Skip to main content
Log in

Superconvergence Analysis of the Ultra-Weak Local Discontinuous Galerkin Method for One Dimensional Linear Fifth Order Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we analyze the superconvergence of the semi-discrete ultra-weak local discontinuous Galerkin (UWLDG) method for one dimensional time-dependent linear fifth order equations. The UWLDG method is designed to solve equations with high order spatial derivatives. The main idea is to rewrite the higher order equation into a lower order system. When we use the UWLDG method to solve the fifth order equations, we rewrite it as a system with two second order equations and one first order equation. Compared with the other works about superconvergence of the DG method, the main challenge is to define correction functions and a special interpolation function for the system containing equations with different orders. We divide our analysis into five cases according to \(k\pmod {5}\), where k is the highest degree of polynomials in our function space, and obtain 2k-th order superconvergence for cell averages and function values at the cell boundaries and \(k+2\)-th order superconvergence for function values at some special quadrature points. For numerical solutions of the two second order equations, we prove that the first derivatives have superconvergence of order 2k at cell boundaries and order \(k+1 \) at a class of special quadrature points. All theoretical results are confirmed by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Adjerid, S., Devine, K.D., Flaherty, J.E., Krivodonova, L.: A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 1097–1112 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adjerid, S., Baccouch, M.: Asymptotically exact a posteriori error estimates for a one-dimensional linear hyperbolic problem. Appl. Numer. Math. 60, 903–914 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babuska, I., Strouboulis, T.: The Finite Element Method and its Reliability. Oxford University Press, London (2001)

    MATH  Google Scholar 

  5. Baccouch, M.: Optimal superconvergence and asymptotically exact a posteriori error estimator for the local discontinuous Galerkin method for linear elliptic problems on Cartesian grids. Appl. Numer. Math. 162, 201–224 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baccouch, M., Adjerid, S.: A posteriori local discontinuous Galerkin error estimation for two-dimensional convection–diffusion problems. J. Sci. Comput. 62, 399–430 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \(H^{1}\) functions. SIAM J. Numer. Anal. 41, 309–324 (2003)

    Article  Google Scholar 

  8. Brenner, S.C.: Discrete Sobolev and Poincaré inequalities for piecewise polynomial functions. Electron. Trans. Numer. Anal. 18, 42–48 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Cao, W., Huang, Q.: Superconvergence of local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 72, 761–791 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, W., Zhang, Z., Zou, Q.: Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 52, 2555–2573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cao, W., Shu, C.-W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations. SIAM J. Numer. Anal. 53, 1651–1671 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao, W., Liu, H.-L., Zhang, Z.: Superconvergence of the direct discontinuous Galerkin method for convection-diffusion equations. Numer. Methods Partial Differ. Equ. 33, 290–317 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao, W., Shu, C.-W., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients. ESAIM: Math. Model. Numer. Anal. 51, 2213–2235 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cao, W., Shu, C.-W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin method for scalar nonlinear hyperbolic equations. SIAM J. Numer. Anal. 56, 732–765 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cao, W., Zhang, Z.: Some recent developments in superconvergence of discontinuous Galerkin methods for time-dependent partial differential equations. J. Sci. Comput. 77, 1402–1423 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, Y., Cockburn, B., Dong, B.: A new discontinuous Galerkin method, conserving the discrete \(H^2\)-norm, for third-order linear equations in one space dimension. IMA J. Numer. Anal. 36, 1570–1598 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, A., Cheng, Y., Liu, Y., Zhang, M.: Superconvergence of ultra-weak discontinuous Galerkin methods for the linear Schrödinger equation in one dimension. J. Sci. Comput. 82, 1–44 (2020)

    Article  MATH  Google Scholar 

  18. Cheng, Y., Shu, C.-W.: Superconvergence and time evolution of discontinuous Galerkin finite element solutions. J. Comput. Phys. 227, 9612–9627 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77, 699–730 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47, 4044–4072 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematic, vol. 40. SIAM, Philadephia (2002)

    Book  MATH  Google Scholar 

  22. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  23. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  24. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dolejší, V., Feistauer, M.: Discontinuous Galerkin Method—Analysis and Applications to Compressible Flow. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  27. Douglas, J., Dupont, T.: Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods. Computing Methods in Applied Sciences, pp. 207–216. Springer, Berlin

  28. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, New York (1991)

    Book  MATH  Google Scholar 

  29. Hunter, J.H., Vanden-Broeck, J.M.: Solitary and periodic gravity capillary waves of finite amplitude. J. Fluid Mech. 134, 205–219 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ji, L., Xu, Y.: Optimal error estimates of the local discontinuous Galerkin method for Willmore flow of graphs on Cartesian meshes. Int. J. Numer. Anal. Model. 8, 252–283 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Krivodonova, L., Xin, J., Remacle, J.F., Chevaugeon, N., Flaherty, J.E.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Krizek, M., Neittaanmaki, P., Stenberg, R. (Eds.). Finite Element Methods: Superconvergence, Post-processing, and A Posteriori Estimates. Lecture Notes in Pure and Applied Mathematics Series, vol. 196. Marcel Dekker, Inc., New York (1997)

  33. Liu, H.-L., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47, 675–698 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, Y., Tao, Q., Shu, C.-W.: Analysis of optimal superconvergence of an ultraweak-local discontinuous Galerkin method for time dependent fourth-order equation. ESAIM: Math. Model. Numer. Anal. (M2AN) 54, 1797–1820 (2020)

  35. Meng, X., Shu, C.-W., Zhang, Q., Wu, B.: Superconvergence of discontinuous Galerkin methods for scalar nonlinear conservation laws in one space dimension. SIAM J. Numer. Anal. 50, 2336–2356 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pietro, D., Antonio, D., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods, vol. 69. Springer, Berlin (2011)

    MATH  Google Scholar 

  37. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Theory and Implementation. SIAM, Philadelphia (2008)

  38. Tao, Q., Xu, Y.: Superconvergence of arbitrary Lagrangian–Eulerian discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 57, 2142–2165 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tao, Q., Xu, Y., Shu, C.-W.: An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives. Math. Comput. 89, 2753–2783 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tao, Q., Xu, Y., Shu, C.-W.: A discontinuous Galerkin method and its error estimate for nonlinear fourth-order wave equations. J. Comput. Appl. Math. 386, 113230 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wahlbin, L.R.: Lecture Notes in Mathematics. Superconvergence in Galerkin Finite Element Methods, vol. 1605. Springer, Berlin (1995)

    Chapter  MATH  Google Scholar 

  42. Wang, H., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection–diffusion problems. SIAM J. Numer. Anal. 53, 206–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xia, Y., Xu, Y., Shu, C.-W.: Efficient time discretization for local discontinuous Galerkin methods. Discret. Contin. Dyn. Syst. Ser. B 8, 677–693 (2007)

    MathSciNet  MATH  Google Scholar 

  44. Xu, Y., Shu, C.-W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50, 79–104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Xu, Y., Meng, X., Shu, C.-W., Zhang, Q.: Superconvergence analysis of the Runge–Kutta discontinuous Galerkin methods for a linear hyperbolic equation. J. Sci. Comput. 84, 23 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang, Y., Shu, C.-W.: Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 50, 3110–3133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method, 6th edn. McGraw-Hill, London (2005)

    Google Scholar 

  48. Zhong, W.-X.: On precise integration method. J. Comput. Appl. Math. 163, 59–78 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waixiang Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Qi Tao: Research was supported in part by the fellowship of China Postdoctoral Science Foundation, No. 2020TQ0030; Waixiang Cao: Research was supported in part by NSFC Grant No. 11871106; Zhimin Zhang: Research was supported in part by NSFC Grants No. 11871092 and U1930402.

Proof of a Few Technical Lemmas and Theorems

Proof of a Few Technical Lemmas and Theorems

1.1 The Proof of Lemma 3.3

Proof

  1. (i)

    Let \({\bar{\zeta }}_x=\zeta _x+\frac{1}{|\Omega |}\sum \limits _{j=1}^{N} \llbracket {\zeta }\rrbracket _{{j-\frac{1}{2}}}\), then \(\Vert {\bar{\zeta }}_{xx}\Vert _{I_{j}}=\Vert \zeta _{xx}\Vert _{I_{j}}\), \( \llbracket {{\bar{\zeta }}_x}\rrbracket _{{j+\frac{1}{2}}}= \llbracket {\zeta _x}\rrbracket _{{j+\frac{1}{2}}}\), by Lemma 3.1 we have

    $$\begin{aligned} \Vert {\bar{\zeta }}_{xx}\Vert _{I_{j}}+h^{-\frac{1}{2}}\left| \llbracket {{\bar{\zeta }}_{x}}\rrbracket _{{j-\frac{1}{2}}}\right| \le C\Vert f\Vert _{I_{j}}. \end{aligned}$$

    Since \(\int _\Omega {\bar{\zeta }}_xdx=0\), by the discrete Poincaré inequality (3.7) and Lemma 3.1, we have (3.8).

  2. (ii)

    If \(f\bot {\mathcal {P}}^0(I_j)\), then we have \((f,\phi )_j=-({\bar{h}}_jD^{-1}f, \phi _x)_j\), where \(\displaystyle (D^{-1}f)(x)=\frac{1}{{\bar{h}}_j}\int _{x_{{j-\frac{1}{2}}}}^xf(s)ds\). We integrate by parts to get

    $$\begin{aligned} {\mathcal {D}}^2_{j}(\zeta ,\phi )&=-(\zeta _x,\phi _{x})_{j}-\zeta ^+\phi _{x}^{+}|_{{j-\frac{1}{2}}} +\zeta _x^{+}\phi ^{-}|_{{j+\frac{1}{2}}}-\zeta _{x}^{+}\phi ^{+}|_{{j-\frac{1}{2}}}+\zeta ^-\phi _{x}^{+}|_{{j-\frac{1}{2}}}. \end{aligned}$$

    Taking \(\phi =-\zeta \) and summing over all j from 1 to N yields

    $$\begin{aligned} (\zeta _x,\zeta _x)+2\sum _{j=1}^{N}\zeta _{x}^{+} \llbracket {\zeta }\rrbracket \Big |_{{j-\frac{1}{2}}}=\sum _{j=1}^N({\bar{h}}_jD^{-1}f, \zeta _x)_j. \end{aligned}$$

    By Lemma 3.1 we have \( h^{-\frac{3}{2}}\left( \sum _{j=1}^{N} \llbracket {\zeta }\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}\lesssim \Vert f\Vert \), and thus,

    $$\begin{aligned} \Vert \zeta _x\Vert ^2&\le h\Vert D^{-1}f\Vert \Vert \zeta _x\Vert \!\!+\!\!2\sum _{j=1}^{N}\left| \zeta _{x}^{+}\right| \big | \llbracket {\zeta }\rrbracket \big |\Big |_{{j-\frac{1}{2}}}\\&\lesssim h\Vert f\Vert \Vert \zeta _x\Vert \!+\!h^{-\frac{1}{2}}\Vert \zeta _x\Vert \left( \sum _{j=1}^{N} \llbracket {\zeta }\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}\lesssim h\Vert f\Vert \Vert \zeta _x\Vert . \end{aligned}$$

    Thus, we obtain (3.9).

  3. (iii)

    Similarly, we take \(\phi =-\zeta \) and sum over all j to obtain

    $$\begin{aligned} (\zeta _x,\zeta _x)+2\sum _{j=1}^{N}\zeta _{x}^{+} \llbracket {\zeta }\rrbracket \Big |_{{j-\frac{1}{2}}}=\sum _{j=1}^N({\bar{h}}_jD^{-1}f_1, \zeta _x)_j-(f_2, \zeta ). \end{aligned}$$

    Since \(\int _{\Omega }\zeta dx=0\), by the discrete Poincaré inequality (3.7), we have \(\Vert \zeta \Vert \lesssim \Vert \zeta _x\Vert +h^{-\frac{1}{2}}\left( \sum _{j=1}^{N} \llbracket {\zeta }\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}},\) which yields, together with the inequality \( h^{-\frac{3}{2}}\left( \sum _{j=1}^{N} \llbracket {\zeta }\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}\lesssim \Vert f_1\Vert +\Vert f_2\Vert \) in Lemma 3.1,

    $$\begin{aligned} \Vert \zeta _x\Vert ^2&\lesssim h\Vert f_1\Vert \Vert \zeta _x\Vert \!+\!h^{-\frac{1}{2}}\Vert \zeta _x\Vert \left( \sum _{j=1}^{N} \llbracket {\zeta }\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}+\Vert f_2\Vert \Vert \zeta _x\Vert +h^{-\frac{1}{2}}\Vert f_2\Vert \left( \sum _{j=1}^{N} \llbracket {\zeta }\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}\\&\lesssim \Vert \zeta _x\Vert \big (h\Vert f_1\Vert \!+\Vert f_2\Vert \big )+\big (h\Vert f_1\Vert \!+\Vert f_2\Vert \big )^2. \end{aligned}$$

    Then the desired results (3.10) follows directly from Cauchy–Schwarz inequality. \(\square \)

1.2 The Proof of Lemma 4.1

Proof

We use the method of mathematical induction to prove this lemma. For \(i=0\), by the properties of projections \(P_h^{-}\) and \(P_h^{\star }\), we have

$$\begin{aligned} \omega _u^{(0)}\bot {\mathcal {P}}^{k-2}(I_j),\quad \omega _v^{(0)}\bot {\mathcal {P}}^{k-1}(I_j),\quad \omega _w^{(0)}\bot {\mathcal {P}}^{k-2}(I_j). \end{aligned}$$

By the definition of the correction functions, we get

$$\begin{aligned} \omega _u^{(1)}\bot {\mathcal {P}}^{k-3}(I_j),\quad \omega _v^{(1)}\bot {\mathcal {P}}^{k-3}(I_j),\quad \omega _w^{(1)}\bot {\mathcal {P}}^{k-4}(I_j). \end{aligned}$$

Similarly, there hold

$$\begin{aligned} \omega _u^{(2)}\bot {\mathcal {P}}^{k-5}(I_j),\quad \omega _v^{(2)}\bot {\mathcal {P}}^{k-5}(I_j),\quad \omega _w^{(2)}\bot {\mathcal {P}}^{k-5}(I_j). \end{aligned}$$

Next, we assume that (4.2) is satisfied for \(i-1\), then by the definition of \(\omega _w^{(3i)}\),

$$\begin{aligned} (\omega _w^{(3i)}, \varphi _{xx})_j=-((\omega _u^{(3(i-1)+2)})_t,\varphi )_j,\quad \omega _w^{(3i)}(x_{{j+\frac{1}{2}}}^-)=0,~(\omega _w^{(3i)})_x(x_{{j-\frac{1}{2}}}^+)=0,\quad \forall \varphi \in V_h, \end{aligned}$$

\((\omega _u^{(3(i-1)+2)})_t\bot {\mathcal {P}}^{k-5i}(I_j)\), we obtain \(\omega _w^{(3i)}\bot {\mathcal {P}}^{k-5i-2}(I_j)\). Similarly, we can prove \(\omega _w^{(3i+1)}\), \(\omega _w^{(3i+2)}\) and \(\omega _q^{(m)}\) satisfy (4.2), where \(q=u,v; ~m=3i,3i+1,3i+2\). In other words, (4.2) is also valid for i, and thus hold true for all \(i\in {\mathbb {N}}\) with \(3i, 3i+1,3i+2\le l^\star \). \(\square \)

1.3 The Proof of Lemma 4.4

Proof

We still adopt the method of mathematical induction to prove this lemma. At first, we have

$$\begin{aligned} \Vert \partial _t^{n}\omega _u^{(0)}\Vert&\lesssim h^{k+1}\Vert \partial _t^{n}u\Vert _{k+1},\\ \Vert \partial _t^{n}\omega _v^{(0)}\Vert&\lesssim h^{k+1}\Vert \partial _t^{n}v\Vert _{k+1},\;\;\Vert \partial _t^{n}\omega _w^{(0)}\Vert \lesssim h^{k+1}\Vert \partial _t^{n} w\Vert _{k+1}. \end{aligned}$$

Then, by Lemma 4.3 and the definition of the correction functions, we have

$$\begin{aligned} \Vert \omega _u^{(1)}\Vert&\lesssim h^{2}\Vert \omega _v^{(0)}\Vert \lesssim h^{k+3}\Vert v\Vert _{k+1}\lesssim h^{k+3}\Vert u\Vert _{k+3},\\ ~\Vert (\omega _u^{(1)})_t\Vert&\lesssim h^{2}\Vert (\omega _v^{(0)})_t\Vert \lesssim h^{k+3}\Vert v_t\Vert _{k+1}\lesssim h^{k+3}\Vert u_t\Vert _{k+3},\\ \Vert \omega _v^{(1)}\Vert&\lesssim h\Vert \omega _w^{(0)}\Vert \lesssim h^{k+2}\Vert w\Vert _{k+1}\lesssim h^{k+2}\Vert v\Vert _{k+2},\\ \Vert \omega _w^{(1)}\Vert&\lesssim h^{2}\Vert (\omega _u^{(0)})_t\Vert \lesssim h^{k+3}\Vert u_t\Vert _{k+1}\lesssim h^{k+3}\Vert w\Vert _{k+3}, \end{aligned}$$

and

$$\begin{aligned} \Vert \omega _u^{(2)}\Vert&\lesssim h^{2}\Vert \omega _v^{(1)}\Vert \lesssim h^{k+4}\Vert v\Vert _{k+2}\lesssim h^{k+4}\Vert u\Vert _{k+4},\\ \Vert (\omega _u^{(2)})_t\Vert&\lesssim h^2\Vert (\omega _v^{(1)})_t\Vert \lesssim h^{k+4}\Vert v_t\Vert _{k+2}\lesssim h^{k+4}\Vert u_t\Vert _{k+4},\\ \Vert \omega _v^{(2)}\Vert&\lesssim h\Vert \omega _w^{(1)}\Vert \lesssim h^{k+4}\Vert w\Vert _{k+3}\lesssim h^{k+4}\Vert v\Vert _{k+4},\\ \Vert \omega _w^{(2)}\Vert&\lesssim h^{2}\Vert (\omega _u^{(1)})_t\Vert \lesssim h^{k+5}\Vert u_t\Vert _{k+3}\lesssim h^{k+5}\Vert w\Vert _{k+5}. \end{aligned}$$

Therefore, the results in Lemma 4.4 are satisfied for \(i=0\) . We assume the estimates are satisfied for \(i=m-1\), then for \(i=m\) we have,

$$\begin{aligned} \Vert \omega _u^{(3m)}\Vert&\lesssim h^{2}\Vert \omega _v^{(3m-1)}\Vert =h^2\Vert \omega _v^{(3(m-1)+2)}\Vert \lesssim h^{2+k+4+5(m-1)}\Vert v\Vert _{k+4+5(m-1)}\\&\lesssim h^{k+1+5m}\Vert u\Vert _{k+1+5m},\\ \Vert (\omega _u^{(3m)})_t\Vert&\lesssim h^{2}\Vert (\omega _v^{(3m-1)})_t\Vert \lesssim h^{k+1+5m}\Vert u_t\Vert _{k+1+5m},\\ \Vert \omega _v^{(3m)}\Vert&\lesssim h\Vert \omega _w^{(3m-1)}\Vert =h\Vert \omega _w^{(3(m-1)+2)}\Vert \lesssim h^{1+k+5+5(m-1)}\Vert w\Vert _{k+5+5(m-1)}\\&\lesssim h^{k+1+5m}\Vert v\Vert _{k+1+5m},\\ \Vert \omega _w^{(3m)}\Vert&\lesssim h^{2}\Vert (\omega _u^{(3m-1)})_t\Vert =h^{2}\Vert (\omega _u^{(3(m-1)+2)})_t\Vert \lesssim h^{2+k+4+5(m-1)}\Vert u_t\Vert _{k+4+5(m-1)}\\&\lesssim h^{k+1+5m}\Vert w\Vert _{k+1+5m}. \end{aligned}$$

Similarly, we can prove the estimates for \(\Vert \partial _t^{n}\omega _u^{(3m+1)}\Vert , \Vert \partial _t^{n}\omega _u^{(3m+2)}\Vert , \Vert \omega _q^{(3m+1)}\Vert , \Vert \omega _q^{(3m+2)}\Vert \), \(q=v,w\) are also satisfied. Therefore, the proof is completed. \(\square \)

1.4 The Proof of Theorem 5.1

Proof

The proof of this theorem contains the following five parts:

(1) Estimate \(({\bar{\xi }}_u)_t(x,0)\):

By the definition of the \((u_h)_t(x,0)\), we have \(\int _{\Omega }(u_h)_t(x,0)dx=0\) and \(({\bar{\xi }}_u)_t(x,0)=\frac{1}{|\Omega |}\int _{\Omega }(\omega _u^{(l^\star )})_t(x,0)dx\).

  • If \(k=0,2,3\pmod {5}\), then \((\omega _u^{(l^\star )})_t(x,0)\bot {\mathcal {P}}^{0}(I_j),~\forall j\in Z_N\) and \(\Vert ({\bar{\xi }}_u)_t\Vert (0)=0\);

  • If \(k=1,4\pmod {5}\), then \(\Vert (\omega _u^{(l^\star )})_t\Vert (0)\lesssim h^{2k}\; \text {and}\; \Vert ({\bar{\xi }}_u)_t\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}\).

(2) The definition of \(w_h(x,0)\), \(v_h(x,0)\), \(u_h(x,0)\):

\(w_h(x,0)\) is the solution of the following equations:

figure c

\(v_h(x,0)\) is the solution of the following equations:

figure d

\(u_h(x,0)\) is the solution of the following equations:

figure e

We can prove \(w_h(x,0)\), \(v_h(x,0)\) and \(u_h(x,0)\) are well defined, and the more details of proof are given in [30, Appendix A.3, Proof of Lemma 5.1] and [34, Appendix A.2, Proof of Lemma 3.4].

(3) Estimate \({\bar{\xi }}_w(x,0)\):

By the error Eq. (5.5a), we have

$$\begin{aligned} {\mathcal {D}}^2_{j}({\bar{\xi }}_w(x,0),\varphi )=((\omega _u^{(l^\star )})_t(x,0),\varphi )-(({\bar{\xi }}_u)_t,\varphi ), \quad \forall \varphi \in V_h. \end{aligned}$$
(A.7)

Then, by Lemma 3.3 we have

$$\begin{aligned} \Vert ({\bar{\xi }}_w)_x\Vert (0)\lesssim \Vert (\omega _u^{(l^\star )})_t\Vert (0)+\Vert ({\bar{\xi }}_u)_t\Vert (0). \end{aligned}$$
(A.8)

By Corollary 5.1, we have

$$\begin{aligned} h^{-\frac{3}{2}}\left( \sum _{j=1}^{N} \llbracket {{\bar{\xi }}_w}\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}\lesssim \Vert (\omega _u^{(l^\star )})_t\Vert (0)+\Vert ({\bar{\xi }}_u)_t\Vert (0). \end{aligned}$$
(A.9)

Combine (A.8), (A.9) and Lemma 4.4, we obtain

$$\begin{aligned} \Vert ({\bar{\xi }}_w)_x\Vert (0)+h^{-\frac{3}{2}}\left( \sum _{j=1}^{N} \llbracket {{\bar{\xi }}_w}\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}&\lesssim \Vert (\omega _u^{(l^\star )})_t\Vert (0)+\Vert ({\bar{\xi }}_u)_t\Vert (0)\nonumber \\&\lesssim h^{m}\Vert u_t\Vert _{m}(0)+\Vert ({\bar{\xi }}_u)_t\Vert (0), \end{aligned}$$
(A.10)

where

$$\begin{aligned} \left\{ \begin{array}{ll} m=2k-1, &{}k=0,2\pmod {5};\\ m=2k,&{} k=1,3,4\pmod {5}. \end{array} \right. \end{aligned}$$
  • If \(k=0,2\pmod {5}\), then \((\omega _u^{(l^\star )})_t(x,0)\bot {\mathcal {P}}^0(I_j),~j\in Z_N\), and \(\Vert ({\bar{\xi }}_u)_t\Vert (0)=0.\) By (A.7) and Lemma 3.3 we have

    $$\begin{aligned} \Vert ({\bar{\xi }}_w)_x\Vert (0)\lesssim h\Vert (\omega _u^{(l^\star )})_t\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k-1}(0). \end{aligned}$$

    Furthermore, noticing that \(\omega _w^{(i)}\bot {\mathcal {P}}^0(I_j),~i=0,\ldots ,l^\star \), \(j\in Z_N\), then

    $$\begin{aligned} \int _{\Omega }{\bar{\xi }}_w(x,0)dx=\sum _{j=1}^{N}\int _{I_j}\left( w_h- P_h^\star w+\omega _{w,l^\star } \right) (x,0)dx=\int _{\Omega }w_h(x,0)- w(x,0)dx=0. \end{aligned}$$

    By the discrete Poincaré inequality (3.7) and (A.10),

    $$\begin{aligned} \Vert {\bar{\xi }}_w\Vert (0)\lesssim \Vert ({\bar{\xi }}_w)_x\Vert (0)+h^{-\frac{1}{2}}\left( \sum _{j=1}^{N} \llbracket {{\bar{\xi }}_w}\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}\lesssim h^{2k}\Vert u_t\Vert _{2k-1}(0). \end{aligned}$$
  • If \(k=1,3,4\pmod {5}\), then \(\Vert ({\bar{\xi }}_u)_t\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0)\), \(\Vert ({\bar{\xi }}_w)_x\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0)\), and

    $$\begin{aligned} \int _{\Omega }{\bar{\xi }}_w(x,0)dx=\sum _{j=1}^{N}\int _{I_j}\left( w_h-P_h^\star w+\omega _{w,l^\star }\right) (x,0)dx=\int _{\Omega }\omega _w^{(l^\star )}(x,0)dx. \end{aligned}$$

    Since \(\Vert \omega _w^{(l^\star )}\Vert (0)\lesssim h^{2k}\), we have from (A.10) that

    $$\begin{aligned} \Vert {\bar{\xi }}_w\Vert (0)&\lesssim \Vert {\bar{\xi }}_w-\int _{\Omega }{\bar{\xi }}_wdx\Vert (0)+\left| \int _{\Omega }{\bar{\xi }}_w(x,0)dx\right| \\&\lesssim \Vert ({\bar{\xi }}_w)_x\Vert (0)+h^{-\frac{1}{2}}\left( \sum _{j=1}^{N} \llbracket {{\bar{\xi }}_w}\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}} +\left| \int _{\Omega }{\bar{\xi }}_w(x,0)dx\right| \\&\lesssim h^{2k}\big (\Vert u_t\Vert _{2k}(0)+\Vert w\Vert _{2k+1}(0)\big ). \end{aligned}$$

(4) Estimate \({\bar{\xi }}_v(x,0)\):

By Corollary 5.1 we have

$$\begin{aligned} \Vert ({\bar{\xi }}_v)_x\Vert (0)+h^{-\frac{1}{2}}\left( \sum _{j=1}^{N} \llbracket {{\bar{\xi }}_v}\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}\le \Vert \omega _w^{(l^\star )}\Vert (0)+\Vert {\bar{\xi }}_w\Vert (0) \lesssim h^{m}\Vert w\Vert _{m}(0)+\Vert {\bar{\xi }}_w\Vert (0), \end{aligned}$$
(A.11)

where

$$\begin{aligned} \left\{ \begin{array}{ll} m=2k, &{}k=0,1,3\pmod {5};\\ m=2k+1, &{}k=4\pmod {5};\\ m=2k-1, &{}k=2\pmod {5}. \end{array} \right. \end{aligned}$$
  • If \(k=0,1,3\pmod {5}\), then \(\Vert ({\bar{\xi }}_v)_x\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0)\) and \(\omega _v^{(i)}\bot {\mathcal {P}}^0(I_j),~i =0,\ldots ,l^\star \), \(\int _{\Omega }{\bar{\xi }}_v(x,0)dx=0\), by the discrete Poincaré inequality and (A.11), we get

    $$\begin{aligned} \Vert {\bar{\xi }}_v\Vert (0)\lesssim \Vert ({\bar{\xi }}_v)_x\Vert (0)+h^{-\frac{1}{2}}\left( \sum _{j=1}^{N} \llbracket {{\bar{\xi }}_v}\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}\lesssim h^{2k}\Vert u_t\Vert _{2k}(0). \end{aligned}$$
  • If \(k=4\pmod {5}\), then \(\int _{\Omega }{\bar{\xi }}_v(x,0)dx=\int _{\Omega }\omega _v^{(l^\star )}(x,0)dx\). By the discrete Poincaré inequality (3.7) and (A.11), we get

    $$\begin{aligned} \Vert {\bar{\xi }}_v\Vert (0)&\lesssim \Vert {\bar{\xi }}_v-\int _{\Omega }{\bar{\xi }}_vdx\Vert (0)+\left| \int _{\Omega }{\bar{\xi }}_v(x,0)dx\right| \\&\lesssim h^{2k+1}\Vert w\Vert _{2k+1}(0)+h^{2k}\Vert v\Vert _{2k}(0)+\Vert {\bar{\xi }}_w\Vert (0). \end{aligned}$$

    Therefore, \(\Vert {\bar{\xi }}_v\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0).\)

  • If \(k=2\pmod {5}\), we have \(\omega _w^{(l^\star )}\bot {\mathcal {P}}^0(I_j), j\in Z_N\), and define \(\omega _v^{(l^\star +1)}\): find \(\omega _v^{(l^\star +1)}\big |_{I_j}\in {\mathcal {P}}^k(I_j)\), such that

    $$\begin{aligned} (\omega _v^{(l^\star +1)}, \phi _{x})_j=-(\omega _w^{(l^\star )},\phi )_j,\quad \omega _v^{(l^\star +1)}\left( x_{{j+\frac{1}{2}}}^-\right) =0,\quad \forall \phi \in {\mathcal {P}}^k(I_j),\,j\in Z_N. \end{aligned}$$
    (A.12)

    Denote \({\tilde{\xi }}_v={\bar{\xi }}_v+\omega _v^{(l^\star +1)}\), \({\tilde{\eta }}_v={\bar{\eta }}_v+\omega _v^{(l^\star +1)}\). Then we have \(\Vert \omega _v^{(l^\star +1)}\Vert \lesssim h^{2k}\Vert v\Vert _{2k}\) and

    $$\begin{aligned} {\mathcal {D}}^1_{j}({\tilde{\xi }}_v(x,0),\phi )=-({\bar{\xi }}_w(x,0),\phi ), \quad \forall \phi \in V_h. \end{aligned}$$

    Thus, we get

    $$\begin{aligned} \Vert ({\tilde{\xi }}_v)_x\Vert (0)+h^{-\frac{1}{2}}\left( \sum _{j=1}^{N} \llbracket {{\tilde{\xi }}_v}\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}&\lesssim \Vert {\bar{\xi }}_w\Vert (0)\\ \int _{\Omega }{\tilde{\xi }}_v(x,0)dx&=\int _{\Omega }\omega _v^{(l^\star +1)}(x,0)dx. \end{aligned}$$

    Then,

    $$\begin{aligned} \Vert {\tilde{\xi }}_v\Vert (0) \lesssim \Vert {\tilde{\xi }}_v-\int _{\Omega }{\tilde{\xi }}_vdx\Vert (0)+\left| \int _{\Omega }{\tilde{\xi }}_v(x,0)dx\right| \lesssim \Vert {\bar{\xi }}_w\Vert (0)+h^{2k}\Vert v\Vert _{2k}(0), \end{aligned}$$

    and

    $$\begin{aligned} \Vert {\bar{\xi }}_v\Vert (0)\le \Vert {\tilde{\xi }}_v\Vert (0)+\Vert \omega _v^{(l^\star +1)}\Vert (0)\lesssim \Vert {\bar{\xi }}_w\Vert (0)+h^{2k}\Vert v\Vert _{2k}(0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0)+h^{2k}\Vert v\Vert _{2k}(0). \end{aligned}$$

(5) Estimate \({\bar{\xi }}_u(x,0)\):

By Corollary 5.1 we have

$$\begin{aligned} \Vert ({\bar{\xi }}_u)_x\Vert (0)+h^{-\frac{3}{2}}\left( \sum _{j=1}^{N} \llbracket {{\bar{\xi }}_u}\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}\lesssim \Vert \omega _v^{(l^\star )}\Vert (0)+\Vert {\bar{\xi }}_v\Vert (0)\lesssim h^{m}\Vert v\Vert _{m}(0)+\Vert {\bar{\xi }}_v\Vert (0), \end{aligned}$$
(A.13)

where

$$\begin{aligned} \left\{ \begin{array}{ll} m=2k-1,&{}k=0,2,3\pmod {5};\\ m=2k, &{}k=1,4\pmod {5}. \end{array} \right. \end{aligned}$$
  • If \(k=0,2,3\pmod {5}\), then \(\omega _v^{(l^\star )}\bot {\mathcal {P}}^0(I_j), \omega _u^{(i)}\bot {\mathcal {P}}^0(I_j), i=0,\ldots ,l^\star \) and \(\int _{\Omega }{\bar{\xi }}_u(x,0) dx=0\). By Lemma 3.1, we have

    $$\begin{aligned} \Vert ({\bar{\xi }}_u)_x\Vert (0)&\lesssim h\Vert \omega _v^{(l^\star )}\Vert (0)+\Vert {\bar{\xi }}_v\Vert (0)\lesssim h^{2k}\Vert v\Vert _{2k-1}(0)+\Vert {\bar{\xi }}_v\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0). \\ \Vert {\bar{\xi }}_u\Vert (0)&\lesssim \Vert ({\bar{\xi }}_u)_x\Vert (0)+h^{-\frac{1}{2}}\left( \sum _{j=1}^{N} \llbracket {{\bar{\xi }}_u}\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}\\&\lesssim h^{2k}\Vert v\Vert _{2k-1}(0)+\Vert {\bar{\xi }}_v\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0). \end{aligned}$$
  • If \(k=1,4\pmod {5}\), then \(\Vert ({\bar{\xi }}_u)_x\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0)\) and \( \int _{\Omega }{\bar{\xi }}_u(x,0)dx=\int _{\Omega }\omega _u^{(l^\star )}(x,0)dx\) Thus

    $$\begin{aligned} \Vert {\bar{\xi }}_u\Vert (0)&\lesssim \Vert {\bar{\xi }}_u -\int _{\Omega }{\bar{\xi }}_udx\Vert (0)+\left| \int _{\Omega }{\bar{\xi }}_u(x,0)dx\right| \\&\lesssim h^{2k}\big (\Vert v\Vert _{2k}(0)+\Vert u\Vert _{2k}(0)\big )+\Vert {\bar{\xi }}_v\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0). \end{aligned}$$

    This finishes our proof. \(\square \)

1.5 The Proof of Theorem 5.2

Proof

We take \(\varphi ={\bar{\xi }}_u, \phi =-{\bar{\xi }}_v, \psi ={\bar{\xi }}_w\) in (5.5) and add (5.5a)–(5.5c) together to get

$$\begin{aligned}&{\mathcal {A}}(({\bar{\xi }}_u)_{t},{\bar{\xi }}_w;{\bar{\xi }}_u)-{\mathcal {B}}({\bar{\xi }}_w,{\bar{\xi }}_v;{\bar{\xi }}_v)+{\mathcal {C}}({\bar{\xi }}_v,{\bar{\xi }}_u;{\bar{\xi }}_w) = {\mathcal {A}}(({\bar{\eta }}_u)_{t},{\bar{\eta }}_w;{\bar{\xi }}_u)-{\mathcal {B}}({\bar{\eta }}_w,{\bar{\eta }}_v;{\bar{\xi }}_v)\\&\qquad +{\mathcal {C}}({\bar{\eta }}_v,{\bar{\eta }}_u;{\bar{\xi }}_w). \\ {\textit{LHS}}&={\mathcal {A}}(({\bar{\xi }}_u)_{t},{\bar{\xi }}_w;{\bar{\xi }}_u)-{\mathcal {B}}({\bar{\xi }}_w,{\bar{\xi }}_v;{\bar{\xi }}_v)+{\mathcal {C}}({\bar{\xi }}_v,{\bar{\xi }}_u;{\bar{\xi }}_w)\\&=\frac{1}{2}\frac{d}{dt}\Vert {\bar{\xi }}_u\Vert ^2+\frac{1}{2}\sum _{j=1}^N \llbracket {{\bar{\xi }}_v}\rrbracket _{{j+\frac{1}{2}}}^2,\\ {\textit{RHS}}&={\mathcal {A}}(({\bar{\eta }}_u)_{t},{\bar{\eta }}_w;{\bar{\xi }}_u)-{\mathcal {B}}({\bar{\eta }}_w,{\bar{\eta }}_v;{\bar{\xi }}_v)+{\mathcal {C}}({\bar{\eta }}_v,{\bar{\eta }}_u;{\bar{\xi }}_w)\\&=((\omega _u^{(l^\star )})_t,{\bar{\xi }}_u)-(\omega _w^{(l^\star )},{\bar{\xi }}_v)+(\omega _v^{(l^\star )},{\bar{\xi }}_w). \end{aligned}$$

Thus, we get

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}\Vert {\bar{\xi }}_u\Vert ^2+\frac{1}{2}\sum _{j=1}^N \llbracket {{\bar{\xi }}_v}\rrbracket _{{j+\frac{1}{2}}}^2=((\omega _u^{(l^\star )})_t,{\bar{\xi }}_u)-(\omega _w^{(l^\star )},{\bar{\xi }}_v)+(\omega _v^{(l^\star )},{\bar{\xi }}_w). \end{aligned}$$
(A.14)

Similarly, by taking time derivative in both side of (5.5), and then choosing \(\varphi =({\bar{\xi }}_u)_t, \phi =-({\bar{\xi }}_v)_t, \psi =({\bar{\xi }}_w)_t\), we obtain

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}\Vert ({\bar{\xi }}_u)_t\Vert ^2+\frac{1}{2}\sum _{j=1}^N \llbracket {({\bar{\xi }}_v)_t}\rrbracket _{{j+\frac{1}{2}}}^2&=((\omega _u^{(l^\star )})_{tt},({\bar{\xi }}_u)_t)-((\omega _w^{(l^\star )})_t,({\bar{\xi }}_v)_t)\nonumber \\&\quad +((\omega _v^{(l^\star )})_t,({\bar{\xi }}_w)_t). \end{aligned}$$
(A.15)

Next, we will divide into five cases to estimate \(\Vert {\bar{\xi }}_u\Vert ,\Vert ({\bar{\xi }}_u)_x\Vert \), \(\Vert {\bar{\xi }}_w\Vert ,\Vert ({\bar{\xi }}_w)_x\Vert \) and \(\Vert {\bar{\xi }}_v\Vert \).

  • Case 1: \(\mathbf{k=0\,\,(mod)\,\,5}\), for example \(\mathbf{k=5}\).

In this case, \(\displaystyle l^\star =3\lfloor \frac{k-4}{5}\rfloor +2\). By Lemma 4.4, we have

$$\begin{aligned} \Vert (\omega _u^{(l^\star )})_t\Vert \lesssim h^{2k-1}\Vert u_t\Vert _{2k-1},\;\;\Vert \omega _v^{(l^\star )}\Vert \lesssim h^{2k-1}\Vert v\Vert _{2k-1},\;\;\Vert \omega _w^{(l^\star )}\Vert \lesssim h^{2k}\Vert w\Vert _{2k}. \end{aligned}$$

Using Lemma 4.1, we get

$$\begin{aligned} (\omega _u^{(l^\star )})_t\bot {\mathcal {P}}^0(I_j),\quad \omega _v^{(l^\star )}\bot {\mathcal {P}}^0(I_j),\quad \omega _w^{(l^\star )}\bot {\mathcal {P}}^0(I_j),\quad \forall j\in Z_N. \end{aligned}$$

Then, by Lemma 3.3, Corollary 5.1, we could get

$$\begin{aligned}&\Vert ({\bar{\xi }}_w)_x\Vert \lesssim \Vert ({\bar{\xi }}_u)_t\Vert +h \Vert (\omega _u^{(l^\star )})_t\Vert \lesssim \Vert ({\bar{\xi }}_u)_t\Vert + h^{2k}, \end{aligned}$$
(A.16)
$$\begin{aligned}&\Vert ({\bar{\xi }}_v)_{x}\Vert \lesssim \Vert {\bar{\xi }}_w\Vert +\Vert \omega _w^{(l^\star )}\Vert \lesssim \Vert {\bar{\xi }}_w\Vert +h^{2k}, \end{aligned}$$
(A.17)
$$\begin{aligned}&\Vert ({\bar{\xi }}_u)_x\Vert \lesssim \Vert {\bar{\xi }}_v\Vert +h \Vert \omega _v^{(l^\star )}\Vert \lesssim \Vert {\bar{\xi }}_v\Vert +h^{2k}. \end{aligned}$$
(A.18)

By using the discrete Poincaré inequality (3.7), we get

$$\begin{aligned} \Vert {\bar{\xi }}_w\Vert \lesssim \Vert ({\bar{\xi }}_u)_t\Vert +h^{2k},\; \Vert {\bar{\xi }}_v\Vert \lesssim \Vert {\bar{\xi }}_w\Vert +h^{2k},\; \Vert {\bar{\xi }}_u\Vert \lesssim \Vert {\bar{\xi }}_v\Vert +h^{2k}. \end{aligned}$$
(A.19)

Next, we only need to estimate \(\Vert ({\bar{\xi }}_u)_t\Vert \). Suppose \(\Vert ({\bar{\xi }}_u)_t\Vert (t^{\star }):=\sup _{t\in [0,T]}\Vert ({\bar{\xi }}_u)_t\Vert (t)\), after integration with respect to time over \([0,t^\star ]\) in (A.15),

$$\begin{aligned} \frac{1}{2}\Vert ({\bar{\xi }}_u)_t\Vert ^2(t^\star )-\frac{1}{2}\Vert ({\bar{\xi }}_u)_t\Vert ^2(0)&\le \int _0^{t^\star }\big ((\omega _u^{(l^\star )})_{tt},({\bar{\xi }}_u)_t\big )dt-\int _0^{t^\star }\big ((\omega _w^{(l^\star )})_t,({\bar{\xi }}_v)_t\big )dt\\&\quad +\int _0^{t^\star }\big ((\omega _v^{(l^\star )})_t,({\bar{\xi }}_w)_t\big )dt\\&:=\mathrm {(I)+(II)+(III)}. \end{aligned}$$

Estimate (I): after integration by parts,

$$\begin{aligned} \mathrm{(I)}=-\int _0^{t^\star }\big ((\omega _u^{(l^\star )})_{ttt},{\bar{\xi }}_u\big )dt+\big ((\omega _u^{(l^\star )})_{tt}(t^\star ),{\bar{\xi }}_u(t^\star )\big )- \big ((\omega _u^{(l^\star )})_{tt}(0),{\bar{\xi }}_u(0)\big ). \end{aligned}$$

Since \((\omega _u^{(l^\star )})_{ttt}\bot {\mathcal {P}}^0(I_j)\), we have \(\big ((\omega _u^{(l^\star )})_{ttt},{\bar{\xi }}_u\big )_j=-{\bar{h}}_j\big (D^{-1}(\omega _u^{(l^\star )})_{ttt},({\bar{\xi }}_u)_x\big )_j\) and by (A.18) and (A.19),

$$\begin{aligned} \big ((\omega _u^{(l^\star )})_{ttt},{\bar{\xi }}_u\big )\lesssim h\Vert (\omega _u^{(l^\star )})_{ttt}\Vert \Vert ({\bar{\xi }}_u)_x\Vert \lesssim h^{2k}\Vert {\bar{\xi }}_v\Vert +h^{4k}\lesssim h^{2k}\Vert ({\bar{\xi }}_u)_t\Vert +h^{4k}. \end{aligned}$$
(A.20)

Similarly, by (A.18) and (A.19),

$$\begin{aligned} \big ((\omega _u^{(l^\star )})_{tt}(t^\star ),{\bar{\xi }}_u(t^\star )\big )&\lesssim h^{2k}\Vert {\bar{\xi }}_v\Vert (t^\star )+h^{4k} \lesssim h^{2k}\Vert ({\bar{\xi }}_u)_t\Vert (t^\star )+h^{4k}. \end{aligned}$$

By (5.11), we also have \( \big ((\omega _u^{(l^\star )})_{tt}(0),{\bar{\xi }}_u(0)\big )\lesssim h\Vert (\omega _u^{(l^\star )})_{tt}\Vert (0)\Vert ({\bar{\xi }}_u)_x\Vert (0)\lesssim h^{4k}.\) Therefore,

$$\begin{aligned} \mathrm{(I)}&\lesssim \int _0^{t^\star } \left( h^{2k}\Vert ({\bar{\xi }}_u)_t\Vert +h^{4k}\right) dt+h^{2k}\Vert ({\bar{\xi }}_u)_t\Vert (t^\star )+h^{4k},\\&\le \int _0^{t^\star } CTh^{4k}+\frac{1}{24T}\Vert ({\bar{\xi }}_u)_t\Vert ^2dt+CT h^{4k}+\frac{1}{24}\Vert ({\bar{\xi }}_u)_t\Vert ^2(t^\star )+Ch^{4k}\\&\le C (1+T)^2h^{4k}+\frac{1}{24T}\int _{0}^{t^\star }\Vert ({\bar{\xi }}_u)_t\Vert ^2dt+\frac{1}{24}\Vert ({\bar{\xi }}_u)_t\Vert ^2(t^\star ). \end{aligned}$$

Estimate (II): after integration by parts,

$$\begin{aligned} \mathrm{(II)}=\int _0^{t^\star }\big ((\omega _w^{(l^\star )})_{tt},{\bar{\xi }}_v\big )dt-\big ((\omega _w^{(l^\star )})_{t}(t^\star ),{\bar{\xi }}_v(t^\star )\big )+ \big ((\omega _w^{(l^\star )})_{t}(0),{\bar{\xi }}_v(0)\big ). \end{aligned}$$

Then,

$$\begin{aligned} \big ((\omega _w^{(l^\star )})_{tt},{\bar{\xi }}_v\big )\le \Vert \big (\omega _w^{(l^\star )}\big )_{tt}\Vert \Vert {\bar{\xi }}_v\Vert \lesssim h^{2k}\big (h^{2k}+\Vert {\bar{\xi }}_w\Vert \big )\lesssim h^{2k}\Vert {\bar{\xi }}_w\Vert +h^{4k}, \end{aligned}$$

and

$$\begin{aligned} \big ((\omega _w^{(l^\star )})_{t}(t^\star ),{\bar{\xi }}_v(t^\star )\big )\lesssim h^{2k}\Vert {\bar{\xi }}_w\Vert (t^\star )+h^{4k}, \quad \big ((\omega _w^{(l^\star )})_{t}(0),{\bar{\xi }}_v(0)\big )\lesssim \Vert (\omega _w^{(l^\star )})_{t}\Vert (0)\Vert {\bar{\xi }}_v\Vert (0)\lesssim h^{4k}. \end{aligned}$$

Therefore,

$$\begin{aligned} \mathrm{(II)}\le C(1+T)^2h^{4k}+\frac{1}{24T}\int _{0}^{t^\star }\Vert ({\bar{\xi }}_u)_t\Vert ^2dt+\frac{1}{24}\Vert ({\bar{\xi }}_u)_t\Vert ^2(t^\star ). \end{aligned}$$

Estimate (III): Similar to (I), we have

$$\begin{aligned} \mathrm{(III)}\le C(1+T)^2h^{4k}+\frac{1}{24T}\int _{0}^{t^\star }\Vert ({\bar{\xi }}_u)_t\Vert ^2dt+\frac{1}{24}\Vert ({\bar{\xi }}_u)_t\Vert ^2(t^\star ). \end{aligned}$$

Combining (5.10) and the estimates of (I), (II) and (III) together yields

$$\begin{aligned} \frac{3}{8}\Vert ({\bar{\xi }}_u)_t\Vert ^2(t^\star )\le C(1+T)^2h^{4k}+\frac{1}{8T}\int _{0}^{t^\star }\Vert ({\bar{\xi }}_u)_t\Vert ^2dt\le \frac{1}{8}\Vert ({\bar{\xi }}_u)_t\Vert ^2(t^\star )+C(1+T)^2h^{4k}. \end{aligned}$$

Then, we obtain \(\Vert ({\bar{\xi }}_u)_t\Vert (t^\star )\lesssim h^{2k}\) and thus (5.12) and (5.13) follows.

  • Case 2: \({\mathbf{k=1\,(mod)\,5}}\), for example \(\mathbf{k=6}\).

In this case, \(\displaystyle l^\star =3\lfloor \frac{k-1}{5}\rfloor \). By Lemma 4.4, we have

$$\begin{aligned} \Vert (\omega _u^{(l^\star )})_t\Vert \lesssim h^{2k}\Vert u_t\Vert _{2k},\;\;\Vert \omega _v^{(l^\star )}\Vert \lesssim h^{2k}\Vert v\Vert _{2k},\;\; \Vert \omega _w^{(l^\star )}\Vert \lesssim h^{2k}\Vert w\Vert _{2k}. \end{aligned}$$

By Lemma 3.3, Corollary 5.1 and the discrete Poincaré inequality (3.7) , we could get

$$\begin{aligned} \Vert {\bar{\xi }}_w\Vert +\Vert ({\bar{\xi }}_w)_x\Vert&\lesssim \Vert ({\bar{\xi }}_u)_t\Vert +h^{2k},\;\; \Vert {\bar{\xi }}_v\Vert +\Vert ({\bar{\xi }}_v)_{x}\Vert \\&\lesssim \Vert {\bar{\xi }}_w\Vert +h^{2k},\;\;\Vert {\bar{\xi }}_u\Vert +\Vert ({\bar{\xi }}_u)_x\Vert \lesssim \Vert {\bar{\xi }}_v\Vert +h^{2k}. \end{aligned}$$

Integration with respect to time over \([0,t^\star ]\) in (A.15),

$$\begin{aligned} \frac{1}{2}\Vert ({\bar{\xi }}_u)_t\Vert ^2(t^\star )-\frac{1}{2}\Vert ({\bar{\xi }}_u)_t\Vert ^2(0)&\le \int _0^{t^\star }((\omega _u^{(l^\star )})_{tt},({\bar{\xi }}_u)_t)dt-\int _0^{t^\star }((\omega _w^{(l^\star )})_t,({\bar{\xi }}_v)_t)dt\\&\quad +\int _0^{t^\star }((\omega _v^{(l^\star )})_t,({\bar{\xi }}_w)_t)dt. \end{aligned}$$

Similar to the analysis of Case 1, we could get \( \Vert ({\bar{\xi }}_u)_t\Vert (t^\star )\lesssim h^{2k}. \) Then the desired result (5.12)–(5.13) follows.

  • Case 3: \(\mathbf{k=2\,(mod)\,5}\), for example \(\mathbf{k=7}\).

In this case, \(l^\star =3\lfloor \frac{k-1}{5}\rfloor \). By Lemma 4.4, we have

$$\begin{aligned} \Vert (\omega _u^{(l^\star )})_t\Vert \lesssim h^{2k-1}\Vert u_t\Vert _{2k-1},\;\;\Vert \omega _v^{(l^\star )}\Vert \lesssim h^{2k-1}\Vert v\Vert _{2k-1},\;\;\Vert \omega _w^{(l^\star )}\Vert \lesssim h^{2k-1}\Vert w\Vert _{2k-1}. \end{aligned}$$

By Lemma 4.1, we obtain

$$\begin{aligned} (\omega _u^{(l^\star )})_t\bot {\mathcal {P}}^0(I_j),\quad \omega _v^{(l^\star )}\bot {\mathcal {P}}^1(I_j),\quad \omega _w^{(l^\star )}\bot {\mathcal {P}}^0(I_j),\quad \forall j\in Z_N. \end{aligned}$$

Along the same line as in Case 1, we could get:

$$\begin{aligned}&\Vert {\bar{\xi }}_w\Vert +\Vert ({\bar{\xi }}_w)_x\Vert \lesssim \Vert ({\bar{\xi }}_u)_t\Vert +h\Vert (\omega _u^{(l^\star )})_t\Vert \lesssim \Vert ({\bar{\xi }}_u)_t\Vert +h^{2k},\\&\Vert {\bar{\xi }}_v\Vert +\Vert ({\bar{\xi }}_v)_{x}\Vert \lesssim \Vert {\bar{\xi }}_w\Vert +\Vert \omega _w^{(l^\star )}\Vert \lesssim \Vert {\bar{\xi }}_w\Vert +h^{2k-1},\\&\Vert {\bar{\xi }}_u\Vert +\Vert ({\bar{\xi }}_u)_x\Vert \lesssim \Vert {\bar{\xi }}_v\Vert +h\Vert \omega _v^{(l^\star )}\Vert \lesssim \Vert {\bar{\xi }}_v\Vert +h^{2k}. \end{aligned}$$

Since \(\omega _w^{(l^\star )}\bot {\mathcal {P}}^0(I_j),~j\in Z_N\), we can define \(\omega _v^{(l^\star +1)}\): find \(\omega _v^{(l^\star +1)}\big |_{I_j}\in {\mathcal {P}}^k(I_j)\), such that

$$\begin{aligned} (\omega _v^{(l^\star +1)}, \phi _{x})_j=-(\omega _w^{(l^\star )},\phi )_j,\;\;\omega _v^{(l^\star +1)}(x_{{j+\frac{1}{2}}}^-)=0, \quad \forall \phi \in {\mathcal {P}}^k(I_j), \quad \forall j\in Z_N. \end{aligned}$$
(A.21)

Then, we can get \(\Vert \omega _v^{(l^\star +1)}\Vert \lesssim h^{2k}\). We denote \({\tilde{\xi }}_v={\bar{\xi }}_v+\omega _v^{(l^\star +1)}\), \({\tilde{\eta }}_v={\bar{\eta }}_v+\omega _v^{(l^\star +1)}\) to obtain

$$\begin{aligned} {\mathcal {D}}^1_{j}({\tilde{\xi }}_v,\phi )=-({\bar{\xi }}_w, \phi )_j,\;\; {\mathcal {D}}^2_{j}({\bar{\xi }}_u,\psi )=({\tilde{\xi }}_v,\psi )_j-(\omega _v^{(l^\star )},\psi )_j-(\omega _v^{(l^\star +1)},\psi )_j,~\forall \phi , \psi \in V_h, \end{aligned}$$

and

$$\begin{aligned} \Vert {\tilde{\xi }}_v\Vert +\Vert ({\tilde{\xi }}_v)_{x}\Vert \lesssim \Vert {\bar{\xi }}_w\Vert +h^{2k},\quad \Vert {\bar{\xi }}_u\Vert +\Vert ({\bar{\xi }}_u)_x\Vert \lesssim \Vert {\tilde{\xi }}_v\Vert +h\Vert \omega _v^{(l^\star )}\Vert +\Vert \omega _v^{(l^\star +1)}\Vert \lesssim \Vert {\tilde{\xi }}_v\Vert +h^{2k}. \end{aligned}$$

Next, we only need to estimate \(\Vert ({\bar{\xi }}_u)_t\Vert \). By taking time derivative on both sides of (5.5), and choosing \(\varphi =({\bar{\xi }}_u)_t, \phi =-({\tilde{\xi }}_v)_t, \psi =({\bar{\xi }}_w)_t\), we have

$$\begin{aligned}&{\mathcal {A}}(({\bar{\xi }}_u)_{tt},({\bar{\xi }}_w)_t;({\bar{\xi }}_u)_t) -{\mathcal {B}}(({\bar{\xi }}_w)_t,({\tilde{\xi }}_v)_t;({\tilde{\xi }}_v)_t)+{\mathcal {C}}(({\tilde{\xi }}_v)_t,({\bar{\xi }}_u)_t;({\bar{\xi }}_w)_t)\\&\quad =\frac{1}{2}\frac{d}{dt}\Vert ({\bar{\xi }}_u)_t\Vert ^2 + \frac{1}{2}\sum _{j=1}^N \llbracket {({\tilde{\xi }}_v)_t}\rrbracket _{{j+\frac{1}{2}}}^2, \end{aligned}$$

and

$$\begin{aligned}&{\mathcal {A}}(({\bar{\eta }}_u)_{tt},({\bar{\eta }}_w)_t;({\bar{\xi }}_u)_t)-{\mathcal {B}}(({\bar{\eta }}_w)_t,({\tilde{\eta }}_v)_t;({\tilde{\xi }}_v)_t)+{\mathcal {C}}(({\tilde{\eta }}_v)_t,({\bar{\eta }}_u)_t;({\bar{\xi }}_w)_t)\\&\quad =((\omega _u^{(l^\star )})_{tt},({\bar{\xi }}_u)_t) +((\omega _v^{(l^\star )})_t,({\bar{\xi }}_w)_t)+((\omega _v^{(l^\star +1)})_t,({\bar{\xi }}_w)_t). \end{aligned}$$

Then, similar to the Case 1, we can prove \(\Vert ({\bar{\xi }}_u)_t\Vert (t^\star )\lesssim h^{2k}\) and

$$\begin{aligned} \Vert {\bar{\xi }}_u\Vert +\Vert {\tilde{\xi }}_v\Vert +\Vert {\bar{\xi }}_w\Vert&\lesssim h^{2k}, \quad \Vert ({\bar{\xi }}_u)_x\Vert +\Vert ({\tilde{\xi }}_v)_x\Vert +\Vert ({\bar{\xi }}_w)_x\Vert \lesssim h^{2k}, \\ \Vert {\bar{\xi }}_v\Vert&\le \Vert {\tilde{\xi }}_v\Vert +\Vert \omega _v^{(l^\star +1)}\Vert \lesssim h^{2k}.\quad \end{aligned}$$
  • Case 4: \(\mathbf{k=3\,(mod)\,5}\), for example \(\mathbf{k=3}\).

In this case, \( l^\star =3\lfloor \frac{k-3}{5}\rfloor +1\). By Lemma 4.4 and Corollary 5.1, we have

$$\begin{aligned} \Vert (\omega _u^{(l^\star )})_t\Vert \lesssim h^{2k}\Vert u_t\Vert _{2k},\;\;\Vert \omega _v^{(l^\star )}\Vert \lesssim h^{2k-1}\Vert v\Vert _{2k-1},\;\; \Vert \omega _w^{(l^\star )}\Vert \lesssim h^{2k}\Vert w\Vert _{2k}. \end{aligned}$$

Using Lemma 4.1, we get \(\omega _v^{(l^\star )}\bot {\mathcal {P}}^0(I_j)\) then \(\displaystyle (\omega _v^{(l^\star )},{\bar{\xi }}_w)_j=-{\bar{h}}_j(D^{-1}\omega _v^{(l^\star )}, ({\bar{\xi }}_w)_x)_j, ~\forall j\in Z_N.\) By Lemma 3.3, we have

$$\begin{aligned}&\Vert {\bar{\xi }}_w\Vert +\Vert ({\bar{\xi }}_w)_x\Vert \lesssim \Vert ({\bar{\xi }}_u)_t\Vert +h^{2k},\\&\Vert {\bar{\xi }}_v\Vert +\Vert ({\bar{\xi }}_v)_{x}\Vert \lesssim \Vert {\bar{\xi }}_w\Vert +h^{2k},\\&\Vert ({\bar{\xi }}_u)_{x}\Vert \lesssim \Vert {\bar{\xi }}_v\Vert +h\Vert \omega _v^{(l^\star )}\Vert \lesssim \Vert {\bar{\xi }}_v\Vert +h^{2k}. \end{aligned}$$

Thus, along the same line in Case 1, we have \(\Vert ({\bar{\xi }}_u)_t\Vert (t^\star )\lesssim h^{2k}\). Then (5.12) and (5.13) are satisfied.

  • Case 5: \({\mathbf{k=4\,(mod)\,5}}\), for example \(\mathbf{k=4}\).

In this case, \(l^\star =3\lfloor \frac{k-4}{5}\rfloor +2\). By Lemma 4.4, we have

$$\begin{aligned} \Vert (\omega _u^{(l^\star )})_t\Vert \lesssim h^{2k}\Vert u_t\Vert _{2k},\;\;\Vert \omega _v^{(l^\star )}\Vert \lesssim h^{2k}\Vert v\Vert _{2k},\;\; \Vert \omega _w^{(l^\star )}\Vert \lesssim h^{2k+1}\Vert w\Vert _{2k+1}. \end{aligned}$$

We could get

$$\begin{aligned} \Vert {\bar{\xi }}_w\Vert +\Vert ({\bar{\xi }}_w)_x\Vert&\lesssim \Vert ({\bar{\xi }}_u)_t\Vert +h^{2k},\;\;\Vert {\bar{\xi }}_v\Vert +\Vert ({\bar{\xi }}_v)_{x}\Vert \lesssim \Vert {\bar{\xi }}_w\Vert +h^{2k+1},\\ \Vert {\bar{\xi }}_u\Vert +\Vert ({\bar{\xi }}_u)_x\Vert&\lesssim \Vert {\bar{\xi }}_v\Vert +h^{2k}. \end{aligned}$$

Similar to the Case 2, we could get \(\Vert ({\bar{\xi }}_u)_t\Vert (t^\star )\lesssim h^{2k}.\) Thus, we have (5.12) and (5.13). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Q., Cao, W. & Zhang, Z. Superconvergence Analysis of the Ultra-Weak Local Discontinuous Galerkin Method for One Dimensional Linear Fifth Order Equations. J Sci Comput 88, 63 (2021). https://doi.org/10.1007/s10915-021-01579-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01579-9

Keywords

Navigation