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ABSTRACT. This article concerns the numerical approximation of the two-dimensional
nonstationary Navier—Stokes equations with H*' initial data. By utilizing special locally
refined temporal stepsizes, we prove that the linearly extrapolated Crank—Nicolson scheme,
with the usual stabilized Taylor-Hood finite element method in space, can achieve second-
order convergence in time and space. Numerical examples are provided to support the
theoretical analysis.
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1. INTRODUCTION

Let 2 C R? be a convex polygonal domain with boundary 9f2. We consider the time-
dependent Navier—Stokes (NS) equations describing the dynamics of an incompressible,
homogeneous, viscous fluid in the domain {2 up to a given time T > 0, i.e.,

Ou+ (u-Viu—Au+Vp=0 in £ x (0,7,
Vou=0 in 2x (0,7,
(1.1)
u=0 on 952 x10,T],
u=u" in 2 x {0},

where u = u(z,t) = (u1(z,t),us(x, t)) and p = p(x, t) denote the fluid velocity and pressure,
respectively, and u® = u%(z) is a given initial value of the fluid velocity.

As the fundamental mathematical equations to understand and predict the dynamics of
incompressible fluid flow, the numerical solution of the NS equations has attracted much
attention in the community of scientific computing and numerical analysis. In particular,
if the solution of the NS equations is sufficiently smooth (with enough compatibility con-
ditions), then optimal-order convergence of high-order numerical methods can be proved;
see [4./6|18.19,126,27].

For H? initial data, i.e., u® € H}(£2)2N H?(2)? and V - u" = 0 without additional com-
patibility conditions, Heywood & Rannacher |[13H15] considered both semidiscrete and fully
discrete finite element methods for the NS equations and proved second-order convergence
in time for the implicit Crank-Nicolson scheme. Shen [20,21] proved optimal-order con-
vergence of the first-order and second-order projection methods for decoupling velocity and
pressure. He & Sun [12] proved second-order convergence of the Crank-Nicolson/Adams—
Bashforth implicit-explicit scheme. Emmrich [5] proved second-order convergence of the
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two-step backward differentiation formula. Guo & He [8] proved second-order conver-
gence of the linearly extrapolated Crank—Nicolson scheme. Tang & Huang [23] proved
second-order convergence of the Crank—Nicolson leap-frog scheme. For the Crank—Nicolson
methods mentioned above, the convergence of pressure was proved with sub-optimal or-
der. Recently, Sonner & Richter [22] proved second-order convergence of pressure for the
Crank—Nicolson method.

For H! initial data, i.e., u’ € H}(£2)? and V - u® = 0 without additional compatibility
conditions, only a few results were provided in the literature. As far as we know, Hill and
Siili [16] proved second-order convergence of the semidiscrete finite element method. He
derived first-order convergence of the Euler implicit/explicit scheme in [9] and 1.5th-order
convergence of the Crank—Nicolson/Adams-Bashforth implicit-explicit scheme in [10].

The objective of this paper is to prove that, for H' initial data without additional com-
patibility conditions, the linearly extrapolated Crank—Nicolson scheme has second-order
convergence by utilizing a class of locally refined stepsizes, with the semi-implicit Euler
scheme at the first two time levels. The total computational cost would be equivalent to
using a uniform stepsize. The proof is based on two technical lemmas (Lemma and
established in section [3.I] and the consistency error estimate presented in section For
simplicity, we focus on the homogeneous NS equations (i.e., the right-hand side is zero
in the velocity equation) with a normalised viscosity. All the results can be carried over to
the general case if we assume appropriate smoothness of f.

2. PRELIMINARY RESULTS FOR THE SEMIDISCRETE FINITE ELEMENT METHOD

2.1. Functional setting of the NS equations. For s > 0 and 1 < p < oo, we denote
by W#P(£2) the conventional Sobolev space of functions on 2, with abbreviations H*({2) =
Ws2(0), L>(2) = H°(2) and LP(2) = WOP(£2). As usual, we denote by H}(£2) the space
of functions in H'(£2) with zero trace on the boundary d2. For simplicity, the norms on
the spaces H*((2), H*(£2)™ and H*(2)™*™ with any integer m > 1, are all denoted by

1 25 (02)-
We introduce the following Hilbert spaces associated with the NS equations:

X = Hy(2)%,
Y ={vel*(2)? V-v=0, v nlpp =0},
M = L§(2) = {g € L*(2); [pqde = 0}.
Let X be the divergence-free subspace of X, defined by
X={veX;V-v=0}
In a convex polygon (2, it is known that the steady-state Stokes equations
—Av+Vqg=g in {2,
V-v=0 in {2,
v=0 on 02,

with g € L?(£2)?, have a unique solution (v,q) € (X N H?(£2)?) x H'(12)/R satisfying the
following estimate:

(2.1) vl 2(2) + lallzr(0)r < allgllzeo)
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where ¢; > 0 is some positive constant depending on 2. This result can be found in |17,
Theorem 2] and |24, p. 33, Proposition 2.2].
Let D(A) = X N H%(2)? C Y and define the Stokes operator

A=—-PA:D(A) =Y,
where P is the L?-orthogonal projection of L?(£2)? onto Y. As a result of , the following
inequalities hold; see |1L|13]:
[vllz20) < c2lVoll2) v e X,
vl 520y < c2llAv|lr2(e) v € D(A),

where ¢y is some positive constant depending on f2.
We recall the following result concerning the existence and uniqueness of a global strong
solution to the Navier—Stokes problem ([1.1]) (cf. |16, Theorem 2.1]).

Theorem 2.1. For any given u® € X there exists a unique solution to (1.1) such that
we HY0,T; L*(2)%) N L0, T; H(2)?) n C([0, T]; X),
pe L2(0,T; H' (2)/R).
The initial condition is satisfied in the sense that
llu(-,t) — u0||H1(Q) =0 as t—0.

We define a trilinear form on X x X x X by

b(u,v,w) = ((u-V)v,w) + %((V u)v,w)

= %((U-V)v,w) - %((u-V)w,v) for u,v,w € X.

Then the solution of problem (|1.1)), as stated in Theorem satisfies the following equations
for all (v,q) € X x M and t € (0,T]:

{(@u, v) + b(u,u,v) + (Vu, Vo) — (p, V- v) =0,

(2.2) (V-u,q)=0.

2.2. Semidiscrete finite element approximation. Let X}, x M be a finite element
subspace of X x M subject to a triangulation of {2 with mesh size h > 0, with the following
three properties.

(1) Inverse inequality: there exists a constant c¢3 > 0 (independent of h) such that

D) —(2_2
(2.3) lonllwmaqay < esh™ 75" oplliaay  Yon € Xa,

for0<i<m<land1<p<gqg<oo.
(2) Inf-sup condition: there exists a constant ¢4 > 0 (independent of k) such that

V - vp,
(2.4) lgnllr2() < ca  sup Vv, an)

Vaqn € My,
onex\{0} VRl L2(2)

(3) Fortin projection: there exists a linear projection IIj, : H}(§2)? — X}, such that for
v € HE(2)? N H%(02)?
v = pv|[gm ) < esh™ " |[vllps(e) 0<m <1, 1<s5<2,

(2.5)
[Hpollwiee) < esllvllwiee) 1<p<oo,



where c¢; > 0 is a constant independent of h.

For example, the Taylor—Hood P2-P1 element space [7,25] has all these properties.

For the simplicity of notation, in the rest of this paper, we denote by ¢ a generic positive
constant that is independent of h.

Let X}, be the discrete divergence-free subspace of X}, defined by

Xp = {vp, € X (V- vp,qn) =0 Van € My}
Let P, : L?(02)? — X, be the L?-orthogonal projection defined by
(Pyo,vp) = (v,0) Yoy € Xy

Equivalently, Pyv can be found by solving the following coupled equations:
{(th,vh) — (nh, AV ’Uh) = (U,Uh) \V/Uh (S Xh,

(V- Ppo,qn) =0 Van € M.
Then the following inequalities are consequences of properties (12.3)—(2.5)); see [3]:
(2.6) IV Paoll 20 < ellVollrae) Yo € X,
@7) o Pl + IV — Pao)llzaey < ch¥ullgaiey Vo€ X0 HA(RQ)

The semidiscrete finite element method for (2.2) reads: Find (us(t),pa(t)) € Xp x My
such that

(Opup, vp) + b(up, up, vy) + (Vup, Vo) — (pp, V - vp,) = 0,
(2.8) (V- up, qn) =0,
up (0) = Ppu®,
holds for all (vp,qn) € Xp X My, and t € (0,T7.

It is known that the semidiscrete finite element solution wy(t) satisfies the following
regularity estimates; see [10].

Lemma 2.2 (Regularity of semidiscrete finite element solution). Let u® € H(£2)? and
V- u® =0, and assume that the finite element space X, x My, has properties —.
Then the semidiscrete finite element solution up(t) determined by satisfies the following
reqularity estimates:

(2.9) 10 un ()| gy < CtT™ YVt e (0,T], m=1,2,
1
(2.10) lun ()l 2200y + IVun(®)| L2(2) + t2 | Anun(t)l| 20 < € Vi € (0,71,

where C' is a general positive constant depending on ||UOHH1(Q), 2 andT.

3. THE LINEARLY EXTRAPOLATED CRANK—NICOLSON SCHEME

In this section, we present the error estimate for the fully discrete finite element method
with the linearly extrapolated Crank—Nicolson scheme in time. We consider a partition
0=ty <t1 <--- <ty =T of the time interval [0, 7] with the following stepsizes:

1
T\ T=a
lerng(—> ,

T
tn—l

(3.1)
Tn =tn —tp—1 ~ ( T

«
) T for n >3,

where 7 is the maximal stepsize and % < a < 1is any fixed number.



5

Remark 3.1. The computational cost using the stepsizes in (3.1)) is equivalent to using

n—1

a uniform stepsize 7. For example, for the stepsize choice 7, = ( = )aT we can estimate
the number of total time levels as follows. We divide the time interval [t;, 7] into dyadic
subintervals [27771T, 2777, with j = 0,1,...,.J, where J is the smallest integer satisfying

2=JT < t;. Since t; :'71 = T(T)1 o it follows that J < 1+ = a)lnzln( ) Any time
interval [t,,_1,t,] C [27771T,279T] would satisfy

tr 1\ .
Ty = < nT1> > 9 Uthay

Hence, the number of time levels in [27771T, 27777 is bounded by

—(j+1)
N < 2 o

27T G-l
7= 9-(+Dar T

As a result, the number of total time levels in [0, 7] is bounded by

1 T
N<ZN <ZQ (G+1)(1-a) _ﬁq’ for aG(O,l)

Therefore, for any fixed a € (0, 1), the number of total time levels is bounded by a constant
multiple of T'/7. The number of total time levels is increasing as « increases and blows up
as @ — 1. But in practical computation we only need to choose a fixed o € (0,1) for a
given problem. For example, in the numerical solution of the NS equations we only need to
choose a fixed constant a € (%, 1); see Theorem

For any sequence of functions up, n =0,1,..., N, we adopt the conventional notations:
u? — L P R T
(ST'LLZ = hq_ih, Hh 2= % n 2 ].,
n
~n— 1 T . T
u, *: (1+ )Zl——nuZQ with r, = — n > 2.
2 2 Tn—1

The stepsizes in (3.1) guarantee that r,, < ¢ for some positive constant c.

Let u?L = Py’ € X;. For (up,pp) € Xp x Mp, n = 1,2, we compute the numerical
solutions by the semi-implicit Euler method:
{(5Tu;;,vh) +b(up T ul, op) + (Vul, Vo) — (p, Vo) =0 Yoy, € Xy,

(3.2) )
(V-up,qn) =0 Vg, € M.

For n > 3 and given functions
(uh 7pZ 2) (uz_lvpz_l) € Xh X th

we consider the following linearly extrapolated Crank-Nicolson method: Find (u},p}) €
Xy X My, such that

_1 _1 _1 _1
(57'“;11’ Uh) + b(az Q,HZ 27Uh) + (Vﬂ: %, vvh) - (pZ AV Uh) =0 Vo, € Xp,
(3.3)

_1
(V- -7, 2,q,)=0 Y, € M.

The main result of this paper is presented in the following theorem.
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Theorem 3.1. Let u’ € H}(2)? and V - u® = 0, and assume that the finite element space
has properties (2.3)) f (such as the Taylor—Hood element space). If the temporal stepsizes
are chosen from (3.1) with some fized v satisfying 3/4 < o < 1, then the fully discrete finite
element solution uy given by f has the following error bound:

_1
(3.4) [u(tn) — upllz2(o) < CT2 + Cty 2 b,
where C' is a general positive constant depending on ||UOHH1(Q), 2, T, cs and cs.
The proof of Theorem is presented in the following subsections.

Remark 3.2. The Taylor—-Hood P2-P1 elements can achieve at most third-order conver-
gence when the solution is sufficiently smooth, but only have lower-order convergence when
the regularity of the solution is not enough. For example, in we only consider the
approximation of the Fortin projection for v € H}(§2)? N H2(2)%. If v € HE(2)2 N H3(02)?
then (2.5) can also hold for s = 3.

3.1. Some technical inequalities. In this subsection, we present two technical lemmas
to be used in the error estimate for the linearly extrapolated Crank—Nicolson method.

In a convex polygon, it is known that the following interpolation inequalities hold (cf. [2,
p. 139, Theorem 5.8 and 5.9]):

1 1
(3.5) HVUHL‘l(Q) < CHVUHE2(Q)HAUHE2(Q) Vo € H&(Q)z N H2(9)27
1 1
(3.6) ol < cllvlfuy ol Vo € HI(2)2NHA(2)R
For the discrete Stokes operator Ay, = —P,Ap 1 Xp, — X n defined by
(Apvn, wy) = —(Apvn, wy) = (Voy, Vup) Yoy € Xp, wy € X,
We shall need the following discrete analogues of ({3.5)—(3.6)).

Lemma 3.2 (Discrete Sobolev interpolation inequalities).
1 1 .
(37) IVonlzacay < clVonlZag Anunliagy  Von € X

1 1 .

(3.8) ”UhHLOO(Q) < CHUhHiz(Q)||AhUh||i2(Q) Vop € Xp.

Proof. To obtain a bound of ||V 140y, we let v € D(A) = X N H2(£2)? be the solution of
(39) Av = Apvy, vy € )Q(h,

where (3.9) is equivalent to the linear Stokes equations for (v,q) € X x M
—Av+Vq=Apv, in (2,

(3.10) V-v=0 in {2,

v=20 on 0f2.
According to the estimate (2.1)), we know that the solution v € D(A) satisfies that
(3.11) [vllz2(2) + lall a1 @) < cllAnvnllLe(o)-

Note that vy, is the solution of the following equations:

(Vup, Vwy) — (gn, V - wp) = (Apon, wp) Y wy € Xp,
(V'Uhﬂ?h)zo Y € M.



As a result, vy, is the Stokes—Ritz projection of v, i.e., there exists q;, € M}, such that

(V(v—=op), Vwp) = (¢ = qn, V-wp) =0 YVwy, € Xp,
(V-(v—ov4),mn) =0 Yy € My,

It is known that the Stokes—Ritz projection satisfies the following estimate; see [25]:

(3.12) [v=vnllgm@) < ch®* " ([[vllgs2) + ldllzs—1@) 0<sm<1,1<s<2
In view of (2.5) and (3.12)), we derive that
(3.13) th — HhUHHm(Q) < chs_m(HvHHs(Q) + ”qHHsfl(_Q)) 0 <m< 1, 1 <s< 2.

Inequality (3.5)) and (3.11]) imply that

1 1 1 1
190ll20) < el Vol 0l 2m ) < elV0] 22 o 1 Anvnl g

and therefore

o1 19l 232y < el Vollzaa (@3 is used)
3.14 1 1
< el VollZo o) 1 Anvnll 2 ) -
Since
(3.15)

|V (vn = TTpv) || a2

< eIV (n — )] ) IV (01— T0) £

< e[V (on — ) gy h™# IV (0 — ) 2

< c(1Vonll 2y + 1V 0lli2a) ? (1ol + lall o)) ® (@) and EI3) are used)
< (I Vonllzaqa) + 190l ) 2l Anvnl 22 (BTI) is used),

combining (3.14) and (3.15) yields that

Vol Loy < IVILv| paoy + IV (vn — Hpv) || e
(3.16) 1 1
< c(IVonllzz) + Vol L2(0) 2 1 Anvnl 2 gy)-

It remains to prove the following inequality
(3.17) IVollp2(0) < clVunllL2(q)-

Then substituting into yields the desired inequality . In fact, testing
equation by v € D(A) gives
IVoll72() = (Anvn,v) + (¢, V - )
= (Apvp, Ppv) = (Vup, VPyo)
< c||[Vunl[ L2 IV Prol| 22
< cllVunllLzo) Vol 12,

where we have used (2.6)) in the last inequality. This proves the first inequality of Lemma
0. 2!



To prove the second inequality of Lemma we first test (3.10|) by w and obtain

(¢, V-w)=(Vv,Vw) — (Apvp, Pyw)
= (VU, V’LU) — (Vvh, VPhw)
< c([IVoll 2y + IVl 2o) lwll g1 o)
<

c[|[Vorll 2y lwllgro) Ywe X,

where we have used (3.17)) in the last inequality. Through the inf-sup condition, we derive
that

(3.18) lallz2(2) < cllVunllpz2()-
On the one hand, by using the inverse inequality and (3.13]), we have

[on — Tpol o) < ch™Hlvw — Mavll 2o
1 1
= Chil”’uh — HhUHEQ(Q)th — Hhv”zg(g)
1 1 1
(3.19) < chz (|vll o) + lallz) ? (o2 + llall o) 2
1 1 1
< ch¥ onlZu ol AnnllZag (BT, (BI8) and (@I1) are used)
1 1
< cllonll 72 o) 1 ARvRl 72 ()
On the other hand, it follows from the fact

[vllz2(2) < llv —vnllL2(2) + [lvnllz2(o)
< ch(||vll o) + lallzec) + lvnllzee)  (B12) is used)
< ch|lonll o) + llvnll 2o ((3.17) and are used)
< cllvnllz2(2),
and therefore

[TTpvl oo 2y < NVl poo ()
1 1
(3'20) < c”“”fp(g)”””ip((n " is used)

< cllvnllZa o [ AnvnlZa (BT s used).

Using the triangle inequality and combining and yield that
lvrll ooy < IMTpvll oo (@) + lvn — Ta|| oo ()
< cllon 22 o | Anonll g
This completes the proof of this Lemma. ]
By the definition of the trilinear form, it is easy to see that

(3.21) b(up, vy, vp) = 0.
For uy, vy, w, € X}, it is known that (cf. [15, p. 360, eq. (37)])
(3.22) |b(un, vh, wa)| < ellunll g o) lvalla o) lwnll 21 0)-
By using the interpolation inequalities 7, we prove the following result.



Lemma 3.3. For uy, vy, wy, € )o(h, there holds

(3.23) Cun, vn,wn)| < clhunll gy lonlis o 1 Anvn | g el 2 .
Proof. According to the definition of the trilinear form and Lemma [3.2] we derive that
|b(up, v, wh)|
< %‘ ((up - V)vp,wp) | + ; ((up - V)wp,vp)|
< cllunl 2 [IVorll Laylwnll Lac2)y + cllunllL2(@)llvnll Lo (@) Vwnl 20
< cllunllzz(o (1901 22 0 [ Anvnl 22 ) + lonl 22 o 1 Avnl 22 ) leonls )
< cllunll 2o 108l g | Anonl1 g lleon 111
This proves the desired result. O

In addition to the two lemmas above, we also need to use the discrete Gronwall inequality,
which is stated in the following lemma; see [11].

Lemma 3.4. Let B and a,, by, d,,, T, be nonnegative numbers such that

m m—1
am + Z bt < Z andnty + B for m >ng > 1.
n=ng+1 n=ngo

Then

m m—1
am + Z bt < B exp ( Z dn7n> for m > nyg.

n=ng+1 n=ngo

3.2. Consistency. Under the assumptions of Theorem Hill and Siili [16] proved the
following result for the semidiscrete finite element approximation:

3.24 £) — uy (t < Ot Y2p2,
(3.24) tg(l%IIU() up(t)|22(0) <

Hence, we only need to present the estimate for the temporal discretization error
ey == up(ty) —up n>1.

In this subsection, we consider the consistency error for the linearly extrapolated Crank—
Nicolson scheme (3.2))—(3.3)) in the H~! norm, by comparing the fully discrete scheme (3.2)—
(3.3) with the semidiscrete scheme ({2.8)). Here and after, we use the following notations:

_up(tn) — up(tn-1)

drup(ty) = . n>1,
n
t th—
Uh(tn,%) = un(tn) +2uh( n-1) n>1,
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Then the semidiscrete solution wuy(t,) given by satisfies the following system for n =
1,2:
(6run(tn), vn) + b(un(tn—1), un(tn), vn) + (Vun(tn), Von)
(3.25) —(pn(tn), V- op) + (€™ 0p) =0 Vo € Xy,
(V- up(tn),qn) =0 Vg, € My,
and the following system for n > 3:
(3.26)
(5Tuh(tn), vp) + b(ﬂh(tn_%),ﬁh(tn_%), vp) + (Vﬂh(tn_%)7 V’Uh)
—(ph(tn_%)av ~vp) (€™ vp) =0 Vo € Xy,
(V- un(t, 1),qn) =0 Van € My,
where € € X}, is the consistency error defined by

(3.27)
(((Opun(tn) — Orup(tn), vn) + b(up(tn) — up(tn—1), up(ty),vy) for n=1,2,

(@%(tnf%) — Srup(tn),vn) + (V(Uh(tnfé) —ap(t,_ 1)), Vup)
=+ b(Uh(tn_%),uh(tn_f),Uh) - b(ﬂh(tn—%)auh(tn— )>Uh)

1
2
=: (eT,vpn) + (g5, vn) + (€5, vp) for n > 3.
The following lemma gives a proof that r, < ¢ for n > 2, where c¢ is a positive constant.
It will be used in the consistency error estimate.

[NIES

(€™ vp) =

N |=

\

Lemma 3.5. Forn > 2, there holds r,, < c.

Proof. From the stepsizes choice in (3.1) we know that
72

T = =1 n =2,
T1
2\ @
2) T 2
T3:BN(T) _ )T ey n=3,
T T2 Ty
ry = " (7)) taaT (tn72 +7-n71)a
S (t”fQ)aT b _oT tn—2
-1
Tn—1\¢ ta—QT o
=(+i5) ~ 0 50)
(1+35) ~ (=%
tf{:%T t‘l)‘_lT
This proves the desired result. ]

Lemma 3.6. If u’ € H}(2)? and V - u® = 0 and the stepsizes in ([3.1)) are used, then the
consistency error defined in (3.27) satisfies the following estimate:

(3.28) (€™, vn)| < CT2 2| Vonll 2y Yo € X
Proof. For n = 1,2 we have

(" vn)| = [(Bpun(tn) — Srun(tn), vn) + b(un(tn) — un(tn-1), un(tn), vn)|
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< c|(Qpun(tn) — 0rupn(tn
+ cl[un(tn) — un(tn—
(3.29) < | (Qpun(tn) — 0rup(tn
+ cl[un(tn) — un(tn—
S ¢ max | (Dpun(t), vn)] +e max lun 12 (o) Vol 22(2)
< CtmaX ’(atuh(t)avh)\ + C|[Vunl 20y,

7vh)‘

I @ llun )l @ lvnll @) (B:22) is used)
,Un)|

|z () llun @)l a1 (@) I Vorll 2 (o)

~—_— — — ~—

where the last inequality uses the boundedness of [lup(t)| g1(o) as shown in (2.10). By
choosing vy, € X, in (2.8), we have (pp, V - vp) = 0 and therefore
(3.30) (8tuh(t), Uh) + b(uh(t), uh(t), Uh) + (Vuh(t), Vvh) =0 VYo, € Xh,
which implies that
[ (Qeun(t), vn)| < [b(un(t), un(t), vn)| + [(Vun(t), Vup)|
< cllun@®) [l o) lun Ol a1 @) ol o) + cllVun @)l L2 ) I Vorll L2 (o)
< C||Vnll 2
Substituting this into (3.29) yields that
(", v)| < ClIVupllzee) < Oty IVonll 2oy for vy € Xp, and n=1,2.

In the case n > 3, we present estimates for |(5j,vh)\, j =1,2,3, respectively. First, we
note that

(331) N vl = [@unltyy)  drun(tn). )| < end _max[(0Pun(t) )|
n—1,n

By differentiating in time twice, we obtain
(OPup (t), vn) + b(OPun(t), up(t), vn) + 2b(dun(t), dpun(t), vp)
+b(un(t), B2un(t), vp) + (VO up(t),Vor) =0 Yoy € Xy,
which implies that
(@Fun(t), on)| < el OPun()ll o lun(®ll e lon s
+ el Qpun ()17 () lonll 1 (2)
+ cll0Fun ()l (@) llvnl i (2)
< Ct7?|Vonllz2 (o)
where we have used (with m = 1,2 therein) and (2.10)). Substituting this into
yields that
(3.32) (5 on)] < CR2 [ Vonliaga) Von € X
Second, by using the definitions of (¢%, vy,) and (%, vp,) for vy, € X}, we have

(5, vn)| <ellV(un(t, 1) —un(t, 1 )l2@2) [ Vonl 2o
(3.33) <cr) e phax ]Hat up ()| g1 () | Vonl 220

n—1ln

<Crt % [ Vonll 2(0),
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and
|(e%,vp)| = |b(uh(tn_%),uh(tn_%),vh) — b(uh(tn_l),ﬂh(tn_l),vh”
= |b(uh(tn_%) — ﬂh(tn_%),uh(tn_%),vh)
+b(@n (1), un(t, 1) = Tn(t,_1),vn)]
< clun(ty_y) = @nty2) i llun (o)l oy lonll oo
(3.34)

+ CWh(tn—%)”Hl(Q) Huh(tn_%) - ﬂh(%-%)”Hl(Q) vnll e ()

<ery max | 07un(t)l ) lunt,_ 1)l gy llvall o)
tE€[tn—2,tn] 2

+ c”ah<tn—%)HH1(Q)Tr%t max, 107 un ()|l g () lvnll 1 )

n—1,tn

where in the last inequality we have used
N r r
[n (t, )2y < (14 En)Huh(tn—l)HHl(Q) + §\|uh(tn—2)HHl(Q) <C,

which is a result of Lemma [3.5| and ([2.10]).
Since t,_g ~ t,—1 ~ t, for n > 3, summing up the above three estimates (3.32)—(3.34)),

we obtain
|(e™, o) < C’T,2Lt72||VvhHL2(Q) for v, € X and n > 3.

n

This proves the desired estimate in Lemma [3.6] O

3.3. Error estimate. Let e} = up(t,) — uj and 0 = pp(tn) — pj be the error functions.
Then subtracting (3.2)) from (3.25)) yields the following error equations for n = 1, 2:

(6-€f1,vn) + (VeR, Von) + bun(tn—1), un(tn), v) — b(up ™", ujl, vn)
(335) _(77;;7 V- Uh) + (Ena Uh) = 07
(V : 627 Qh) = 07

for all (vh,qh) € Xy X My,
In the light of (3.21)), we notice that

‘b(uh(tn_l),uh(tn), eﬁ) — b(uz_l,uz, 62)’

= [b(e} " un(tn), ef) +b(up ", ef, ep)|

(3.36) = |b(ep " un(tn), ef)|
1 1
< cllef "z lun(tn) s g I Antn () 22 g Ikl
(here we have used Lemma
_1

< Ctn*llef iz IVerll 2 ),

where we have used (2.10) in the last inequality. Then, substituting (vs,qn) = (e}, n}) €

X, x My, C X, x M, into the error equations (3.35) and using estimate (3.36[), we obtain

1 _ _
o (lemZaa) = ler iz + leh = er Hlia) + VR 20
n

_1
<[ el + Cta ey 2 IVeR 2 ()
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< Crat 2 IVerl 2o +Ctn4H€ Mz IVerlrz o)
< Oritet 4 Ot | Wagoy + 5 Ve ay  for n=1,2

where we have used Lemma in obtaining the second to last inequality. The last term of
the inequality above can be absorbed by the left-hand side. As a result, we have

_1
lerliZ2 (o) + Tl Vehllizo) < Craty® + (1+CTntn2)llezleiz(m

<Crp+ (1+ Crpty ? )||e H%Q(Q) for n =1,2.
Since ||€} || 12(g) = 0, it follows that

Heh”m(g + 7'1HV€hHL2 <Cmn,
(3.37) .
HehHLZ(Q + T2||V6hHL2 <Crn+((1+ C7'2 Mlenllz2 (o)

When 3/4 < a < 1, we have
T =Ty = T<1>m <ert
Substituting this into (3.37) yields that

(3.38) Hehlle(n +lleqll2 ) < O
For n > 3, subtracting (3.3]) from (3.26]) yields the following error equations:

el

(0ren,vn) + (Ve, 2, Vo) + b(uh(tn,%%uh(tn,%), vp) — b(w, 2,7, *,vp)

_1
(3.39) —(my 2,V wp) + (€%, vn) =0,
_1
(VEZ 27(1h) = 0)
for all (vp, qn) € Xp x M.
In view of (3.21)), it can easily be seen that
1

n—z -1 _pn-1

}b(ah(tn—g)vﬂh(tn—é)véh D) = b(@, 2w, e,

N

el

= \b(ng%ﬂh(tn_%)vézfé) oy e s )
nol
(3.40) = |b(e, 2,Hh(tn_%),éh 2|

T b PN
§cHeh HL2(Q)Huh(tn_%)HHl(Q)“Ahuh(tn_%)”p(g)ueh HHl(Q)
(here we have used Lemma

1 g1 1
< Ctnfﬂ‘@h : HL2(Q)HV€h 2HLZ(Q)
where in the last inequality we have used
[ ARTR(E, 1)l L2(2) < *I\Ahu;z( n-1)ll2(2) + *HAhuh( nllzz) < Ct,2 2
[n(t, - )l ) < Q”uh(tnfl)HHl + §||uh(tn)”H1 <C,

which are consequences of (2.10)).
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1,1 .
Substituting (vn,qn) = (EZ 2,172 2) € Xj, x My, € Xj, x Mp, into the error equations
(13.39)) and using estimate (3.40]), we obtain
1

1
_ _n—s5
H(Hemiz(g) — e Ze) + 11V, 211720

1
- n—=

n _n—= 1 _n—1

<" e, )+Ct,4le, Ve, )
2,2 "3 —3 2 _n—3

< Crpt, “[IVey 22 + Ct4lle, 2z Ve, 2l
4,-4 3 232 L oon=3%2

< Orpty,” +Ct 2 ey, ||L2(Q)+§Hveh 72(0)-

The last term of the inequality above can be absorbed by the left-hand side. As a result,
we have
o (167 1220y ~ eh agey) + 198 e
(3.41) Tn )
< Oty + Ot 2 (lley T2 + len 2 M72q))  for n>3.

When 4a — 4 > —1 (or equivalently a > 3/4), we have

N T
(3.42) > ot < / the=tdt < e
n=3 0

Hence, summing up (3.41)) times 27, for n = 3,...,m yields

m 1
2 =312
lei 13200 + D mllVe, 217z
n=3
m m 1
< lelZa + Cm* Dt + O mat, 2 (llep 3200y + e *l720)
n=3 n=3
n _1
<O+ CZTntnﬂ(HeZﬂH%%Q) + ||67}172||%2(Q))a
n=3

where we have used (3.38) and (3.42)) in deriving the last inequality. Since this inequality
holds for all 3 < m < N, by applying Gronwall’s lemma (i.e. Lemma , we obtain

N 1

_n—1

(3.43) jmax lerllZag0) + Y mllVE, 27z < O™
- n=3

Combining (3.38)) and (3.43), we have

n < Cr2.
lglaSXNHehHLQ(Q)_ T

This result and (3.24)) imply the desired error bound in Theorem

4. NUMERICAL EXAMPLES

In this section, we present numerical experiments to support the theoretical analysis in
Theorem In Example we present numerical results to illustrate that the number of
total time levels IV using the variable stepsize in is equivalent to the number of total
time levels using a uniform stepsize. In Example and we present numerical results
to illustrate the convergence rates of numerical method by solving problem in the unit



TABLE 4.1. The number of time levels N

a & 0.1 05 L0 10 100 N7/T
0.6 1/80 20 101 201 2003 20005 2.6
1/160 40 201 402 4004 40005 2.6
0.7 1/80 26 135 269 2672 26674 3.4
1/160 54 269 536 5339 53342 3.4
08  1/80 40 203 404 4009 40013 5.1
1/160 81 404 805 8010 80015 5.1

15

square 2 = (0,1) x (0,1) up to T = 0.1. The Taylor Hood P2-P1 finite element space is
used for spatlal dlscretlzatlon and the method (| . for temporal discretization.

For the stepsizes in , we simply choose 7, = “r for n > 3 in all numerical
simulations. All the computatlons are performed by FreeFEM++ see www.freefem. org,.

Example 4.1. In Table we present the number of total time levels N using the
stepsizes corresponding to different parameters, including 7' = 0.1,0.5, 1.0, 10, 100,
a =10.6,0.7,0.8 and 7 = 1/80,1/160. We can see that when o = 0.6, the total number of
time levels N < 2.6(7/7); when a = 0.7, N < 3.4(T/7); when o = 0.8, N < 5.1(7'/7). This
is consistent with the conclusion we proved in Remark [3.1]

In Figures[d.1]and [4.2] we present the evolution of the stepsize 7,, with different parameters
a =0.6,0.7,0.8, and different maximal stepsizes 7 = 1/80,1/160, for both T'= 0.1 and T' =

1
1.0. Figures 4.1/and |4.2|illustrate how the variable stepsize in (3.1)) increases from T'(7) 1=
to 7, while Table [4.1 shows that the number of total time levels satisfies N < C(T'/7).

-3
x 10
0.02 5 T=0La=06 5 T=01La=06
k- T=01,0=07 ke T=01,0=07
T=01la=08 T=01,a0=08
T=01,7=1/80 T=01,7=1/160
0.015
g < s
o [} o DDD
5] o < o
% 001r o % &
o o o s
E o E
.-d: a 'JS
a
0.005 | o
o
a
o
a
P L=l ! ‘ ‘ e ; ‘ ‘
0 10 20 30 40 0 20 40 60 80

time level n

(a) T=0.1,7=1/80

time level n

(b) T=0.1,7 =1/160

FIGURE 4.1. The evolution of 7,, at T' = 0.1.
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x10°
0.02 [ [ o T=10,a=06 j j o T=10,a=06
4o T=10,0=07 ok T=10,a=07
T=10,0=08 8 T=10,0=08
T=1.0,7r=1/80 T=1.0,7 =1/160
0.015 i
o, o,
<} [}
% 0.01f k7
] o 4r
g g
+ +
0.005 ol
0 ‘ : : : 0 : : :
0 100 200 300 400 0 200 400 600 800
time level n time level n
(a) T=1.0,7=1/80 (b) T =1.0,7 =1/160

FIGURE 4.2. The evolution of 7, at T' = 1.0.

Example 4.2. We consider an example with initial value in Hg(£2)? but not in H2(£2)2,

ie, u® = (ud(z,y), ud(x,y)) with

)
ul(z,y) = o sing(mr) sin? (my) cos(my),
ud(z,y) = —57 sin? (mx) cos(mx) sin? (7y).

The initial value satisfies
u € H¥ () NH}(2)? Vee (0,1), V-u°=0in2 and u°=0 on dfn.

The temporal discretization errors HuhN U | r2() and convergence rates are presented
in Table where the reference solution u{l\{ref is computed by using a sufficiently small
stepsize with 7 = 1/10240. The spatial discretization errors Hu;z\{ref - UhNHLQ(Q) and con-
vergence rates are presented in Table where the reference solution uhNJef is computed
by using a sufficiently small spatial mesh size with A = 1/128. The parameter in (3.1) is

selected as @ = 0.8. From Table [£.2] and we see that the convergence rates in space and
time are consistent with the theoretical result proved in Theorem

TABLE 4.2. Temporal discretization errors using variable stepsize with o = 0.8.

X 1/320 1/640 1/1280 1/2560 convergence rate
1/16  5.494E-05 1.102E-05 2.805E-06  6.783E-07 ~ 2.05
1/32  5496E-05 1.099E-05 2.807E-06 6.785E-07 ~ 2.05
1/64  5.496E-05 1.099E-05 2.806E-06 6.785E-07 ~ 2.05

Example 4.3. We present numerical results for an initial value u® = (u{(z,y),u3(z,y))
given by

ul(z,y) = 3T sin? (mx) sinz (my) cos(my),
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TABLE 4.3. Spatial discretization errors using variable stepsize with a = 0.8.

h
\ 1/4 1/8 1/16 1/32 convergence rate
1/80  8.406E-03 1.626E-03 3.105E-04 6.834E-05 ~ 2.18
1/160 8.651E-03 1.679E-03 3.226E-04 7.122E-05 ~ 2.18
1/320 8.724E-03 1.696E-03 3.264E-04 7.219E-05 ~ 2.18
uy(z,y) = —5m sinZ (mz) cos(mx) sin? (my).

The initial value satisfies that
e H7¢(2)? Vee (0,1), V-u’=0in2 and u’=0 on o,

but ug ¢ H'(§2)2. Hence, the initial value in this example is in the critical space that our
assumption of Theorem does not hold.

The temporal discretization errors HuhN ref —Up || 12(r2) and convergence rates are presented
in Table where the reference solution uhN rof 18 computed by using a sufficiently small
stepsize with 7 = 1/10240. The spatial discretization errors Hu,]l\{ref — u}) || 2(2) and con-
vergence rates are presented in Table where the reference solution uflv rof 18 computed
by using a sufficiently small spatial mesh size with h = 1/128. The parameter in (3.1)
is also selected as a = 0.8. From Table [4.4] and we see that the numerical solutions
have second-order convergence in time and space. This shows that the theoretical result in

Theorem not only holds for H' initial data but also may be extended to rougher initial
data.

TABLE 4.4. Temporal discretization errors using variable stepsize with o = 0.8.

K 1/320 1/640 1/1280 1/2560 convergence rate
1/64  5.841E-05 1.187E-05 3.215E-06 7.210E-07 ~ 2.16
1/128  5.840E-05 1.170E-05 3.001E-06 7.212E-07 ~ 2.06
1/256  5.840E-05 1.168E-05 2.984E-06 7.245E-07 ~ 2.04

TABLE 4.5. Spatial discretization errors using variable stepsize with a = 0.8.

h
N 1/4 1/8 1/16 1/32 convergence rate
1/2560 8.8477E-03 1.6699E-03 3.1670E-04 7.2398E-05 ~ 2.13
1/5120 8.8480E-03 1.6700E-03 3.1666E-04 7.2390E-05 ~ 2.13

1/10240 8.8480E-03 1.6700E-03 3.1667E-04 7.2391E-05 ~ 2.13
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5. CONCLUSION

We have presented error analysis for the linearly extrapolated Crank—Nicolson method
for the NS equations with a specific locally refined temporal grid. We have proved second-
order temporal convergence of the numerical method for H! initial data by utilizing the
property of locally refined stepsizes in the consistency analysis and utilizing a technical
lemma (Lemma in the stability analysis. The numerical results are consistent with the
theoretical analysis and indicate that the error analysis may be furthermore extended to
rougher initial data.
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