Skip to main content
Log in

Two L1 Schemes on Graded Meshes for Fractional Feynman-Kac Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study the following time-fractional Feynman-Kac equation

$$\begin{aligned} {_\sigma ^CD_t^{\alpha }G(x,t)}-\Delta G(x,t)=f(x,t),~~~ 0<\alpha <1,~~\sigma > 0. \end{aligned}$$

As is well known, the optimal rate of convergence \(\mathcal {O}\left( \tau ^{\min \{2-\alpha ,~r\alpha \}}\right) \) with \(\sigma =0\) on graded meshes has been proved in [Stynes et al., SIAM J. Numer. Anal. 55, 1057–1079 (2017)] by L1 scheme. However, there are still some significant differences when \(\sigma >0\). More concretely, it shall drop down to the \(\mathcal {O}\left( \tau ^{\min \{1,~r\alpha \}}\right) \) by the implicit L1 scheme. This motivates us to design the implicit-explicit L1 scheme, which recovers a convergence rate \(\mathcal {O}\left( \tau ^{\min \{2-\alpha ,~r\alpha \}}\right) \) on graded meshes. Finally, numerical experiments are given to illustrate theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations Methods. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. Brunner, H., Pedas, A., Vainikko, G.: The piecewise polynomial collocation method for weakly singular Volterra integral equations. Math. Comp. 68, 1079–1095 (1999)

    Article  MathSciNet  Google Scholar 

  3. Carmi, S., Barkai, E.: Fractional Feynman-Kac equation for weak ergodicity breaking. Phys. Rev. E 84, 061104 (2011)

    Article  Google Scholar 

  4. Carmi, S., Turgeman, L., Barkai, E.: On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141, 1071–1092 (2010)

    Article  MathSciNet  Google Scholar 

  5. Chandler, G.A., Graham, I.G.: Product integration-collocation methods for noncompact integral operator equations. Math. Comp. 50, 125–138 (1988)

    Article  MathSciNet  Google Scholar 

  6. Chen, M.H., Deng, W.H.: Discretized fractional substantial calculus. ESAIM Math. Model. Numer. Anal. 49, 373–394 (2015)

    Article  MathSciNet  Google Scholar 

  7. Chen, M.H., Deng, W.H.: High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights. SIAM J. Sci. Comput. 37, A890–A917 (2015)

    Article  Google Scholar 

  8. Chen, M.H., Deng, W.H.: High order algorithm for the time-tempered fractional Feynman-Kac equation. J. Sci. Comput. 76, 867–887 (2018)

    Article  MathSciNet  Google Scholar 

  9. Chen, M.H., Yu, F., Zhou, Z.: Backward difference formula: the energy technique for subdiffusion equation. J. Sci. Comput. 87, 94 (2021)

    Article  Google Scholar 

  10. Chen, C., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)

    Article  MathSciNet  Google Scholar 

  11. Cuesta, E., Lubich, Ch., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75, 673–696 (2006)

    Article  MathSciNet  Google Scholar 

  12. Deng, W.H., Chen, M.H., Barkai, E.: Numerical algorithms for the forward and backward fractional Feynman-Kac equations. J. Sci. Comput. 62, 718–746 (2015)

    Article  MathSciNet  Google Scholar 

  13. Friedrich, R., Jenko, F., Baule, A., Eule, S.: Anomalous diffusion of inertial, weakly damped particles. Phys. Rev. Lett. 96, 230601 (2006)

    Article  Google Scholar 

  14. Hao, Z.P., Cao, W.R., Lin, G.: A second-order difference scheme for the time fractional substantial diffusion equation. J. Comput. Appl. Math. 313, 54–69 (2017)

    Article  MathSciNet  Google Scholar 

  15. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Spinger, Berlin (1981)

    Book  Google Scholar 

  16. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)

    Article  MathSciNet  Google Scholar 

  17. Jin, B., Li, B.Y., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39, A3129–A3152 (2017)

    Article  MathSciNet  Google Scholar 

  18. Li, C.P., Ding, H.F.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38, 3802–3821 (2014)

    Article  MathSciNet  Google Scholar 

  19. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  20. Lubich, Ch.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    Article  MathSciNet  Google Scholar 

  21. Lubich, Ch., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65, 1–17 (1996)

    Article  MathSciNet  Google Scholar 

  22. Lv, C.H., Xu, C.J.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2699–A2724 (2016)

    Article  MathSciNet  Google Scholar 

  23. Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  Google Scholar 

  24. Mclean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)

    Article  MathSciNet  Google Scholar 

  25. Mclean, W., Thomee, V., Wahlbin, L.B.: Discretization with variable time steps of an evolution equation with a positive-type memory term. J. Comput. Appl. Math. 69, 49–69 (1996)

    Article  MathSciNet  Google Scholar 

  26. Mclean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52, 123–138 (2010)

    Article  MathSciNet  Google Scholar 

  27. Mclean, W., Mustapha, K., Ali, R., Knio, O.M.: Regularity theory for time-fractional advection-diffusion-reaction equations. Comput. Math. Appl. 79, 947–961 (2020)

    Article  MathSciNet  Google Scholar 

  28. Mustapha, K.: A superconvergent discontinuous Galerkin method for Volterra integro-differential equations, smooth and non-smooth kernels. Math. Comp. 82, 1987–2005 (2013)

    Article  MathSciNet  Google Scholar 

  29. Mustapha, K.: An implicit finite difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements. IMA J. Numer. Anal. 31, 719–739 (2011)

    Article  MathSciNet  Google Scholar 

  30. Mustapha, K., Abdallah, B., Furati, K.M.: A discontinuous Petrov-Galerkin method for time-fractional diffusion equations. SIAM J. Numer. Anal. 52, 2512–2529 (2014)

    Article  MathSciNet  Google Scholar 

  31. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  32. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  33. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  34. Shi, J.K., Chen, M.H.: Correction of high-order BDF convolution quadrature for fractional Feynman-Kac equation with Lévy flight. J. Sci. Comput. 85, 28 (2020)

    Article  Google Scholar 

  35. Stynes, M., O’riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

  36. Sun, J., Nie, D.X., Deng, W.H.: Error estimates for backward fractional Feynman-Kac equation with non-smooth initial data. J. Sci. Comput. 84, 6 (2020)

    Article  MathSciNet  Google Scholar 

  37. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC 11601206, the Research Foundation of Education Commission of Hunan Province of China (No. 19B565), the Project of Scientific Research Fund of Hunan Provincial Science and Technology Department (No. 2018WK4006), and the Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University. We would like to thank the anonymous reviewers for suggesting to simulate the two-dimensional case in Example 3, and for several suggestions and comments that led to much better results and an improved presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghua Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Jiang, S. & Bu, W. Two L1 Schemes on Graded Meshes for Fractional Feynman-Kac Equation. J Sci Comput 88, 58 (2021). https://doi.org/10.1007/s10915-021-01581-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01581-1

Keywords

Navigation