F^{\prime }\left( \varXi _{h}^{0}\right) \varPhi _{h}, \varPhi _{h}\right\rangle \ge C_{\min }(1-\sigma )\left\| \varPhi _{h}\right\| _{1}^{2}. \end{aligned}$$
(80)

Using (28), we have \(C_{\min }(1-\sigma )>0\). This implies that

$$\begin{aligned} \left\| F^{\prime }(\varXi _{h}^{0})^{-1}\right\| _{\mathcal {L}\left( \varUpsilon _h^{\prime },\varUpsilon _h\right) }\le \frac{1}{C_{\min }\left( 1-\sigma \right) }. \end{aligned}$$

Thus, we have

$$\begin{aligned} \beta =\frac{1}{C_{\min }\left( 1-\sigma \right) }. \end{aligned}$$

Now we are in a position to estimate \(\eta =\left\| \varGamma _{0}F\varXi _{h}^{0}\right\| _1\). Note that \(\varPhi _{h}:=\varGamma _{0} F \varXi _{h}^{0}\) can be obtained by solving the following problem: Find \(\varPhi _{h}\in \varUpsilon _h\) such that

$$\begin{aligned} \left\langle F^{\prime }\left( \varXi _{h}^{0}\right) \varPhi _{h}, \varTheta _{h}\right\rangle =\left\langle F \varXi _{h}^{0}, \varTheta _{h}\right\rangle ,\quad \varTheta _{h}\in \varUpsilon _{h}. \end{aligned}$$

By (34) and the definitions of F and \(F^{\prime }\), the problem can be simplified as: Find \(\varPhi _{h}\in \varUpsilon _h\) such that for all \(\varTheta _{h}\in \varUpsilon _{h}\),

$$\begin{aligned} \left\langle F^{\prime }\left( \varXi _{h}^{0}\right) \varPhi _{h}, \varTheta _{h}\right\rangle =\mathcal {C}(\varXi _{h}^0,\varXi _{h}^{0},\varTheta _{h}). \end{aligned}$$

Taking \(\varTheta _{h}=\varPhi _{h}\), using (80) and (26), we deduce that

$$\begin{aligned} C_{\min }(1-\sigma )\left\| \varPhi _{h}\right\| _{1}\le \lambda _{2}\left\| \varXi _{h}^{0}\right\| _{1}^{2}. \end{aligned}$$

Invoking with (38), it gives that

$$\begin{aligned} \left\| \varPhi _{h}\right\| _{1}\le \frac{\lambda _2\left\| \varXi _{h}^{0}\right\| _{1}^2}{C_{\min }\left( 1-\sigma \right) } \le \frac{\sigma \Vert L\Vert _{*}}{C_{\min }\left( 1-\sigma \right) }. \end{aligned}$$

This yields

$$\begin{aligned} \eta =\frac{\sigma \Vert L\Vert _{*}}{C_{\min }\left( 1-\sigma \right) }. \end{aligned}$$

Finally, we apply Theorem 23 to the operator equation (79). Taking \(X=D=D_0=\varUpsilon _h\), \(Y=\varUpsilon _h^{\prime }\) and \(x=\varTheta _h\) in Theorem 23, and then using (40) and the fact that \( \tau =\frac{2\sigma ^2}{\left( 1-\sigma \right) ^{2}}, \) we get the global quadratic-convergent condition,

$$\begin{aligned} \frac{2\sigma _N^2}{\left( 1-\sigma _N\right) ^{2}}<1/2. \end{aligned}$$

Direct calculation shows that \(0<\sigma _N<1/3\). Thus, our result is a little better than one by application of the Newton-Kantorovich theorem straightway.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ding, Q. Coupled Iterative Analysis for Stationary Inductionless Magnetohydrodynamic System Based on Charge-Conservative Finite Element Method. J Sci Comput 88, 39 (2021). https://doi.org/10.1007/s10915-021-01553-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01553-5

Keywords

Mathematics Subject Classification

Navigation