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Abstract
We consider the space-time discretization of the diffusion equation, using an isogeometric
analysis (IgA) approximation in space and a discontinuous Galerkin (DG) approximation
in time. Drawing inspiration from a former spectral analysis, we propose for the resulting
space-time linear system amultigrid preconditionedGMRESmethod, which combines a pre-
conditioned GMRES with a standard multigrid acting only in space. The performance of the
proposed solver is illustrated through numerical experiments, which show its competitiveness
in terms of iteration count, run-time and parallel scaling.
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1 Introduction

In recent years, with ever increasing computational capacities, space-time methods have
received fast growing attention from the scientific community. Space-time approximations
of dynamic problems, in contrast to standard time-stepping techniques, enable full space-time
parallelism on modern massively parallel architectures [27]. Moreover, they can naturally
deal with moving domains [38,57–59,63] and allow for space-time adaptivity [1,24,28,39,47,
49,61]. The main idea of space-time formulations is to consider the temporal dimension as
an additional spatial one and assemble a large space-time system to be solved in parallel as in
[25]. Space-time methods have been used in combination with various numerical techniques,
including finite differences [2,11,35], finite elements [4,26,37,40], isogeometric analysis
[34,41], and discontinuous Galerkin methods [1,16,32,37,38,48,57,63]. Moreover, they have
been considered for a variety of applications, such as mechanics [15], fluid dynamics [11,38,
54], fluid-structure interaction [60], and many others. When dealing with space-time finite
elements, the time direction needs special care. To ensure that the information flows in the
positive time direction, a particular choice of the basis in time is often used. The discontinuous
Galerkin formulation with an “upwind” flow is a common choice in this context; see, for
example, [38,51,57,62].

Specialized parallel solvers have been recently developed for the large linear systems
arising from space-time discretizations. We mention in particular the space-time parallel
multigrid proposed by Gander and Neumüller [29], the parallel preconditioners for space-
time isogeometric analysis proposed by Hofer et al. [34], the fast diagonalization techniques
proposed by Langer and Zank [42] and Loli et al. [44], and the parallel proposal byMcDonald
and Wathen [46]. We also refer the reader to [56] for a recent review on space-time methods
for parabolic evolution equations, and to [55] for algebraic multigrid methods.

In the present paper, we focus on the diffusion equation

⎧
⎪⎪⎨

⎪⎪⎩

∂t u(t, x) − ∇ · K (x)∇u(t, x) = f (t, x), (t, x) ∈ (0,T) × (0, 1)d ,

u(t, x) = 0, (t, x) ∈ (0,T) × ∂((0, 1)d),

u(t, x) = 0, (t, x) ∈ {0} × (0, 1)d ,

(1.1)

where K (x) ∈ R
d×d is the matrix of diffusion coefficients and f (t, x) is a source term.

It is assumed that K (x) is symmetric positive definite at every point x ∈ (0, 1)d and each
component of K (x) is a continuous bounded function on (0, 1)d . We impose homogeneous
Dirichlet initial/boundary conditions both for simplicity and because the inhomogeneous
case reduces to the homogeneous case by considering a lifting of the boundary data [50]. We
consider for (1.1) the same space-time approximation as in [10], involving a p-degree C k

isogeometric analysis (IgA) discretization in space and a q-degree discontinuous Galerkin
(DG) discretization in time. Here, p = (p1, . . . , pd) and k = (k1, . . . , kd), where 0 ≤ k ≤
p − 1 (i.e., 0 ≤ ki ≤ pi − 1 for all i = 1, . . . , d) and the parameters pi and ki represent,
respectively, the polynomial degree and the smoothness of the IgA basis functions in direction
xi .

The overall discretization process leads to solving a large space-time linear system. We
propose a fast solver for this system in the case of maximal smoothness k = p − 1, i.e., the
case corresponding to the classical IgA paradigm [3,9,17,36]. The solver is a preconditioned
GMRES (PGMRES) method whose preconditioner P̃ is obtained as an approximation of
another preconditioner P inspired by the spectral analysis carried out in [10]. Informally
speaking, the preconditioner P̃ is a standard multigrid, which is applied only in space and not
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in time, and which involves, at all levels, a single symmetric Gauss–Seidel post-smoothing
step and standard bisection for the interpolation and restriction operators (following the
Galerkin assembly). The proposed solver is then a multigrid preconditioned GMRES (MG-
GMRES). Its performance is illustrated through numerical experiments and turns out to be
satisfactory in terms of iteration count and run-time. In addition, the solver is suited for
parallel computation as it shows remarkable scaling properties with respect to the number
of cores. Comparisons with other benchmark solvers are also presented and reveal the actual
competitiveness of our proposal.

The paper is organized as follows. In Sect. 2, we briefly recall the space-time IgA-DG
discretization of (1.1) andwe report themain result of [10] concerning the spectral distribution
of the associated discretization matrix C . In Sect. 3, we present a PGMRES method for
the matrix C , which is the root from which the proposed solver originated. In Sect. 4, we
describe the proposed solver. In Sect. 5, we describe its parallel version. In Sect. 6, we
illustrate its performance in terms of iteration count, run-time and scaling. In Sect. 7, we
test it on a generalization of problem (1.1) where (0, 1)d is replaced by a non-rectangular
domain and the considered IgA discretization involves a non-trivial geometry. In Sect. 8, we
draw conclusions. In order to keep this paper as concise as possible, we borrow notation and
terminology from [10]. It is therefore recommended that the reader takes a look at Sects. 1
and 2 of [10].

2 Space-time IgA-DG Discretization of the Diffusion Equation

Let N ∈ N and n = (n1, . . . , nd) ∈ N
d , and define the following uniform partitions in time

and space:

ti = i�t, i = 0, . . . , N ,

xi = i�x = (i1�x1, . . . , id�xd), i = 0, . . . , n,

where �t = T/N and�x = (�x1, . . . , �x2) = (1/n1, . . . , 1/nd). We consider for the
differential problem (1.1) the same space-time discretization as in [10], i.e., we use a p-
degree C k IgA approximation in space based on the uniform mesh {xi , i = 0, . . . , n}
and a q-degree DG approximation in time based on the uniform mesh {ti , i = 0, . . . , N }.
Here, p = (p1, . . . , pd) and k = (k1, . . . , kd) are multi-indices, with pi and 0 ≤ ki ≤
pi −1 representing, respectively, the polynomial degree and the smoothness of the IgA basis
functions in direction xi . As explained in [10, Sect. 3], the overall discretization process
leads to a linear system

C [q, p,k]
N ,n (K )u = f, (2.1)

where:

– C [q, p,k]
N ,n (K ) is the N × N block matrix given by

C [q, p,k]
N ,n (K ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A[q, p,k]
n (K )

B[q, p,k]
n A[q, p,k]

n (K )

. . .
. . .

B[q, p,k]
n A[q, p,k]

n (K )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; (2.2)
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– the blocks A[q, p,k]
n (K ) and B[q, p,k]

n are (q + 1)n̄ × (q + 1)n̄ matrices given by

A[q, p,k]
n (K ) = K[q] ⊗ Mn,[ p,k] + �t

2
M[q] ⊗ Kn,[ p,k](K ), (2.3)

B[q, p,k]
n = −J[q] ⊗ Mn,[ p,k], (2.4)

where n̄ = ∏d
i=1(ni (pi − ki ) + ki − 1) is the number of degrees of freedom (DoFs) in

space (the total number of DoFs is equal to the size N (q+1)n̄ of thematrixC [q, p,k]
N ,n (K ));

each block row in the block partition of C [q, p,k]
N ,n (K ) given by (2.2) is referred to as a

time slab;
– Mn,[ p,k] and Kn,[ p,k](K ) are the n̄ × n̄ mass and stiffness matrices in space, which are

given by

Mn,[ p,k] =
[∫

[0,1]d
B j+1,[ p,k](x)Bi+1,[ p,k](x)dx

]n( p−k)+k−1

i, j=1
, (2.5)

Kn,[ p,k](K ) =
[∫

[0,1]d
[
K (x)∇B j+1,[ p,k](x)

] · ∇Bi+1,[ p,k](x)dx
]n( p−k)+k−1

i, j=1
, (2.6)

where B1,[ p,k], . . . , Bn( p−k)+k+1,[ p,k] are the tensor-product B-splines defined by

Bi,[ p,k](x) =
d∏

r=1

Bir ,[pr ,kr ](xr ), i = 1, . . . , n( p − k) + k + 1,

and B1,[pr ,kr ], . . . , Bnr (pr−kr )+kr+1,[pr ,kr ] are the B-splines of degree pr and smoothness
Ckr defined on the knot sequence

{

0, . . . , 0
︸ ︷︷ ︸

pr+1

,
1

nr
, . . . ,

1

nr︸ ︷︷ ︸
pr−kr

,
2

nr
, . . . ,

2

nr︸ ︷︷ ︸
pr−kr

, . . . ,
nr − 1

nr
, . . . ,

nr − 1

nr︸ ︷︷ ︸
pr−kr

, 1, . . . , 1
︸ ︷︷ ︸

pr+1

}

.

– M[q], K[q], J[q] are the (q + 1) × (q + 1) blocks given by

M[q] =
[∫ 1

−1
� j,[q](τ )�i,[q](τ )dτ

]q+1

i, j=1
, (2.7)

K[q] =
[

� j,[q](1)�i,[q](1) −
∫ 1

−1
� j,[q](τ )�′

i,[q](τ )dτ

]q+1

i, j=1
, (2.8)

J[q] = [
� j,[q](1)�i,[q](−1)

]q+1
i, j=1 , (2.9)

where {�1,[q], . . . , �q+1,[q]} is a fixed basis for the space of polynomials of degree ≤ q .
In the context of (nodal) DG methods [33], �1,[q], . . . , �q+1,[q] are often chosen as the
Lagrange polynomials associated with q+1 fixed points {τ1, . . . , τq+1} ⊆ [−1, 1], such
as, for example, the Gauss–Lobatto or the right Gauss–Radau nodes in [−1, 1].

The solution of system (2.1) yields the approximate solution of problem (1.1); see [10] for
details. The main result of [10] is reported in Theorem 2.1 below; see also [8, Sect. 6.2] for a
more recent and lucid proof. Before stating Theorem 2.1, let us recall the notion of spectral
distribution for a given sequence of matrices. In what follows, we say that a matrix-valued
function f : D → C

s×s , defined on ameasurable set D ⊆ R
�, ismeasurable if its components

fi j : D → C, i, j = 1, . . . , s, are (Lebesgue) measurable.
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Definition 2.1 Let {Xm}m be a sequence of matrices, with Xm of size dm tending to infinity,
and let f : D → C

s×s be a measurable matrix-valued function defined on a set D ⊂ R
�

with 0 < measure(D) < ∞. We say that {Xm}m has a (asymptotic) spectral distribution
described by f , and we write {Xm}m ∼λ f , if

lim
m→∞

1

dm

dm∑

j=1

F(λ j (Xm)) = 1

measure(D)

∫

D

∑s
i=1 F (λi (f(y)))

s
dy

for all continuous functions F : C → C with compact support. In this case, f is called the
spectral symbol of {Xm}m .
Remark 2.1 The informal meaning behind Definition 2.1 is the following: assuming that f
possesses s Riemann-integrable eigenvalue functions λi (f(y)), i = 1, . . . , s, the eigenvalues
of Xm , except possibly for o(dm) outliers, can be subdivided into s different subsets of
approximately the same cardinality; and the eigenvalues belonging to the i th subset are
approximately equal to the samples of the i th eigenvalue function λi (f(y)) over a uniform
grid in the domain D. For instance, if � = 1, dm = ms, and D = [a, b], then, assuming we
have no outliers, the eigenvalues of Xm are approximately equal to

λi

(
f
(
a + j

b − a

m

))
, j = 1, . . . ,m, i = 1, . . . , s,

for m large enough; similarly, if � = 2, dm = m2s, and D = [a1, b1] × [a2, b2], then,
assuming we have no outliers, the eigenvalues of Xm are approximately equal to

λi

(
f
(
a1 + j1

b1 − a1
m

, a2 + j2
b2 − a2

m

))
, j1, j2 = 1, . . . ,m, i = 1, . . . , s,

for m large enough; and so on for � ≥ 3.

Theorem 2.1 Let q ≥ 0 be an integer, let p ∈ N
d and 0 ≤ k ≤ p − 1. Assume that K (x)

is symmetric positive definite at every point x ∈ (0, 1)d and each component of K (x) is a
continuous bounded function on (0, 1)d . Suppose the following two conditions are met:

– n = αn, where α = (α1, . . . , αd) is a vector with positive components in Q
d and n

varies in some infinite subset of N such that n = αn ∈ N
d ;

– N = N (n) is such that N → ∞ and N/n2 → 0 as n → ∞.

Then, for the sequence of normalized space-time matrices {2Nnd−2C [q, p,k]
N ,n (K )}n we have

the spectral distribution relation

{2Nnd−2C [q, p,k]
N ,n (K )}n ∼λ f [α,K ]

[q, p,k],

where:

– the spectral symbol f [α,K ]
[q, p,k] : [0, 1]d × [−π, π]d → C

(q+1)
∏d

i=1(pi−ki )×(q+1)
∏d

i=1(pi−ki )

is defined as

f [α,K ]
[q, p,k](x, θ) = f [α,K ]

[ p,k] (x, θ) ⊗ TM[q]; (2.10)

– f [α,K ]
[ p,k] : [0, 1]d × [−π, π]d → C

∏d
i=1(pi−ki )×∏d

i=1(pi−ki ) is defined as

f [α,K ]
[ p,k] (x, θ) = 1

∏d
i=1 αi

d∑

i, j=1

αiα j Ki j (x)(H[ p,k])i j (θ); (2.11)
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– H[ p,k] is a d × d block matrix whose (i, j) entry is a
∏d

i=1(pi − ki ) × ∏d
i=1(pi − ki )

block defined as in [10, eq. (5.12)];
– T is the final time in (1.1) and M[q] is given in (2.7).

With the same argument used for proving Theorem 2.1, it not difficult to prove the fol-
lowing result.

Theorem 2.2 Suppose the hypotheses of Theorem 2.1 are satisfied, and let

Q[q, p,k]
N ,n (K ) = �t

2
IN ⊗ M[q] ⊗ Kn,[ p,k](K ).

Then,

{2Nnd−2(IN ⊗ A[q, p,k]
n (K ))}n ∼λ f [α,K ]

[q, p,k], {2Nnd−2Q[q, p,k]
N ,n (K )}n ∼λ f [α,K ]

[q, p,k].

3 PGMRES for the Space-time IgA-DG System

Suppose the hypotheses of Theorem 2.1 are satisfied. Then, on the basis of Theorem 2.2
and the theory of (block) generalized locally Toeplitz (GLT) sequences [7,8,30,31,52,53],
we expect that the sequence of preconditioned matrices

(IN ⊗ A[q, p,k]
N ,n (K ))−1C [q, p,k]

N ,n (K ), (3.1)

as well as the sequence of preconditioned matrices

(Q[q, p,k]
N ,n (K ))−1C [q, p,k]

N ,n (K ) = 2

�t
(IN ⊗ M[q] ⊗ Kn,[ p,k](K ))−1C [q, p,k]

N ,n (K ), (3.2)

has an asymptotic spectral distribution described by the preconditioned symbol
(
f [α,K ]
[q, p,k]

)−1f [α,K ]
[q, p,k] = I

(q+1)
∏d

i=1(pi−ki )
.

This means that the eigenvalues of the two sequences of matrices (3.1) and (3.2) are (weakly)
clustered at 1; see [7, Sect. 2.4.2]. Therefore, in view of the convergence properties of the
GMRES method [13]—see in particular [13, Theorem 2.13] and the original research paper
by Bertaccini and Ng [14]—we may expect that the PGMRES with preconditioner IN ⊗
A[q, p,k]
N ,n (K ) or Q[q, p,k]

N ,n (K ) for solving a linear system with coefficient matrix C [q, p,k]
N ,n (K )

has an optimal convergence rate, i.e., the number of iterations for reaching a preassigned
accuracy ε is independent of (or only weakly dependent on) the matrix size. We may also
expect that the same is true for the PGMRES with preconditioner

P [q, p,k]
N ,n (K ) = IN ⊗ Iq+1 ⊗ Kn,[ p,k](K ) = IN (q+1) ⊗ Kn,[ p,k](K ), (3.3)

because (up to a negligible normalization factor�t/2) P [q, p,k]
N ,n (K ) is spectrally equivalent to

Q[q, p,k]
N ,n (K ). Indeed, the spectrum of (P [q, p,k]

N ,n (K ))−1(IN ⊗M[q]⊗Kn,[ p,k](K )) is contained
in [cq ,Cq ] for some positive constants cq ,Cq > 0 depending only on q . For instance, one can
take cq = λmin(M[q]) and Cq = λmax(M[q]), which are both positive as M[q] is symmetric
positive definite (see (2.7)).

To show that our expectation is realized, we solve system (2.1) in two space dimensions
(d = 2), up to a precision ε = 10−8, bymeans of the GMRES and the PGMRESwith precon-
ditioner P [q, p,k]

N ,n (K ), using f (t, x) = 1, T = 1, α = (1, 1), n = αn = (n, n), p = (p, p),
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Table 1 Number of iterations GM[p] and PGM[p] needed by, respectively, the GMRES and the PGMRES

with preconditioner P[q, p,k]
N ,n (K ), for solving the linear system (2.1), up to a precision ε = 10−8, in the case

where d = 2, K (x) = I2, f (t, x) = 1, T = 1, q = 0, n = (n, n), p = (p, p), k = (p − 1, p − 1), N = n

n = N GM[3] PGM[3] GM[4] PGM[4] GM[5] PGM[5]
20 66 21 85 21 170 21

40 168 40 178 40 235 40

60 295 59 314 59 360 59

80 443 77 473 77 506 77

100 609 94 652 94 699 94

120 790 111 847 111 909 111

n = N GM[6] PGM[6] GM[7] PGM[7] GM[8] PGM[8]
20 269 21 532 21 674 21

40 380 40 572 40 656 40

60 477 59 611 59 690 59

80 621 77 720 77 791 77

100 780 94 879 94 963 94

120 971 111 1025 111 1114 111

The total size of the space-time system (number of DoFs) is given by nn̄ = n(n + p − 2)2

k = (k, k), and varying K (x), N , n, q , p, k. The resulting number of iterations are collected
in Tables 1, 2, 3. We see from the tables that the GMRES solver rapidly deteriorates with
increasing n, and it is not robust with respect to p, k. On the other hand, the convergence rate
of the proposed PGMRES is robust with respect to all spatial parameters n, p, k, though its
performance is clearly better in the casewhere N is fixed (Tables 2, 3) than in the casewhere N
increases (Table 1). An explanation of this phenomenon based on Theorem 2.1 is the follow-
ing. In the case where N is fixed, the ratio N/n2 converges to 0muchmore quickly than in the
case where N = n. Consequently, when N is fixed, the spectrum of both 2Nnd−2C [q, p,k]

N ,n (K )

and 2Nnd−2Q[q, p,k]
N ,n (K ) is better described by the symbol f [α,K ]

[q, p,k] than when N = n.

Similarly, the spectrum of the preconditioned matrix (Q[q, p,k]
N ,n (K ))−1C [q, p,k]

N ,n (K ) is bet-
ter described by the preconditioned symbol I

(q+1)
∏d

i=1(pi−ki )
. In conclusion, the eigenvalues

of the preconditioned matrix are supposed to be more clustered when N is fixed than when
N = n.

In order to investigate the influence of q on the number of PGMRES iterations, we per-
formed a further numerical experiment in Table 4. We observe that the considered PGMRES
is not robust with respect to q , but the number of PGMRES iterations grows linearly with q .
By comparing Tables 1 and 4, we note that the PGMRES convergence is linear with respect
to both N and q . In practice, increasing q is the most convenient way to improve the tem-
poral accuracy of the discrete solution u; see, e.g., [12]. This is due to the superconvergence
property, according to which the order of convergence in time of a q-degree DG method is
2q + 1 [19,43]. Tables 1 and 4 show that the strategy of keeping N fixed and increasing q is
more convenient even in terms of performance of the proposed PGMRES.

As it is known, each PGMRES iteration requires solving a linear system with coefficient
matrix given by the preconditioner P [q, p,k]

N ,n (K ), and this is not required in aGMRES iteration.
Thus, if we want to prove that the proposed PGMRES is fast, we have to show that we are
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Table 4 Same setting as in Table 1 with n = N = 20 and q = 0, 1, 2, 3, 4

q GM[3] PGM[3] GM[4] PGM[4] GM[5] PGM[5]
0 66 21 85 21 170 21

1 122 42 154 42 280 42

2 175 64 225 64 391 64

3 222 95 289 95 464 95

4 247 115 351 115 602 116

q GM[6] PGM[6] GM[7] PGM[7] GM[8] PGM[8]
0 269 21 532 21 674 21

1 446 42 688 42 834 42

2 491 64 580 64 672 64

3 616 95 916 95 1103 95

4 1031 116 1927 116 5468 116

able to solve efficiently a linear system with matrix P [q, p,k]
N ,n (K ). However, for the reasons

explained in Sect. 4, this is not exactly the path we will follow.
Before moving on to Sect. 4, we remark that, thanks to the tensor structure (3.3), the

solution of a linear system with coefficient matrix P [q, p,k]
N ,n (K ) reduces to the solution of

N (q + 1) linear systems with coefficient matrix Kn,[ p,k](K ). Indeed, the solution of the

system P [q, p,k]
N ,n (K )x = y is given by

x = (P [q, p,k]
N ,n (K ))−1y = (IN (q+1) ⊗ Kn,[ p,k](K )−1)y =

⎡

⎢
⎣

Kn,[ p,k](K )−1y1
...

Kn,[ p,k](K )−1yN (q+1)

⎤

⎥
⎦ ,

(3.4)

where yT = [yT1 , . . . , yTN (q+1)] and each yi has length n̄. It is then clear that the computation
of the solution x is equivalent to solving the N (q + 1) linear systems Kn,[ p,k](K )xi = yi ,
i = 1, . . . , N (q+1). Note that the various xi can be computed in parallel as the computation
of xi is independent of the computation of x j whenever i = j .

4 Fast Solver for the Space-time IgA-DG System

From here on, we focus on the maximal smoothness case k = p − 1, that is, the case
corresponding to the classical IgA approach. For notational simplicity, we drop the sub-
script/superscript k = p−1, so that, for instance, thematricesC [q, p, p−1]

N ,n (K ), P [q, p, p−1]
N ,n (K ),

Kn,[ p, p−1](K ) will be denoted by C [q, p]
N ,n (K ), P [q, p]

N ,n (K ), Kn,[ p](K ), respectively.

The solver suggested in Sect. 3 for a linear system with matrix C [q, p]
N ,n (K ) is a PGMRES

with preconditioner P [q, p]
N ,n (K ). According to (3.4), the solution of a linear systemwithmatrix

P [q, p]
N ,n (K ), which is required at each PGMRES iteration, is equivalent to solving N (q + 1)

linear systems with matrix Kn,[ p](K ). Fast solvers for Kn,[ p](K ) that have been proposed
in recent papers (see [20–22] and references therein) might be employed here. However,
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using an exact solver for Kn,[ p](K ) is not what we have in mind. Indeed, it was discovered
experimentally that the PGMRES method converges faster if the linear system with matrix
P [q, p]
N ,n (K ) occurring at each PGMRES iteration is solved inexactly. More precisely, when

solving the N (q + 1) linear systems with matrix Kn,[ p](K ) occurring at each PGMRES
iteration, it is enough to approximate their solutions by performing only a few standard
multigrid iterations in order to achieve an excellent PGMRES run-time; and, in fact, only
one standard multigrid iteration is sufficient. In view of these experimental discoveries, we
propose to solve a linear system with matrix C [q, p]

N ,n (K ) in the following way.

Algorithm 1

1. Apply to the given system the PGMRES algorithm with preconditioner P [q, p]
N ,n (K ).

2. The exact solution of the linear systemwithmatrix P [q, p]
N ,n (K ) occurring at eachPGM-

RES iteration would require solving N (q + 1) linear systems with matrix Kn,[ p](K )

as per eq. (3.4).

3. Instead of solving exactly these N (q + 1) systems, apply to each of them, starting
from the zero vector as initial guess, μ multigrid (V-cycle) iterations involving, at all
levels, a single symmetric Gauss–Seidel post-smoothing step and standard bisection
for the interpolation and restriction operators (following the Galerkin assembly in
which the interpolation operator is the transpose of the restriction operator).

As we shall see in the numerics of Sect. 6, the choice μ = 1 yields the best performance
of Algorithm 1. The proposed solver is not the PGMRES with preconditioner P [q, p]

N ,n (K )

because, at each iteration, the linear system associated with P [q, p]
N ,n (K ) is not solved exactly.

However, the solver is still a PGMRES with a different preconditioner P̃ [q, p]
N ,n (K ). To see

this, let MG be the iteration matrix of the multigrid method used in step 3 of Algorithm 1 for
solving a linear system with matrix Kn,[ p](K ). Recall that MG depends only on Kn,[ p](K )

and not on the specific right-hand side of the system to solve. If the system to solve is
Kn,[ p](K )xi = yi , the approximate solution x̃i obtained after μ multigrid iterations starting
from the zero initial guess is given by

x̃i = (In̄ − MGμ)Kn,[ p](K )−1yi .

Hence, the approximation x̃ computed by our solver for the exact solution (3.4) of the system
P [q, p]
N ,n (K )x = y is given by

x̃ =
⎡

⎢
⎣

(In̄ − MGμ)Kn,[ p,k](K )−1y1
...

(In̄ − MGμ)Kn,[ p,k](K )−1yN (q+1)

⎤

⎥
⎦ = (IN (q+1) ⊗ (In̄ − MGμ)Kn,[ p](K )−1)y

= P̃ [q, p]
N ,n (K )−1y,

where
P̃ [q, p]
N ,n (K ) = IN (q+1) ⊗ Kn,[ p](K )(In̄ − MGμ)−1. (4.1)

In conclusion, the proposed solver is the PGMRES with preconditioner P̃ [q, p]
N ,n (K ). From the

expression of P̃ [q, p]
N ,n (K ), we can also say that the proposed solver is a MG-GMRES, that is,

a PGMRES with preconditioner given by a standard multigrid applied only in space.Amore
precise notation for this solver could be MGspace-GMRES, but for simplicity we just write
MG-GMRES.
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Fig. 1 Row-wise partitions of the preconditioner P[q, p]
N ,n (K ) = IN (q+1) ⊗ K̃ using ρ = N (q + 1) − 1

processors (left) and ρ = N (q + 1) + 1 processors (right) with N (q + 1) = 4. For simplicity, we write “K̃ ”

instead of “K [q, p]
N ,n (K )”

5 Fast Parallel Solver for the Space-time IgA-DG System

In Sect. 4, we have described the sequential version of the proposed solver. The same version
is used also in the case where ρ ≤ N (q+1) processors are available, with the only difference
that step 3 ofAlgorithm1 is performed in parallel. In practice, si linear systems are assigned to
the i th processor for i = 1, . . . , ρ, with s1+. . .+sρ = N (q+1) and s1, . . . , sρ approximately
equal to each other according to a load balancing principle. This is illustrated in Fig. 1 (left),
which shows the row-wise partition of P [q, p]

N ,n (K ) = IN (q+1) ⊗ K [q, p]
N ,n (K ) corresponding to

the distribution of the N (q + 1) systems among ρ = N (q + 1) − 1 processors.
If ρ > N (q + 1) processors are available, we use a slight modification of the solver,

which is suited for parallel computation. As before, the modification only concerns step 3 of
Algorithm 1. Since we now have more processors than systems to be solved, after assigning
1 processor to each system, we still have ρ − N (q + 1) unused processors. Following
again a load balancing principle, we distribute the unused processors among the N (q + 1)
systems, so that now one system can be shared between two or more different processors;
see Fig. 1 (right). Suppose that the system K [q, p]

N ,n (K )x = y is shared between σ processors.
The symmetric Gauss–Seidel post-smoothing iteration in step 3 of Algorithm 1 cannot be
performed in parallel. Therefore, we replace it with its block-wise version. To be precise, we
recall that the symmetric Gauss–Seidel iteration for a system with matrix E = L +U − D is
just the preconditioned Richardson iteration with preconditioner M = LD−1U .1 Its block-
wise version in the case where we consider σ diagonal blocks E1, . . . , Eσ of E is simply
the preconditioned Richardson iteration with preconditioner M1 ⊕ · · · ⊕ Mσ , where Mi is
the symmetric Gauss–Seidel preconditioner for Ei and M1 ⊕· · ·⊕ Mσ is the block diagonal
matrix whose diagonal blocks are M1, . . . , Mσ . This block-wise version is suited for parallel
computation in the case where σ processors are available.

1 The matrices L , U , D are, respectively, the lower triangular part of E (including the diagonal), the upper
triangular part of E (including the diagonal), and the diagonal part of E .
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Fig. 2 The PETSc default
row-wise partition does not
account for the structure of the
space-time problem; compare
with Fig. 1

6 Numerical Experiments: Iteration Count, Timing and Scaling

In this section, we illustrate through numerical experiments the performance of the proposed
solver and we compare it to the performance of other benchmark parallel solvers, such as the
PGMRES with block-wise ILU(0) preconditioner.

6.1 Implementation Details

For the numerics of this section, as well as throughout this paper, we used the C++ framework
PETSc [5,6] and the domain specific language Utopia [64] for the parallel linear algebra and
solvers, and the Cray-MPICH compiler. For the assembly of high order finite elements,
we used the PetIGA package [18]. A parallel tensor-product routine was implemented to
assemble space-time matrices. Numerical experiments have been performed on the Cray
XC40 nodes of the Piz Daint supercomputer of the Swiss national supercomputing centre
(CSCS).2 The used partition features 1813 computation nodes, each of which holds two 18-
core Intel Xeon E5-2695v4 (2.10GHz) processors.We stress that the PETSc default row-wise
partition follows a load balancing principle and, except in the trivial case ρ = N , does not
correspond to the row-wise partition described in Sect. 5; see Fig. 2. Therefore, the partition
must be adjusted by the user. Alternatively, one can use a PETSc built-in class for sparse
block matrices and specify the block size (q + 1)n̄.

6.2 Experimental Setting

In the numerics of this section, we solve the linear system (2.1) arising from the choices
d = 2, f (t, x) = 1, T = 1, n = (n, n), p = (p, p), k = (p− 1, p− 1). The basis functions
�1,[q], . . . , �q+1,[q] are chosen as the Lagrange polynomials associated with the right Gauss–
Radau nodes in [−1, 1]. The values of K (x), N , n, q , p are specified in each example. For
each solver considered herein, we use the tolerance ε = 10−8 and the PETSc default stopping
criterion based on the preconditioned relative residual. Moreover, the PGMRES method is
always applied with restart after 30 iterations as per PETSc default. Whenever we report
the run-time of a solver, the time spent in I/O operations and matrix assembly is ignored.
Run-times are always expressed in seconds. In all the tables below, the number of iterations
needed by a given solver to converge within the tolerance ε = 10−8 is reported in square

2 https://www.cscs.ch/computers/piz-daint/
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brackets next to the corresponding run-time. Throughout this section, we use the following
abbreviations for the solvers.

– ILU(0)-GMRES PGMRES with preconditioner given by an ILU(0) factorization (ILU
factorization with no fill-in) of the system matrix.

– MGL
μ,ν-GMRES The proposed solver, as described in Sect. 4, with μ multigrid (V-

cycle) iterations applied to Kn,[ p](K ). Each multigrid iteration involves ν symmetric
Gauss–Seidel post-smoothing steps at the finest level and 1 symmetric Gauss–Seidel
post-smoothing step at the coarse levels. The choice ν = 1 corresponds to our solver
proposal. Different values of ν are considered for comparison purposes. The superscript
L denotes the number of multigrid levels.

– TMGL
μ,ν-GMRES The same asMGL

μ,ν-GMRES,with the only difference that themulti-

grid iterations are performed with the telescopic option, thus giving rise to the telescopic
multigrid (TMG) [23,45]. This technique consists in reducing the number of processors
used on the coarse levels and can be beneficial for the parallel multigrid performance.
In the numerics of this section, we only reduced the number of processors used on the
coarsest level to one fourth of the number of processors used at all other levels.

6.3 Iteration Count and Timing

Tables 5, 6, 7 illustrate the performance of the proposed solver in terms of number of iterations
and run-time. It is clear from the tables that the best performance of the solver is obtained
when applying to Kn,[ p](K ) a single multigrid iteration (μ = 1) with only one smoothing
step at the finest level (ν = 1).Moreover, the solver is competitive with respect to the ILU(0)-
GMRES. The worst performance of the solver with respect to the ILU(0)-GMRES is attained
in Table 6, where the diffusion matrix K (x1, x2) is singular at (x1, x2) = (0, 0).

Table 5 PGMRES iterations and run-time (using 64 cores) to solve the linear system (2.1) up to a precision
of 10−8, according to the experimental setting described in Sect. 6.2

p 1 2 3 4

ILU(0)-GMRES 3.7 [579] 4.3 [367] 5.2 [269] 6.7 [226]

MG5
3,2-GMRES 1.4 [33] 2.9 [33] 4.7 [33] 7.2 [33]

MG5
1,2-GMRES 0.8 [33] 1.6 [33] 2.5 [33] 4.0 [35]

MG5
3,1-GMRES 1.1 [33] 2.2 [33] 3.3 [33] 5.0 [34]

MG5
1,1-GMRES 0.6 [33] 1.2 [33] 1.8 [34] 3.1 [39]

p 5 6 7 8 9

ILU(0)-GMRES 8.2 [193] 10.1 [174] 11.9 [156] 22.5 [234] 44.9 [383]

MG5
3,2-GMRES 10.5 [35] 14.7 [36] 21.1 [41] 34.6 [53] 57.6 [73]

MG5
1,2-GMRES 6.6 [42] 11.0 [52] 16.0 [60] 26.2 [77] 47.0 [90]

MG5
3,1-GMRES 7.1 [36] 11.4 [43] 17.0 [51] 28.5 [67] 42.1 [83]

MG5
1,1-GMRES 5.3 [50] 9.1 [63] 13.5 [75] 19.8 [87] 30.7 [112]

We used K (x) = I2, q = 0, N = 32, n = 259− p. The total size of the space-time system (number of DoFs)
is given by 32 · 2572
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Table 6 PGMRES iterations and run-time (using 64 cores) to solve the linear system (2.1) up to a precision
of 10−8, according to the experimental setting described in Sect. 6.2

p 1 2 3 4

ILU(0)-GMRES 1.3 [449] 1.7 [283] 2.2 [219] 2.9 [183]

MG5
2,3-GMRES 0.6 [55] 1.3 [55] 2.4 [55] 4.1 [58]

MG5
1,3-GMRES 0.5 [57] 1.0 [56] 1.8 [56] 3.5 [68]

MG5
2,1-GMRES 0.5 [57] 1.0 [57] 1.6 [58] 3.1 [77]

MG5
1,1-GMRES 0.5 [67] 0.8 [65] 1.3 [68] 2.8 [90]

p 5 6 7 8 9

ILU(0)-GMRES 3.6 [158] 4.4 [141] 6.0 [148] 9.5 [186] 24.8 [397]

MG5
2,3-GMRES 7.6 [64] 12.7 [90] 18.5 [101] 32.2 [139] 48.9 [173]

MG5
1,3-GMRES 6.2 [85] 10.4 [103] 15.0 [116] 26.5 [161] 38.0 [189]

MG5
2,1-GMRES 5.2 [91] 8.6 [112] 12.6 [128] 22.0 [179] 30.7 [205]

MG5
1,1-GMRES 4.6 [110] 7.2 [125] 11.0 [150] 19.4 [210] 30.2 [269]

We used K (x1, x2) =
[
cos(x1) + x2 0
0 x1 + sin(x2)

]

, q = 1, N = 20, n = 131 − p. The total size of the

space-time system (number of DoFs) is given by 40 ·1292. Note that K (x1, x2) is singular at (x1, x2) = (0, 0)

Table 7 PGMRES iterations and run-time (using 64 cores) to solve the linear system (2.1) up to a precision
of 10−8, according to the experimental setting described in Sect. 6.2

p 1 2 3 4

ILU(0)-GMRES 1.9 [450] 2.2 [284] 2.6 [205] 3.4 [170]

MG5
2,2-GMRES 0.2 [11] 0.5 [11] 0.8 [11] 1.5 [13]

MG5
1,2-GMRES 0.2 [12] 0.4 [11] 0.6 [12] 1.2 [15]

MG5
2,1-GMRES 0.2 [11] 0.4 [11] 0.6 [12] 1.1 [15]

MG5
1,1-GMRES 0.2 [12] 0.3 [11] 0.5 [14] 1.0 [19]

p 5 6 7 8 9

ILU(0)-GMRES 4.4 [154] 5.2 [135] 6.4 [125] 12.6 [195] 22.8 [289]

MG5
2,2-GMRES 2.6 [17] 4.1 [20] 5.9 [23] 8.8 [27] 11.9 [30]

MG5
1,2-GMRES 2.1 [20] 3.3 [23] 4.6 [26] 7.2 [31] 10.1 [36]

MG5
2,1-GMRES 2.0 [20] 3.1 [23] 4.6 [27] 6.2 [31] 8.4 [35]

MG5
1,1-GMRES 1.7 [23] 2.5 [26] 3.6 [30] 5.5 [36] 7.4 [40]

We used K (x1, x2) =
[

(2 + cos x1)(1 + x2) cos(x1 + x2) sin(x1 + x2)
cos(x1 + x2) sin(x1 + x2) (2 + sin x2)(1 + x1)

]

, q = 0, N = 20, n =
259 − p. The total size of the space-time system (number of DoFs) is given by 20 · 2572
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Table 8 Strong scaling: PGMRES iterations and run-time to solve the linear system (2.1) up to a precision of
10−8, according to the experimental setting described in Sect. 6.2.

Cores 1 2 4 8

ILU(0)-GMRES 1385.0 [414] 682.1 [415] 336.7 [415] 181.9 [415]

MG7
1,1-GMRES 335.1 [64] 179.7 [64] 92.5 [64] 51.9 [64]

TMG7
1,1-GMRES 335.1 [64] 179.7 [64] 92.5 [64] 51.9 [64]

Cores 16 32 64 128

ILU(0)-GMRES 103.3 [415] 49.7 [416] 21.2 [417] 12.8 [500]

MG7
1,1-GMRES 31.8 [64] 16.6 [64] 8.3 [64] 4.4 [64]

TMG7
1,1-GMRES 31.3 [64] 16.5 [64] 8.0 [64] 4.2 [64]

Cores 256 512 1024 2048 4096

ILU(0)-GMRES 6.8 [519] 4.0 [550] 2.5 [619] 1.7 [753] 1.7 [1013]

MG7
1,1-GMRES 2.5 [65] 1.8 [65] 1.9 [65] 5.1 [65] 14.7 [66]

TMG7
1,1-GMRES 2.2 [64] 1.3 [63] 0.8 [64] 0.5 [64] 0.4 [64]

We used K (x) = I2, q = 0, p = 3, N = 64, n = 384. The total size of the space-time system (number of
DoFs) is given by 64 · 3852

Table 9 Space-time weak scaling: PGMRES iterations and run-time to solve the linear system (2.1) up to a
precision of 10−8, according to the experimental setting described in Sect. 6.2

[Cores, n, N , L] [1, 65, 8, 4] [8, 129, 16, 5] [64, 257, 32, 6] [512, 513, 64, 7]
ILU(0)-GMRES 0.25 [50] 0.86 [121] 2.80 [367] 7.6 [989]

TMGL
1,1-GMRES 0.11 [10] 0.27 [17] 0.67 [33] 1.4 [64]

We used K (x) = I2, q = 0, p = 2 and (N , n) = (8, 65), (16, 129), (32, 256), (64, 512). The ratioDoFs/Cores
is constant in the table

6.4 Scaling

In the scaling experiments, besides the multigrid already considered above, we also employ a
TMG for performance reasons. To avoid memory bounds, we use at most 16 cores per node.
From Table 8 and Fig. 3 we see that the proposed solver, especially when using the TMG
option, shows a nearly optimal strong scaling with respect to the number of cores.3 Table 9
and Fig. 4 illustrate the weak scaling properties of the proposed solver, which possesses a
superior parallel efficiency with respect to the standard ILU(0) approach in terms of iteration
count and run-time. For both solvers, however, the weak scaling is not ideal (constant run-
time). This is due to the fact that N grows from 8 to 64 and both solvers are not robust with
respect to N .

3 We observe a slight reduction in the ideal scaling as the number of cores grows from 2 to 16. This is due
to the fact that runs are performed on a single node with its own limited memory. For more than 16 cores,
the memory bound is no longer present since computations are performed on multiple nodes with increasing
memory. When the number of cores exceeds two thousand, communication takes over and scaling is no longer
observable.
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Fig. 3 Graphical representation
of the run-times reported in
Table 8

Fig. 4 Graphical representation
of the run-times reported in
Table 9

7 Non-rectangular Domain and Non-trivial Geometry

So far, the performance of the proposed solver has been illustrated for the diffusion problem
(1.1) over the hypersquare (0, 1)d . However, no special difficulty arises if (0, 1)d is replaced
by a non-rectangular domain  described (exactly) by a geometry map G : [0, 1]d →  as
per IgA paradigm. Indeed, as long as a tensor-product structure between space and time is
maintained, the geometry map G acts as a reparameterization of  through (0, 1)d , and the
resulting discretization matrix is still given by (2.2)–(2.9) with the only difference that:

– a factor |det(JG(x))| should be included in the integrand of (2.5), where JG(x) is the
Jacobian matrix of G(x);

– the matrix K (x) in (2.6) should be replaced by JG(x)−1K (G(x))JG(x)−T |det(JG(x))|.
In short, a change of domain from (0, 1)d to  essentially amounts to a mere change of
diffusion matrix from K to J−1

G K (G)J−T
G |det(JG)|, which does not affect the performance

of the proposed solver.
In Table 10,we validate the previous claim by testing the solver on the linear system arising

from the space-time IgA-DG discretization of (1.1) in the case where (0, 1)d is replaced by
a non-rectangular domain  described by a non-trivial geometry mapG : [0, 1]d → . The
experimental setting is the same as in Sect. 6.2, with the only difference that (0, 1)2 is now
replaced by a quarter of an annulus

 = {x ∈ R
2 : r2 < x21 + x22 < R2, x1 > 0, x2 > 0}, r = 1, R = 2, (7.1)
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Table 10 PGMRES iterations and run-time (using 64 cores) to solve, up to a precision of 10−8, the linear
system arising from the space-time IgA-DG discretization of (1.1) in the case where (0, 1)d is replaced by
the domain (7.1) described by the geometry map (7.2). The experimental setting is the same as in Sect. 6.2

p 1 2 3 4

ILU(0)-GMRES 1.6 [412] 2.2 [354] 4.0 [296] 4.3 [268]

MG5
1,1-GMRES 0.7 [99] 1.3 [91] 2.2 [103] 4.0 [140]

p 5 6 7 8 9

ILU(0)-GMRES 6.0 [266] 8.0 [257] 16.6 [415] 31.3 [622] 48.2 [775]

MG5
1,1-GMRES 7.2 [178] 11.8 [219] 16.5 [241] 29.6 [348] 39.9 [386]

We used K (x) = I2, q = 1, N = 20, n = 131− p. The total size of the space-time system (number of DoFs)
is given by 40 · 1292

described by the geometry map G : [0, 1]2 → ,

G(x̂) =
{
x1 = [r + x̂1(R − r)] cos(π

2 x̂2
)
,

x2 = [r + x̂1(R − r)] sin(π
2 x̂2

)
,

x̂ ∈ [0, 1]2. (7.2)

We remark that the geometry map G is a common benchmark example in IgA; see, e.g.,
[20,21].

8 Conclusions

We have proposed a MG-GMRES solver for the space-time IgA-DG discretization of the
diffusion problem (1.1). Through numerical experiments, we have illustrated the competi-
tiveness of our proposal in terms of iteration count, run-time and parallel scaling. We have
also shown its applicability to more general problems than (1.1) involving a non-rectangular
domain  and a non-trivial geometry map G. To conclude, we remark that the proposed
solver is highly flexible as it does not depend on the domain or the space-time discretization.
It could therefore be applied to other space-time discretizations, as long as a tensor-product
structure is maintained between space and time.
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54. Shakib, F., Hughes, T.J.R., Zdeněk, J.: A newfinite element formulation for computational fluid dynamics:

X. The compressible Euler and Navier–Stokes equations. Comput. Methods Appl. Mech. Engrg. 89, 141–
219 (1991)

55. Steinbach, O., Yang, H.: Comparison of algebraic multigrid methods for an adaptive space-time finite
element discretization of the heat equation in 3D and 4D. Numer. Linear Algebra Appl. 25, e2143 (2018)

56. Steinbach, O., Yang, H.: Space-time finite element methods for parabolic evolution equations: discretiza-
tion, a posteriori error estimation, adaptivity and solution. In “Space-Time Methods: Applications to
Partial Differential Equations”, Radon Series on Computational and Applied Mathematics 25 (2019), pp.
207–248

57. Sudirham, J.J., van der Vegt, J.J.W., van Damme, R.M.J.: Space-time discontinuous Galerkin method for
advection-diffusion problems on time-dependent domains. Appl. Numer. Math. 56, 1491–1518 (2006)

58. Tezduyar, T.E., Behr, M., Liou, J.: A new strategy for finite element computations involving moving
boundaries and interfaces—The deforming-spatial-domain/space-time procedure: I. The concept and the
preliminary numerical tests. Comput. Methods Appl. Mech. Engrg. 94, 339–351 (1992)

59. Tezduyar, T.E., Behr, M., Mittal, S., Liou, J.: A new strategy for finite element computations involving
moving boundaries and interfaces—The deforming-spatial-domain/space-time procedure: II. Computa-
tion of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Methods Appl.
Mech. Engrg. 94, 353–371 (1992)

60. Tezduyar, T.E., Sathe, S., Keedy, R., Stein, K.: Space-time finite element techniques for computation of
fluid-structure interactions. Comput. Methods Appl. Mech. Engrg. 195, 2002–2027 (2006)

61. Thite, S.: Adaptive spacetime meshing for discontinuous Galerkin methods. Comput. Geom. 42, 20–44
(2009)

62. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, New York (2006)
63. van der Vegt, J.J.W., van der Ven, H.: Space-time discontinuous Galerkin finite element method with

dynamic grid motion for inviscid compressible flows: I. General formulation. J. Comput. Phys. 182,
546–585 (2002)
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