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Abstract We present two new recovery-based a posteriori error estimates
for the Hellan–Herrmann–Johnson method in Kirchhoff–Love plate theory.
The first error estimator uses a postprocessed deflection and controls the L2

moment error and the discrete H2 deflection error. The second one controls
the L2 × H1 total error and utilizes superconvergent postprocessed moment
field and deflection. The effectiveness of the theoretical results is numerically
validated in several experiments.

Keywords Kirchhoff–Love plate, fourth order elliptic equation, Hellan–
Herrmann–Johnson method, a posteriori error estimates, postprocessing,
superconvergence

Mathematics Subject Classification (2020) 65N15 · 65N30

1 Introduction

Let u denote the deflection and σ be the moment field of a linearly elastic thin
plate, whose midsurface occupies a domain Ω ⊂ R2. In Kirchhoff–Love plate
theory, the equilibrium deflection u of the plate subject to the transverse load
f ∈ L2(Ω) and mixed boundary conditions is described by the fourth order
elliptic boundary value problem

div DivM∇2u = f in Ω, (1.1a)

u = ∂nu = 0 on Γc, (1.1b)

u = σnn = 0 on Γs, (1.1c)

σnn = K(σ) = 0 on Γf . (1.1d)
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Due to very high degree of C1 conforming finite elements, the fourth order
boundary value problem is often discretized by the nonconforming element,
mixed element, or discontinuous Galerkin (dG) methods, see, e.g, [25,26,35,
30,15,34,3,23,13,43,8] and references therein. Among various mixed methods
for plate bending, the Hellan–Herrmann–Johnson (HHJ) (cf. [30]) method is
perhaps the most famous and popular one because of using low order polyno-
mials and small number of degrees of freedom by hybridization (cf. [1]). The
HHJ mixed method directly approximates the deflection u and the moment
field σ by finite element solutions uh and σh, respectively.

To achieve optimal order numerical accuracy for plate bending analysis,
adaptive mesh refinement based on a posteriori error estimation is needed on
domains with nonsmooth boundaries. For the HHJ mixed method, the work
[29] presents a residual-type a posteriori error estimate for the moment error
‖σ−σh‖, where ‖·‖ is the L2 norm. Meanwhile, that work gives another residual
error estimator for the H1 deflection error ‖u− uh‖1 on convex domains. The
Ciarlet–Rarviart (see [15]) mixed method directly approximates ∆u and u
and its error estimator is given in [21]. A posteriori error estimates for dG
methods in plate bending could be found in e.g., [11,41,19,24,39]. An error
estimator for the C1 element method under general boundary conditions and
concentrated loads is derived in [22].

In the numerical literature for fourth order elliptic equations, most existing
a posteriori error estimates are of residual-type, including the aforementioned
ones. It is well known that recovery-based error estimators provide sharper
effectiveness ratio and allow simpler implementation. In this work, we develop
several new recovery-based a posteriori error estimates of the HHJ method
based on postprocessed solutions u∗h and σ∗h under general boundary condi-
tions. The construction of u∗h is in the spirit of [38]. However, in contrast to
the globally discontinuous deflection in [38], the new deflection u∗h ∈ C0(Ω) is
conforming and is obtained by solving a well-conditioned global problem. We
prove a new quasi-optimal a priori error estimate for ‖σ − σh‖+ ‖u− u∗h‖2,h,
where ‖ · ‖2,h is a discrete H2 norm. Then using u∗h, a simple and new a poste-
riori error bound ηh is derived for controlling ‖σ−σh‖+‖u−u∗h‖2,h. A similar
result for mixed methods for Poisson’s equation could be found in [33]. As far
as we know, all a posteriori error estimates of nonconforming and mixed meth-
ods for fourth order elliptic equations in the literature rely on the Helmholtz
decomposition. In contrast, the analysis of our error estimator does not utilize
Helmholtz-type decomposition. As a result, the first proposed error estima-
tor works on multiply connected domains. In addition, this error estimator is
directly applicable to the Herrmann–Miyoshi mixed method, see (3.28).

The second proposed error estimator ζh is designed for the lowest order
HHJ method and is based on superconvergence of |u − u∗h|1 and ‖σ − σ∗h‖,
where σ∗h = Rhσh is a postprocessed C0 moment field. In the literature, sim-
ilar error estimators are known as superconvergent recovery-based error indi-
cators, which are quite popular for their simplicity and asymptotic exactness,
see, e.g, [47,48]. The superconvergence analysis of |u − u∗h|1 is classical and
works on unstructured grids. In practice, the moment variable σ is also very
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important. However, there has been little work devoted to σ. An exception is
[28], which gives a postprocessing scheme Kh by edge averaging and a super-
convergence estimate for ‖σ−Khσh‖ on a special uniform mesh satisfying the
assumption in Lemma 4.3. Our proposed postprocessing procedure Rh solves
least-squares problems on local vertex patches, see also, e.g., [5] for least-
squares recovery process for Raviart–Thomas elements. We rigorously analyze
the well-posedness of Rh, show the super-approximation of ‖σ − Rhσ‖ under
general grids, and prove superconvergence of ‖σ−Rhσh‖ on structured grids.
In a numerical example, we investigate a popular structured grid sequence,
over which ‖σ −Rhσh‖ is superconvergent while ‖σ −Khσh‖ is not.

The rest of this paper is organized as follows. In Section 2, we introduce
basic notation for plate bending and the HHJ mixed method. In Section 3, we
develop a priori and a posteriori error estimates for ‖σ − σh‖ + ‖u − u∗h‖2,h.
Section 4 is devoted to superconvergence analysis of ‖σ−σ∗h‖+|u−u∗h|1 and the
corresponding recovery-based error estimator. Numerical examples including
both singular and smooth problems are reported in Section 5.

2 Model problem

In this section, we first explain the notation used in the model problem (1.1).
The domain Ω ⊂ R2 has a piecewise flat boundary ∂Ω = Γ c ∪ Γ s ∪ Γ f with
relatively open disjoint subsets Γc, Γs, Γf . We use n to denote the outward
unit normal on ∂Ω, t the counterclockwise unit tangent on ∂Ω. Let E be the
Young’s modulus, ν ∈ [0, 0.5) the Poisson ratio, and d the thickness of the
plate. Given a symmetric 2 × 2 matrix τ , the linear moment operator M is
defined as

Mτ :=
Ed3

12(1− ν2)

(
(1− ν)τ + ν tr(τ)δ

)
,

where δ is the 2× 2 identity matrix, and tr(τ) is the trace of τ . The moment
field of the plate is

σ := σ(u) = M∇2u.

In this paper, all vectors are viewed as column vectors by default. The normal-
normal and twisting components of τ on ∂Ω are

τnn := nᵀτn, τnt := nᵀτt. (2.1)

Let ∇2 denote the Hessian operator, div = ∇· the divergence operator for
vector fields, and Div the row-wise divergence applied to matrix-valued func-
tions. By ∂g we denote the directional derivative along the unit vector g. The
Kirchhoff shear force at the boundary ∂Ω is

K(σ) := (Div σ) · n+ ∂tσnt. (2.2)

Here σnt is required to be continuous at the turning points of Γf . In the
literature, (1.1b), (1.1c), (1.1d) are called clamped, simply supported, and
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Fig. 1: An example of the mixed boundary condition.

free boundary conditions, respectively. We refer to Fig. 1 for an illustration.
In practice, the primal variational formulation of (1.1) using

Ũ := {v ∈ H2(Ω) : v = 0 on Γc ∪ Γs, ∂nv = 0 on Γc}

could be discretized by conforming and nonconforming finite elements and dG
methods see, e.g., [35,23,13,43,22].

2.1 Mixed formulation

Let Th be a family of shape-regular triangulation of Ω. In Th, let Eh, Eoh, Ech,

Efh denote the sets of edges, interior edges, boundary edges on Γc, boundary
edges on Γf , respectively. Each edge e ∈ Eh is assigned with a unit normal
vector ne, and ne is chosen to be outward when e is on ∂Ω. The normal-normal
component, twisting component, and K(τ) of a symmetric 2× 2 matrix τ on
an edge e is defined in a fashion similar to (2.1) and (2.2) based on ne and
te. Given a 2d subdomain or 1d submanifold Ω0 ⊂ Ω, let ‖ · ‖m,Ω0

denote
the Hm(Ω0) Sobolev norm, | · |m,Ω0

the Hm(Ω0) semi-norm, and (·, ·)Ω0
the

L2(Ω0) inner product. We adopt the notation

‖ · ‖Ω0
= ‖ · ‖0,Ω0

, ‖ · ‖m = ‖ · ‖m,Ω , | · |m = | · |m,Ω , (·, ·) = (·, ·)Ω .

For a space V , we define

[V ]4s :=

{
v =

(
v11 v12
v21 v22

)
: v12 = v21, vij ∈ V, i, j = 1, 2

}
,

[V ]n := {v = (v1, . . . , vn)ᵀ : vi ∈ V, 1 ≤ i ≤ n}.

The fourth order equation in (1.1) could be recast into

M−1σ = ∇2u, (2.3a)

div Div σ = f. (2.3b)
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Direct calculation shows that the inverse of M is

M−1τ =
12

Ed3
(
(1 + ν)τ − ν tr(τ)δ

)
.

We shall make use of piecewise operators Divh, ∇h, ∇2
h, i.e., for each T ∈ Th,

(Divh τh)|T = Div(τh|T ), (∇hvh)|T = ∇(vh|T ), (∇2
hvh)|T = ∇2(vh|T ).

Given m > 0 and a fixed s0 > 0, we introduce the spaces

Hm(Th) :={v ∈ L2(Ω) : v|T ∈ Hm(T ) ∀T ∈ Th},
U :={v ∈ H1(Ω) : v = 0 on Γc ∪ Γs},

Σ :={τ ∈ [L2(Ω)]4s : τ |T ∈ [H
1
2+s0(T )]4s ∀T ∈ Th,

τnn = 0 on Γs ∪ Γf , τnn is single-valued on each e ∈ Eoh},

and the following bilinear forms

a(σ, τ) : = (M−1σ, τ),

bh(τ, v) : = (−τ,∇2
hv) + 〈τnn, ∂nv〉∂Th ,

Bh(σ, u; τ, v) : = a(σ, τ) + bh(τ, u) + bh(σ, v),

(2.4)

with the L2 inner product on ∂Th

〈·, ·〉∂Th =
∑
T∈Th

〈·, ·〉∂T .

For σnt ∈ C0(Ω), v ∈ H2(Th), τ ∈ [H1(Th)]4s, element-wise integration-by-
parts shows that

(div Div σ, v) = (σ,∇2
hv) + 〈K(σ), v〉∂Th − 〈σnn, ∂nv〉∂Th , (2.5a)

bh(τ, v) = (Div τ,∇v)− 〈τnt, ∂tv〉∂Th . (2.5b)

Therefore with (2.3), (2.5a), and sufficiently regular σ, it follows that

a(σ, τ) + bh(τ, u) = 0, τ ∈ Σ, (2.6a)

bh(σ, v) = −(f, v), v ∈ H2(Th) ∩ U. (2.6b)

Clearly M and a are positive definite, i.e., there exist constants m0 > 0, a0 > 0
relying on E, d, ν such that

(Mτ, τ) ≥ m0‖τ‖0, a(τ, τ) ≥ a0‖τ‖0, ∀τ ∈ [L2(Ω)]4s. (2.7)
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2.2 HHJ method

Let Pm(Ω0) be the set of polynomials of degrees at most m on Ω0. For a fixed
integer r ≥ 1, we make use of several finite element spaces

Sh = Srh = {vh ∈ H1(Ω) : vh|T ∈ Pr(T ), ∀T ∈ Th},
Uh = Urh = Srh ∩ U,
Σh = {τh ∈ Σ : τh|T ∈ [Pr−1(T )]4s, ∀T ∈ Th}.

The HHJ mixed method for solving (2.3) is to find (σh, uh) ∈ Σh × Uh, such
that

a(σh, τh) + bh(τh, uh) = 0, ∀τh ∈ Σh, (2.8a)

bh(σh, vh) = −(f, vh), ∀vh ∈ Uh. (2.8b)

Subtracting (2.8) from (2.6) leads to

a(σ − σh, τh) + bh(τh, u− uh) = 0, ∀τh ∈ Σh, (2.9a)

bh(σ − σh, vh) = 0, ∀vh ∈ Uh. (2.9b)

The HHJ element admits a pair of commuting interpolations, see, e.g., [3,
16,9]. The first one is the modified Lagrange interpolation Ih = Irh : C0(Ω)→
Srh given by

(Ihv)(z) = v(z) at each vertex z in Th,∫
e

(Ihv)φds =

∫
e

vφds, ∀φ ∈ Pr−2(e), ∀e ∈ Eh,∫
T

(Ihv)ψdx =

∫
T

vψdx, ∀ψ ∈ Pr−3(T ), ∀T ∈ Th.

(2.10)

For the constant s0 > 0, the second interpolation Πh : [H
1
2+s0(Ω)]4s∩Σ → Σh

is defined as∫
e

(Πhτ)nnφds =

∫
e

τnnφds, ∀φ ∈ Pr−1(e), ∀e ∈ Eh,∫
T

(Πhτ)ψdx =

∫
T

τψdx, ∀ψ ∈ Pr−2(T ), ∀T ∈ Th.
(2.11)

It is readily checked that

bh(τh, Ihv) = bh(τh, v), ∀τh ∈ Σh, ∀v ∈ C0(Ω), (2.12a)

bh(Πhτ, vh) = bh(τ, vh), ∀τ ∈ [H
1
2+s0(Ω)]4s, ∀vh ∈ Uh. (2.12b)

Recall that u is the solution of the fourth order problem (1.1) in the distribu-
tional sense. Therefore u ∈ H2(Ω) and the nodal interpolant Ihu is well-defined
due to the Sobolev embedding H2(Ω) ↪→ C0(Ω).

Throughout the rest of this paper, we say c1 . c2 (resp. c1 & c2) if c1 ≤ Cc2
(resp. c1 & Cc2), where C is a positive absolute constant relying solely on Ω,
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E, d, r, and the shape-regularity of Th. In the analysis we may also use C, C1,
C2, . . . to denote such absolute constants independent of mesh sizes. We say
c1 ' c2 provided c1 . c2 and c2 . c1.

Let hT and hE be the mesh size functions such that hT |T = hT := area(T )
1
2

for each T ∈ Th and hE |e = he is the length of e for each e ∈ Eh. Let h =
maxT∈Th hT be the maximum mesh size. The following a priori convergence

|u− uh|1 . hr
(
|σ|r + |u|r+1

)
, (2.13a)

‖σ − σh‖0 . hr|σ|r (2.13b)

could be found from [3] and (10.3.49), (10.3.50) of [9].

3 A posteriori error estimation for ‖ · ‖0 × ‖ · ‖2,h

Given a subset Êh ⊆ Eh , the L2 norm on Êh is

‖ · ‖Êh :=
( ∑
e∈Êh

‖ · ‖2e
) 1

2 .

Let Γ ch := Eoh ∪Ech and Γ fh := Eoh ∪E
f
h . On an interior edge e 3 x, let JωK(x) :=

lims→0+
[
ω(x+ sne)−ω(x− sne)

]
denote the jump function of ω across e. On

an boundary edge e ⊂ ∂Ω, JωK is the restriction of ω on e. Following [3], we
define the mesh-dependent H2-norms

‖vh‖22,h = ‖∇2
hvh‖2 + ‖h−

1
2

E J∂nvhK‖2Γ c
h
,

‖vh‖22,h,T = ‖∇2vh‖2T + ‖h−
1
2

E J∂nvhK‖2∂T\(Γf∪Γs)
, T ∈ Th.

In this section, we present an error estimator for controlling the ‖ · ‖0-norm
of the moment error and ‖ · ‖2,h-norm of the deflection error. The original
solution uh does not optimally converge to u in the ‖ ·‖2,h-norm. For example,
‖u− uh‖2,h is not convergent at all in the lowest order case r = 1. To remedy
the situation, we reconstruct a more accurate deflection u∗h by postprocessing
uh and then derive a priori and a posteriori error estimates for ‖σ − σh‖0 +
‖u− u∗h‖2,h.

Let I be the identity mapping and U∗h = Ur+1
h . We utilize the space of

bubble functions

Wh := (I − Irh)Ur+1
h .

For example, when r = 1, Wh is spanned by edge bubbles (a function of unit
size locally supported on two elements sharing an edge). The postprocessed
deflection is given by

u∗h := uh + wh ∈ Ur+1
h ,

where the high frequency component wh ∈Wh solves the global problem

(M∇2
hwh,∇2

hvh) = (σh −M∇2
huh,∇2

hvh), ∀vh ∈Wh. (3.1)
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Clearly (3.1) is well defined. By the construction, we obtain the orthogonality

(M∇2
hu
∗
h,∇2

hvh) = (σh,∇2
hvh), vh ∈Wh. (3.2)

The reconstruction of u∗h is slightly different from the element-wise postpro-
cessing in [38]. In particular, it is noted that u∗h is C0 continuous while the
postprocessed deflection in [38] is broken and completely discontinuous. Similar
discontinuous postprocessing deflections in dG methods could be found in e.g.,
[39]. Such discontinuity of deflections is somehow undesirable in engineering
analysis, e.g., when visualizing physical quantities dependent on discontinuous
deflections. In theory, the C0 continuity of u∗h will greatly facilitate subsequent
a priori and a posteriori error analysis.

Remark 3.1 Although (3.1) is global, the basis of Wh consists of edge and vol-
ume bubble functions. It is well known that the stiffness matrix of (3.1) under
such a basis is spectrally equivalent to its diagonal. As a consequence, (3.1)
could be optimally solved by the diagonally preconditioned conjugate gradi-
ent method within uniformly bounded number of iterations independent of the
mesh size. Therefore the computational cost of u∗h is comparable to the local
postprocessing scheme in [38]. The hierarchical decomposition U∗h = Uh ⊕Wh

and similar well-conditioned global problems are also used in the hierarchi-
cal basis error estimator, see [6,4]. Postprocessing for numerical solutions of
elliptic equations by global Ritz projection could also be found in, e.g., [17].

A key tool in our analysis is the following approximation result, which is
a special case of Lemma 3.1 in [19]. For any H1 conforming vh ∈ Urh , there

exists φ ∈ Ũ which is a C1 piecewise polynomial satisfying

‖h−2T (vh−φ)‖+ ‖h−1T ∇h(vh−φ)‖+ ‖∇2
h(vh−φ)‖ ≤ C‖h−

1
2

E J∂nvhK‖Γ c
h
. (3.3)

The following lemma is a direct consequence of (3.3).

Lemma 3.1 For any vh ∈ Urh, we have

‖h−2T (vh − Ihvh)‖ . ‖vh‖2,h.

Proof For ψ ∈ H2(T ) and T ∈ Th, the stability of the Lagrange interpolation
Ih implies

‖Ihψ‖T . ‖ψ‖T + hT |ψ|1,T + h2T |ψ|2,T . (3.4)

Let φ be given in (3.3). Using the triangle inequality, (3.4), and the standard
interpolation error estimate for Ihφ, we have

‖h−2T (vh − Ihvh)‖ ≤ ‖h−2T (vh − φ)‖+ ‖h−2T (φ− Ihφ)‖+ ‖h−2T Ih(φ− vh)‖
≤ ‖h−2T (vh − φ)‖+ C‖∇2φ‖+ ‖h−1T ∇(vh − φ)‖+ ‖∇2

h(vh − φ)‖
≤ ‖h−2T (vh − φ)‖+ C‖∇2

h(φ− vh)‖+ C‖∇2
hvh‖+ ‖h−1T ∇(vh − φ)‖.

Combining the above inequality with (3.3) and (3.4) completes the proof. ut

In the sequel, we need the trace inequality

‖v‖∂T . h
− 1

2

T ‖v‖T + h
1
2

T ‖∇v‖T , ∀v ∈ H1(T ). (3.5)
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3.1 A priori error estimation under ‖ · ‖0 × ‖ · ‖2,h

It is shown in [29] that

sup
06=τh∈Σh

bh(τh, vh)

‖τh‖
& ‖vh‖2,h, ∀vh ∈ Uh. (3.6)

A combination of (3.6), the positive definiteness of a, and Babuška–Brezzi
theory then yields

inf
06=(ξh,wh)∈Σh×Uh

sup
06=(τh,vh)∈Σh×Uh

Bh(ξh, wh; τh, vh)(
‖ξh‖+ ‖wh‖2,h

)(
‖τh‖+ ‖vh‖2,h

) & 1,

(3.7)
see [2,14,46]. We introduce the modified bilinear form

B̃h(ξh, w
∗
h; τh, v

∗
h) = Bh(ξh, w

∗
h; τh, v

∗
h) + (M∇2

hw
∗
h − ξh,∇2

h(I − Ih)v∗h),

see [33] for a similar bilinear form of mixed methods for Poisson’s equation.

The next lemma presents an inf-sup condition of B̃h.

Lemma 3.2 It holds that

inf
0 6=(ξh,w∗h)∈Σh×U∗h

sup
0 6=(τh,v∗h)∈Σh×U∗h

B̃h(ξh, w
∗
h; τh, v

∗
h)(

‖ξh‖+ ‖w∗h‖2,h
)(
‖τh‖+ ‖v∗h‖2,h

) & 1.

Proof Given (ξh, w
∗
h) ∈ Σh × U∗h , (3.7) implies that there exist (τh, vh) ∈

Σh × Uh such that

‖τh‖+ ‖vh‖2,h . 1, (3.8a)

Bh(ξh, Ihw
∗
h; τh, vh) & ‖ξh‖+ ‖Ihw∗h‖2,h. (3.8b)

By (2.12a), (3.8b), we obtain

B̃h(ξh, w
∗
h; τh, vh) = a(ξh, τh) + bh(τh, w

∗
h) + bh(ξh, vh)

= a(ξh, τh) + bh(τh, Ihw
∗
h) + bh(ξh, vh) & ‖ξh‖+ ‖Ihw∗h‖2,h.

(3.9)

Let ṽ∗h =
(I−Ih)w∗h

‖∇2
h(I−Ih)w

∗
h‖

. We use (3.5) and the Cauchy–Schwarz inequality to

obtain
B̃h(ξh, w

∗
h; 0, ṽ∗h) = bh(ξh, ṽ

∗
h) + (M∇2

hw
∗
h − ξh,∇2

hṽ
∗
h)

= −2(ξh,∇2
hṽ
∗
h) + 〈(ξh)nn, ∂nṽ

∗
h〉∂Th

+ (M∇2
h(I − Ih)w∗h,∇2

hṽ
∗
h) + (M∇2

hIhw
∗
h,∇2

hṽ
∗
h)

≥ −2‖ξh‖ − C
1
2
1 ‖ξh‖

1
2 ‖h−

1
2

E J∂nṽ∗hK‖
1
2

Γ c
h

+ C2‖∇2
h(I − Ih)w∗h‖ − C3‖∇2

hIhw
∗
h‖.

(3.10)

For each T ∈ Th, we note that (I − Ih)w∗h ∈Wh vanishes at each vertex of T.
As a result, a local scaling argument leads to

‖∇(I − Ih)w∗h‖T . hT ‖∇2(I − Ih)w∗h‖T , ∀T ∈ Th. (3.11)
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It follows from (3.11) and (3.5) that

‖h−
1
2

E J∂n(I − Ih)w∗hK‖Γ c
h
≤ C4‖∇2

h(I − Ih)w∗h‖. (3.12)

Therefore combining (3.10) with (3.12) and using a mean value inequality, we
obtain

B̃h(ξh, w
∗
h; 0, ṽ∗h) ≥ −(2 + ε−1)‖ξh‖

+
(
C2 −

ε

4
C1C4

)
‖∇2

h(I − Ih)w∗h‖ − C3‖∇2
hIhw

∗
h‖,

(3.13)

where ε > 0 is set to be ε = 2C2

C1C4
. Let v∗h = vh + tṽ∗h. Using (3.9), (3.13), a

sufficiently small t > 0, (3.12), and a triangle inequality, we have

B̃h(ξh, w
∗
h; τh, v

∗
h) & ‖ξh‖+ ‖Ihw∗h‖2,h + ‖∇2

h(I − Ih)w∗h‖
& ‖ξh‖+ ‖w∗h‖2,h.

(3.14)

On the other hand, combining (3.8a), the definition of v∗h, and (3.12), we obtain

‖τh‖+ ‖v∗h‖2,h . 1

and complete the proof. ut

Motivated by Lemma 3.2, we are able to derive a new quasi-optimal a priori
error estimate under ‖ · ‖0 × ‖ · ‖2,h. In the following, let Qrh denote the L2

projection onto the space of globally discontinuous and piecewise polynomials
of degree at most r on Th, and Q−2h = Q−1h = 0.

Theorem 3.1 It holds that

‖σ−σh‖+‖u−u∗h‖2,h . inf
τh∈Σh,v∗h∈U

∗
h

(
‖σ−τh‖+‖u−v∗h‖2,h

)
+‖h2T (f−Qr−3h f)‖.

Proof For any τh ∈ Σh, v∗h ∈ U∗h , direct calculation shows that

B̃h(σ − σh, u− u∗h; τh, v
∗
h) = a(σ − σh, τh) + bh(τh, u− u∗h)

+ bh(σ − σh, v∗h) + (M∇2
h(u− u∗h)− σ + σh,∇2

h(I − Ih)v∗h).
(3.15)

Using (3.15), (2.12a), (2.8), (2.6), (3.2), Ihu
∗
h = uh, we obtain

B̃h(σ − σh, u− u∗h; τh, v
∗
h) = a(σ − σh, τh) + bh(τh, Ihu− Ihu∗h)

+ bh(σ − σh, v∗h) + (σh −M∇2
hu
∗
h,∇2

h(I − Ih)v∗h)

= a(σ − σh, τh) + bh(τh, u− uh)− (f, v∗h)− bh(σh, Ihv
∗
h)

= −(f, v∗h − Ihv∗h) = −(f −Qr−3h f, v∗h − Ihv∗h),

(3.16)

which is an error term due to inconsistency of B̃h. It then follows from a
Strang’s lemma (cf. [12]) for nonconforming methods, the inf-sup condition
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for B̃h in Lemma 3.2, and (3.16) that

‖σ − σh‖+ ‖u− u∗h‖2,h
. inf
τh∈Σh,v∗h∈U

∗
h

(
‖σ − τh‖+ ‖u− v∗h‖2,h

)
+ sup

τh∈Σh,v
∗
h∈U

∗
h

‖τh‖+‖v∗h‖2,h=1

B̃h(σ − σh, u− u∗h; τh, v
∗
h)

. inf
τh∈Σh,v∗h∈U

∗
h

(
‖σ − τh‖+ ‖u− v∗h‖2,h

)
+ sup
v∗h∈U

∗
h ,‖v

∗
h‖2,h=1

(f −Qr−3h f, v∗h − Ihv∗h).

(3.17)

Applying Lemma 3.1 to the last term in (3.17) completes the proof. ut

For boundary value problems with sufficiently smooth solution (σ, u), the
quasi-optimal error estimate in Theorem 3.1 implies the optimal order rate of
convergence

‖σ − σh‖+ ‖u− u∗h‖2,h . hr.

In the literature, the HHJ mixed method with some element-wise postpro-
cessed deflection in e.g., [38] also fulfills the same optimal order convergence
under ‖ · ‖0 × ‖ · ‖2,h for smooth problems. However, Theorem 3.1 is stronger
than the aforementioned a priori error estimates because it provides best ap-
proximation in general situations, regardless of the solution regularity.

3.2 A posteriori error estimate by u∗h

Based on the reconstructed deflection u∗h, we give a new a posteriori error

bound ηh =
(∑

T∈Th ηh(T )2
) 1

2 for controlling ‖σ−σh‖+ ‖u−u∗h‖2,h with the
following error indicator

ηh(T ) :=
(
‖M−1σh−∇2

hu
∗
h‖2T +h4T ‖f −div Div σh‖2T +

∑
e⊂∂T,
e∈Γ c

h

h−1e ‖J∂nu∗hK‖2e
) 1

2 .

Theorem 3.2 We have

‖σ − σh‖+ ‖u− u∗h‖2,h . ηh.

Proof Let φ ∈ Ũ be given in (3.3) such that

‖∇2
h(u∗h − φ)‖ ≤ C

1
2
1 ‖h

− 1
2

E J∂nu∗hK‖Γ c
h
. (3.18)

Let v = u− φ ∈ Ũ . We then proceed with the following splitting

C2‖σ − σh‖2 ≤ a(σ − σh, σ − σh)

= (σ − σh,∇2
hu
∗
h −M−1σh) + (σ − σh,∇2v) + (σ − σh,∇2

h(φ− u∗h)).
(3.19)
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The mean value inequality with ε > 0 and (3.18) yield

|(σ − σh,∇2
hu
∗
h −M−1σh)| ≤ ε

2
‖σ − σh‖2 +

ε−1

2
‖∇2

hu
∗
h −M−1σh‖2,

|(σ − σh,∇2
h(φ− u∗h))| ≤ ε

2
‖σ − σh‖2 +

ε−1

2
C1‖h

− 1
2

E J∂nu∗hK‖2Γ c
h
.

(3.20)

Integrating by parts leads to

(σ − σh,∇2v) = −(Div(σ − σh),∇v) + 〈(σ − σh)n,∇v〉∂Th
= −(Div(σ − σh),∇v) + 〈(σ − σh)nt, ∂tv〉∂Th = −bh(σ − σh, v),

(3.21)

where 〈(σ − σh)nn, ∂nv〉∂Th = 0 is used in the last equality. The interpolant
vh = Ihv ∈ Uh satisfies

‖h−2T (v − vh)‖+ ‖h−
3
2

E (v − vh)‖ . |v|2. (3.22)

It follows from (2.9b), (2.6b), (2.8b) and integration by parts on each edge
that

− bh(σ − σh, v) = −bh(σ − σh, v − vh) = (f, v − vh) + bh(σh, v − vh)

= (f − div Div σh, v − vh) + 〈(Div σh)n, v − vh〉∂Th
− 〈(σh)nt, ∂t(v − vh)〉∂Th

= (f − div Div σh, v − vh) + 〈JK(σh)K, v − vh〉Γ f
h
,

(3.23)

In the last equality, we use v − vh = 0 at each vertices of ∂T and on ∂Ω\Γf .
It is proved in Lemma 3.3 of [29] that

‖h
3
2

E JK(σh)K‖Γ f
h
. ‖h2T (f − div Div σh)‖. (3.24)

Therefore combining (3.21)–(3.24) and using the Cauchy–Schwarz and triangle
inequalities, we have

|(σ − σh,∇2v)| ≤ C
1
2
3 ‖h2T (f − div Div σh)‖‖∇2v‖

≤ ε−1C3‖h2T (f − div Div σh)‖2

+
ε

2
‖∇2

h(u− u∗h)‖2 +
ε

2
‖∇2

h(u∗h − φ)‖2.

(3.25)

It follows from (3.19), (3.20), (3.25), (3.18) and the triangle inequality that

C2‖σ − σh‖2 ≤ ε‖σ − σh‖2 +
ε−1

2
‖∇2

hu
∗
h −M−1σh‖2

+ ε−1C3‖h2T (f − div Div σh)‖2 +
ε

2
‖∇2

h(u− u∗h)‖2

+

(
ε−1

2
+
ε

2

)
C1‖h

− 1
2

E J∂nu∗hK‖2Γ c
h
.

(3.26)
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Meanwhile we have

‖h−
1
2

e J∂n(u− u∗h)K‖Γ c
h

= ‖h−
1
2

e J∂nu∗hK‖Γ c
h
, (3.27a)

‖∇2
h(u− u∗h)‖2 ≤ 2‖M−1(σ − σh)‖2 + 2‖M−1σh −∇2

hu
∗
h‖2 (3.27b)

≤ 2C4‖σ − σh‖2 + 2‖M−1σh −∇2
hu
∗
h‖2.

Combining (3.26) with ε = min(C2

4 ,
C2

4C4
) and (3.27) completes the proof. ut

Remark 3.2 Based on the Helmholtz decomposition in [40] for symmetric ten-
sors, the work [29] derived residual-type a posteriori error estimates for ‖σ−σh‖
on polygonal domains. Without using the Helmholtz decomposition, our anal-
ysis in Theorem 3.2 works on more general domain Ω, e.g., domains with
holes.

Without absorbing the edge term involving K(σh) in (3.24), the error es-

timator η̄h =
(∑

T∈Th η̄h(T )2
) 1

2 with

η̄h(T ) :=
(
‖M−1σh −∇2

hu
∗
h‖2T + h4T ‖f − div Div σh‖2T

+
∑
e⊂∂T,
e∈Γ c

h

h−1e ‖J∂nu∗hK‖2e +
∑
e⊂∂T,
e∈Γ f

h

h3e‖JK(σh)K‖2e
) 1

2

provides an alternative upper bound for ‖σ−σh‖+‖u−u∗h‖2,h up to a possibly
smaller multiplicative constant. For the lowest order HHJ method, K(σh) = 0
and thus ηh, η̄h coincide. The efficiency analysis of ηh(T ) is straightforward.

Theorem 3.3 For each T ∈ Th we have

ηh(T ) . ‖σ − σh‖T + ‖u− u∗h‖2,h,T + h2T ‖f −Qrhf‖T .

Proof The standard bubble function technique (cf. [42]) yields

h2T ‖f − div Div σh‖T . ‖σ − σh‖T + h2T ‖f −Qrhf‖T .

Meanwhile, the triangle inequality implies

‖M−1σh −∇2
hu
∗
h‖T ≤ C‖σ − σh‖T + ‖∇2u−∇2

hu
∗
h‖T .

Collecting the above two inequalities with (3.27a) completes the proof. ut

The mixed formulation (2.6) could also be discretized by the Herrmann–
Miyoshi method (cf. [3,26,34]): Find (σ̂h, ûh) ∈ [Srh]4s × Urh such that

a(σ̂h, τh) + bh(τh, ûh) = 0, ∀τh ∈ [Srh]4s, (3.28a)

bh(σ̂h, vh) = −(f, vh), ∀vh ∈ Urh . (3.28b)

The difference between (3.28) and the HHJ method (2.8) is the use of the
equal-order nodal moment space [Srh]4s in (3.28). When r ≥ 2, the a priori
convergence of ‖σ − σ̂h‖+ ‖u− ûh‖2,h is shown in [3].
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The a posteriori analysis in Theorem 3.2 relies solely on the H1 conformity
of the numerical deflection u∗h. Since ûh is also C0 continuous, the a posteriori
error analysis in this section could be directly applied to (3.28). Let

η̂h(T ) =
(
‖M−1σ̂h −∇2

hûh‖2T + h4T ‖f − div Div σ̂h‖2T +
∑
e⊂∂T,
e∈Γ c

h

h−1e ‖J∂nûhK‖2e
) 1

2 .

The a posteriori error estimate for the Herrmann–Miyoshi method (3.28) reads

( ∑
T∈Th

η̂h(T )2
) 1

2 −‖h2T (f−Qrhf)‖ . ‖σ− σ̂h‖+‖u− ûh‖2,h .
( ∑
T∈Th

η̂h(T )2
) 1

2 .

4 A posteriori error estimate for ‖ · ‖0 × ‖ · ‖1

In this section, we present superconvergence results and the induced recovery-
based error estimator with respect to the norm ‖ · ‖ × ‖ · ‖1. The theoretical
foundation of superconvergent recovery error estimators hinges on the analyti-
cal solution regularity and the mesh structure, which is unrealistic in adaptive
methods. However, in practice, such recovery-type error estimators are often
reliable, efficient, and even asymptotically exact for singular problems under
graded meshes.

In particular, for the lowest order HHJ method (r = 1), we present and
theoretically validate a new postprocessing procedure Rh based on the super-
convergent patch recovery. Under common assumptions, the postprocessed mo-
ment σ∗h = Rhσh is shown to be superconvergent to σh, i.e., ‖σ−σ∗h‖ = O(h1+ρ)
is a higher order term with some ρ > 0. It then follows from the triangle in-
equality

‖σh − σ∗h‖ − ‖σ − σ∗h‖ ≤ ‖σ − σh‖ ≤ ‖σh − σ∗h‖+ ‖σ − σ∗h‖

that ‖σh − σ∗h‖ is an asymptotically exact error estimator for the moment

error, i.e., the effectiveness index ‖σ−σh‖
‖σh−σ∗h‖

goes to 1 as h → 0. For the same

reason, combining it with u∗h leads to the asymptotically exact a posteriori

bound ζh =
(
‖σh − σ∗h‖2 + |uh − u∗h|21

) 1
2 for the total error under the norm

‖ · ‖ × | · |1, i.e.,
(
‖σ − σh‖2 + |u− uh|21

) 1
2 /ζh approaches 1 as h→ 0.

4.1 Superconvergence of the deflection

It is not hard to see that the inf-sup condition (3.6) yields an improved error
estimate. In fact, It follows from (2.12a) and (2.9a) that

bh(τh, Ihu− uh) = bh(τh, u− uh) = −a(σ − σh, τh). (4.1)
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Then using (3.6), (4.1) and the boundedness of a, we obtain

‖Ihu− uh‖2,h . sup
τh∈Σh,‖τh‖=1

a(σ − σh, τh) . ‖σ − σh‖. (4.2)

A combination of Lemma 4.2 and (2.13b) yields

‖Ihu− uh‖2,h . hr|σ|r, (4.3)

a supercloseness result with respect to the discrete H2-norm which cannot be
derived from |u−uh|1 = O(hr) in (2.13a). Let δij denote the Kronecker delta.
For the norm | · |1, Theorem 4.2 of [16] gives a similar supercloseness result

|Ihu− uh|1 . hr+1
(
‖u‖r+2 + δr1‖f‖

)
, (4.4)

under the assumption that Ω is convex. The next theorem confirms the super-
convergence property of u∗h constructed in Section 3 with respect to the norm
| · |1.

Theorem 4.1 Let Ω be a convex domain. It holds that

|u− u∗h|1 . hr+1
(
‖u‖r+2 + δr1‖f‖

)
.

Proof Let ũh = Ir+1
h u ∈ Ur+1

h and v = (I − Ih)(ũh − u∗h) ∈ Wh. It follows
from (3.2) and the Cauchy–Schwarz inequality that

‖∇2
hv‖2 ' (M∇2

hv,∇2
hv)

= (M∇2
h(ũh − u),∇2

hv) + (M∇2u− σh,∇2
hv)

− (M∇2
hIh(ũh − u∗h),∇2

hv)

.
(
‖∇2

h(ũh − u)‖+ ‖σ − σh‖+ ‖∇2
hIh(ũh − u∗h)‖

)
‖∇2

hv‖.

(4.5)

A combination of Ihũh = Ihu, (4.5), and a scaling argument then yields

|v|1 . h‖∇2
hv‖ . h

(
‖∇2

h(u− ũh)‖+ ‖σ − σh‖+ ‖∇2
hIh(uh − u∗h)‖

)
. (4.6)

We conclude the proof with the triangle inequality

|u− u∗h|1 ≤ |u− ũh|1 + |v|1 + |Ih(ũh − u∗h)|1,

(4.6), (2.13b), (4.3), (4.4), Ihũh = Ihu, and the classical interpolation error
estimate. ut
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4.2 Superconvergence of the moment

We then derive superconvergence results for the moment variable. Unlike the
variable u, superconvergence for σ depends on the mesh structure and the poly-
nomial degree r. In the following, we focus on the lowest order HHJ method
(r = 1).

We reconstruct a new moment field σ∗h = Rhσh via the postprocessing
operator Rh based on local least-squares fitting. The operator Rh is a linear
mapping from Σ1

h to the nodal space [S1
h]4s. In Th, let Vh, Voh, V∂h denote the

sets of vertices, interior vertices, boundary vertices, respectively. For a closed
subdomain Ω0, let Th(Ω0), Eh(Ω0) denote the set of elements and edges in Ω0,
respectively. The postprocessed solution Rhσh is determined by nodal values
of Rhσh at each vertex in Vh. We say two vertices z1, z2 ∈ Vh are directly
connected if they are two endpoints of an edge e ∈ Eh. Following [36], each
vertex z ∈ Vh is assigned with a closed and connected Lipschitz vertex patch
Ωz 3 z as follows.

Case 1. For z ∈ Voh, Ωz is the union of triangles sharing z as a vertex and
possibly a few extra triangles surrounding z but not containing z in Th.
Case 2. For z ∈ V∂h directly connected to z′ ∈ Voh, let Ωz := Ωz′ .
Case 3. For z ∈ V∂h that is not directly connected to any interior vertices,
assume that z and z′ ∈ Voh are indirectly connected through a path of
edges. Let Ωz be the smallest patch containing z ∪Ωz′ .

z

(a) Ωz in Case 1

z

z

(b) Ωz in Case 2

z

z

(c) Ωz in Case 3

Fig. 2: Vertex patch Ωz.

In practical meshes, most vertices belong to Cases 1 and 2, while a few
corner points are indirectly connected to interior vertices through a path of
two edges. Examples of the vertex patch Ωz at an interior or boundary vertex
z are shown in Fig. 2. The postprocessing operator Rh is defined as follows.

Definition 1 Given τh ∈ Σ1
h, the image Rhτh ∈ [S1

h]4s is defined as follows.
For each z ∈ Vh, let τz ∈ [P1(Ωz)]

4
s be the minimizer such that

τz = arg min
τ∈[P1(Ωz)]4s

∑
e∈Eh(Ωz)

(
[τ(me)]nn − [τh(me)]nn

)2
where me is the midpoint of e. Then Rhτh at z ∈ Vh is defined as Rhτh(z) :=
τz(z).
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To clarify this postprocessing procedure, we rewrite Rh in linear algebra
language. For a vertex z, let {ej}Nj=1 be the set of edges in the local patch Ωz.
The minimizer τz = τz(x1, x2) is of the form

τz =

(
c1 + c2x1 + c3x2, c4 + c5x1 + c6x2
c4 + c5x1 + c6x2, c7 + c8x1 + c9x2

)
,

with parameters {ci}9i=1 to be determined. Let mj = (mj1,mj2)ᵀ be the mid-
point of ej and nj = (nj1, nj2)ᵀ the unit normal to ej . We define

dz = (τh(m1)nn|e1 , . . . , τh(mN )nn|eN )ᵀ

and Az = (aᵀ1 , . . . , a
ᵀ
N )ᵀ ∈ RN×9 with

aj = (n2j1, n
2
j1mj1, n

2
j1mj2, 2nj1nj2, 2nj1nj2mj1,

2nj1nj2mj2, n
2
j2, n

2
j2mj1, n

2
j2mj2).

Then cz = (c1, . . . , c9)ᵀ solves minĉ∈R9 |Az ĉ− dz|2, where | · | is the Euclidean
l2 norm.

In theory and practice, it is important to analyze the unique solvability of
those local least-squares problem. If Az is of full column rank, then cz is the
unique solution of the normal equation Aᵀ

zAzcz = Aᵀ
zdz. Given a scalar-valued

v and a vector-valued φ = (φ1, φ2)ᵀ, define

curl v := (−∂x2
v, ∂x1

v)ᵀ,

Curlφ := (curlφ1, curlφ2)ᵀ,

Curls φ := (Curlφ+ (Curlφ)ᵀ)/2.

The next technical lemma is an important tool in the analysis of Rh.

Lemma 4.1 For each T ∈ Th with edges {ek}3k=1, let `k be the length of ek,
nk the outward unit normal to ek, tk the counterclockwise unit tangent to ek,
λk the barycentric coordinate at the vertex opposite to ek, φk = λk−1λk+1 with
λ0 = λ3, λ4 = λ1. Given τ ∈ [P1(T )]4s with

∫
ek
τnnds = 0, k = 1, 2, 3, we have

τ = Curls rτ , rτ =

3∑
k=1

γk,τφk,

where {γk,τ}3k=1 are given by

γk,τ · nk =
`2k
2
nᵀk∂tkτnk, (4.7a)

γk,τ · tk =
`2k
2
nᵀk∂nk

τnk + `2kt
ᵀ
k∂tkτnk. (4.7b)
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Proof Let e1 = (1, 0)ᵀ, e2 = (0, 1)ᵀ. For the time being, we assume{
Curls(φie1)

}3
i=1
∪
{

Curls(φie2)
}3
i=1

(4.8)

are linearly independent. The reason will be given at the end of the proof.
Direct calculation shows that for 1 ≤ i, k ≤ 3,∫

ek

(
Curls(φie1)

)
nn
ds =

∫
ek

(
Curls(φie2)

)
nn
ds = 0. (4.9)

Then by
∫
ek
τnnds = 0 with 1 ≤ k ≤ 3 and counting the dimension, we have

τ =

3∑
i=1

αi Curls
(
φie1

)
+

3∑
i=1

βi Curls
(
φie2

)
= Curls rτ , (4.10)

where rτ =
∑3
i=1 φiγi,τ with γi,τ := (αi, βi)

ᵀ an undetermined constant vec-
tor. Given two unit vectors d1 and d2, it follows from (4.10) that

dᵀ1τd2 = −1

2

3∑
i=1

(
dᵀ1γi,τ

∂φi
∂d⊥2

+
∂φi
∂d⊥1

γᵀi,τd2

)
, (4.11)

where d⊥i is the vector from rotating di by π/2 counterclockwise. Recall that
δki is the Kronecker delta. Applying ∂tk to (4.11) with d1 = d2 = nk, and
using

∂2tkφi = −2δki/`
2
k, (4.12)

we obtain the normal component of γk,τ in (4.7a). Applying ∂tk to (4.11) with
d1 = tk, d2 = nk and using (4.12), we have

tᵀk∂tkτnk =
1

`2k
tᵀkγk,τ +

1

2

3∑
i=1

∂2φi
∂tk∂nk

γᵀi,τnk. (4.13)

Finally ∂nk
to (4.11) with d1 = d2 = nk leads to

nᵀk∂nk
τnk = −

3∑
i=1

γᵀi,τnk
∂2φi
∂tk∂nk

. (4.14)

Comparing (4.14) with (4.13), we obtain the tangential component of γk,τ in
(4.7b). To show the linear independence of (4.8), suppose

3∑
i=1

α′i Curls
(
φie1

)
+

3∑
i=1

β′i Curls
(
φie2

)
= 0.

Then by running the same argument below (4.10), we obtain that both the
normal and tangential components of (α′i, β

′
i) are zero, i.e., α′i = β′i = 0. ut
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We say two angles are adjacent provided they share a common vertex and
are contained in a pair of triangles sharing an edge. The next lemma gives a
practical criterion for checking the well-posedness of vertex-based least-squares
problems in Definition 1. Assumptions in Lemma 4.2 were first used in [36]. It is
interesting to see that our least-squares problems are related to the polynomial
preserving recovery of linear Lagrange elements introduced in [36].

Lemma 4.2 Let z be an interior vertex and nz the number of grid vertices in
Ωz that are directly connected to z. Assume nz ≥ 4 and (1): the sum of each
pair of adjacent angles in Ωz is no greater than π; and (2): in addition, when
nz = 4, vertices in Ωz are not lying on two lines. Then there exists a unique
τz ∈ [P1(Ωz)]

4
s at z in Definition 1.

Proof Assume
∫
e
(τz)nnds = 0 for each e ∈ Eh(Ωz). Then for each T ∈ Th(Ωz),

Lemma 4.1 implies

τz|T = Curls rT , rT =

3∑
k=1

γk,τz|T φk|T ∈ [P2(T )]2. (4.15)

Let rz be the piecewise quadratic polynomial on Ωz with rz|T = rT , ∀T ∈
Th(Ωz). We claim that rz is indeed a quadratic polynomial on Ωz. For each
interior edge e ∈ Eh(Ωz) shared by T, T ′ ∈ Th(Ωz), the explicit formulas for
γk,τz|T , γk,τz|T ′ in Lemma 4.1 imply that rT = rT ′ on e and

∂terT = ∂terT ′ on e, ∂2terT = ∂2terT ′ on e. (4.16)

Therefore rz is continuous. A direct consequence of (4.15) is

tᵀe∂ne
rT = tᵀeτzte on T, tᵀe∂ne

rT ′ = tᵀeτzte on T ′,

1

2

(
nᵀe∂nerT − tᵀe∂terT

)
= tᵀeτzne on T,

1

2

(
nᵀe∂ne

rT ′ − tᵀe∂terT ′
)

= tᵀeτzne on T ′,

(4.17)

which leads to
∂ne

rT = ∂ne
rT ′ on e. (4.18)

Applying ∂te to (4.17) and using (4.16) yield

∂te∂nerT = ∂te∂nerT ′ on e. (4.19)

Applying ∂ne
to (4.17) and using (4.19) yield

∂2ne
rT = ∂2ne

rT ′ on e. (4.20)

Therefore collecting (4.16) and (4.18)–(4.20), we confirm rz ∈ [P2(Ωz)]
2. By

the definition, rz vanishes at all vertices in Th(Ωz). It then follows from the
given assumptions on Ωz and Theorem 2.3 of [36] that rz = 0 and thus τz =
Curls rz = 0.

In summary, we conclude that
∫
e
(τz)nnds = 0 ∀e ∈ Eh(Ωz) implies τz = 0.

In other words, for c ∈ R9, Azc = 0 implies c = 0, and there exists a unique
least-squares solution τz at z. ut
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z

(a) Assumption (1) is violated.

z

(b) Assumption (2) is violated.

Fig. 3: Vertex patches Ωz violating assumptions in Lemma 4.2.

For each interior vertex z, we start with a small vertex patch Ωz, e.g., the
union of triangles sharing z. In a few cases when the assumption in Lemma 4.2
is violated, the local least-squares problem may not have a unique solution, see
Fig. 3 for examples. To guarantee the uniqueness, one could add some extra
elements to the patch Ωz, e.g., enlarge Ωz by one layer.

By definitions of Ωz and Rh, the fitting polynomial τz is unique at each
boundary vertex z provided the condition in Lemma 4.2 holds for all internal
vertices. In theory, Rh could be applied to more general functions than mem-

bers of Σ1
h. For T ∈ Th, let ΩT =

⋃
{T ′ ∈ Th : T

′∩T 6= ∅}. The well-posedness
of least-squares problems implies Rhτ = τ on T for τ ∈ [P1(ΩT )]4s, which is
called the “polynomial preserving property” in [36]. The super-approximation
property of Rh then follows from a local scaling argument, see the proof of
Theorem 3.3 in [36] or Theorems 2.2 and 2.3 of [5] for details.

Theorem 4.2 Assume that the condition in Lemma 4.2 holds for all internal
vertices in Voh. Then given τh ∈ Σ1

h and T ∈ Th, we have

‖Rhτh‖T . ‖τh‖ΩT
, (4.21a)

‖σ −Rhσ‖T . h2T |σ|2,ΩT
. (4.21b)

Another ingredient in the superconvergence analysis for the moment vari-
able is the following supercloseness estimate on a uniform grid, see [27].

Lemma 4.3 Assume that each pair of directly adjacent triangles in Th forms
a parallelogram. When r = 1, it holds that

‖Πhσ − σh‖ . h2| log h| 12
(
|σ| 5

2 ,Ω
+ ‖∇σ‖L∞(Ω)

)
.

Although Lemma 4.3 is proved only under exactly uniform grids, such su-
percloseness estimate could often be extended to mildly structured meshes,
see, e.g., [7,45,32,5,31] for similar results in nodal, edge and nonconforming
elements in R2. We also refer to [44] for a supercloseness estimate of nodal
elements on graded meshes. Now we are in a position to present the last main
result. The proof directly follows from the triangle inequality

‖σ −Rhσh‖ ≤ ‖σ −Rhσ‖+ ‖Rh(Πhσ − σh)‖
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and Theorem 4.2 and Lemma 4.3.

Theorem 4.3 Let the assumptions in Theorem 4.2 and Lemma 4.3 hold.
Then for r = 1 we have

‖σ −Rhσh‖ . h2| log h| 12
(
‖σ‖ 5

2 ,Ω
+ ‖∇σ‖L∞(Ω)

)
.

Although the proof of Theorem 4.3 utilizes the result in Lemma 4.3, we
will show in the experiment that there exists apparent superconvergence of
‖σ − Rhσh‖ while ‖Πhσ − σh‖ is not super-small at all, which suggests that
supercloseness estimate is not a necessary condition for achieving postprocess-
ing superconvergence.

5 Numerical experiments

In this section, we test the performance of the error indicator ηh(T ) in Section

3 and the estimator ζh =
(∑

T∈Th ζh(T )2
) 1

2 with ζh(T ) =
(
‖σh − Rhσh‖2T +

‖∇(uh − u∗h)‖2T
) 1

2 in Section 4. The numerical schemes are implemented in
MATLAB R2020a. In all experiments we set Ed3/12 = 1, the Poisson ratio
ν = 0.3, and use the lowest order HHJ method (2.8) (r = 1). The adaptive
algorithm is based on the classical loop (cf. [18,37])

Solve −−−−→ Estimate −−−−→ Mark −−−−→ Refine.

The module Estimate calculates element-wise error indicators {ηh(T )}T∈Th
(resp. {ζh(T )}T∈Th) in the current grid Th. The module Mark selects a minimal
subset of elements Mh ⊂ Th satisfying∑

T∈Mh

ηh(T )2 ≥ 0.6
∑
T∈Th

ηh(T )2
(
resp.

∑
T∈Mh

ζh(T )2 ≥ 0.6
∑
T∈Th

ζh(T )2
)
.

The module Refine subdivides elements in Mh and minimal neighboring el-
ements by the newest vertex bisection and outputs a new conforming grids,
over which (2.8) is solved and the element-wise errors are estimated again.
The convergence of ηh-based adaptive algorithm is measured by the error

Eh :=
(
‖σ − σh‖2 + ‖u− u∗h‖22,h

) 1
2 while ζh-based adaptive algorithm is mea-

sured by eh :=
(
‖σ − σh‖2 + |u − uh|21

) 1
2 . By N we denote the number of

triangles in the current mesh. We compute the order of convergence p by the
MATLAB function polyfit such that the corresponding error is proportional to
Np.

5.1 Problem 1

Following the corner singularity of biharmonic equations analyzed in [20], on
the L-shaped domain

Ω = [−1, 1]2\
(
[0, 1]× [−1, 0]

)
,
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(b) A graded grid by ηh.
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(c) A graded grid by ζh.

Fig. 4: Grids on the L-shaped domain for Problem 1.
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Fig. 5: Convergence history of exact errors and estimators for Problem 1.
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Fig. 6: Effectiveness ratio of error estimators for Problem 1.

we consider (2.3) with the exact solution

u(r, θ) = (r2 cos2 θ − 1)2(r2 sin2 θ − 1)2r1+γg(θ),

γ = 0.544483736782464, ω =
3π

2
,

g(θ) =

(
sin((γ − 1)ω)

γ − 1
− sin((γ + 1)ω)

γ + 1

)(
cos((γ − 1)θ)− cos((γ + 1)θ)

)
−
(

sin((γ − 1)θ)

γ − 1
− sin((γ + 1)θ)

γ + 1

)(
cos((γ − 1)ω)− cos((γ + 1)ω)

)
,
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Fig. 7: Convergence of error estimators for Problem 2.
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Fig. 8: Grids on the unit square for Problem 3.

Table 1: Convergence of the moment errors for Problem 3.

N ‖σ − σh‖ ‖Πhσ − σh‖ ‖σ −Khσh‖ ‖σ −Rhσh‖
128 3.348e-2 7.840e-3 1.285e-2 1.615e-2
512 1.655e-2 4.240e-3 1.011e-2 4.977e-3
2048 8.312e-3 1.932e-3 4.925e-3 1.289e-3
8192 4.161e-3 9.385e-4 2.431e-3 3.241e-4
32768 2.081e-3 4.656e-4 1.208e-3 8.109e-5
order 0.997 1.060 1.021 1.981

where (r, θ) is the polar coordinate with respect to the origin. The boundary
condition is purely clamped (∂Ω = Γc). Figure 4a is the initial grid used in
adaptive algorithms. An highly graded produced by ηh-based and ζh-based
adaptive methods are shown in Figures 4b and 4c, respectively.

In Figure 5, the numerical order of convergence is evaluated using solu-
tions after the 6th adaptive loop. It could be observed that those rates of
convergence match the predicted rates in Sections 3 and 4. In addition, there
is apparent superconvergence of ‖σ−Rhσh‖ in Fig. 5b. The effectiveness ratio
eff = Eh/ηh and eff = eh/ζh is shown in Figure 6. Readers are referred to
[44] for a theoretical investigation of superconvergence of linear and quadratic
Lagrange elements under adaptive grids. As explained in Section 4, the error
estimator ζh is almost asymptotically exact.



24 Y. Li

5.2 Problem 2

In the second experiment, we consider (2.8) on the L-shaped domain Ω with
∂Ω = Γ s ∪ Γ f , where the free part Γf consists of two segments sharing the
reentrant corner and Γs is the rest part of ∂Ω. The transverse load is f = 10.
The initial grid is the same as Problem 1. We use the newest vertex bisection
in adaptive algorithms and uniform quad-refinement in non-adaptive ones.
For this problem, there is no explicit analytical solution and we report the
convergence history of error estimators in Figure 7.

It is observed in Figure 7 that the convergence under uniform refinement
is rather slow. However, the adaptive algorithms based on ηh and ζh are able
to recover the optimal rate of convergence with respect to N .

5.3 Problem 3

In the third experiment, we consider (2.3) onΩ = [0, 1]2 with the exact solution

u = x21(x1 − 1)2x22(x2 − 1)2

under the purely clamped boundary condition ∂Ω = Γc. We numerically com-
pare the performance of the postprocessing scheme Rh and the edge-averaging
scheme Kh proposed in [28,10]. The initial grid is the 8 × 8 uniform trian-
gulation of Ω. A grid sequence is then generated by uniform newest vertex
bisection, see Figure 8. We note that this grid sequence is not uniformly par-
allel and the assumption in Lemma 4.3 fails.

The numerical order in Table 1 is evaluated using polyfit and the data
below the second row. It is clear from Table 1 that ‖Πhσ − σh‖ is not super-
small and ‖σ −Khσh‖ is not superconvergent at all. However, it is observed
that ‖σ−Rhσh‖ has one order higher global superconvergence, indicating the
superiority of Rh in this situation.
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3. Babuška, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh depen-
dent norms. Math. Comp. 35(152), 1039–1062 (1980)

4. Bank, R.E.: Hierarchical bases and the finite element method. In: Acta numerica,
1996, Acta Numer., vol. 5, pp. 1–43. Cambridge Univ. Press, Cambridge (1996). DOI
10.1017/S0962492900002610

5. Bank, R.E., Li, Y.: Superconvergent recovery of Raviart-Thomas mixed finite ele-
ments on triangular grids. J. Sci. Comput. 81(3), 1882–1905 (2019). DOI 10.1007/
s10915-019-01068-0

6. Bank, R.E., Smith, R.K.: A posteriori error estimates based on hierarchical bases. SIAM
J. Numer. Anal. 30(4), 921–935 (1993). DOI 10.1137/0730048

7. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators. I. Grids with
superconvergence. SIAM J. Numer. Anal. 41(6), 2294–2312 (2003). DOI 10.1137/
S003614290139874X

8. Behrens, E.M., Guzmán, J.: A mixed method for the biharmonic problem based on a
system of first-order equations. SIAM J. Numer. Anal. 49(2), 789–817 (2011). DOI
10.1137/090775245

9. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications, Springer
Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013). DOI
10.1007/978-3-642-36519-5

10. Brandts, J.H.: Superconvergence and a posteriori error estimation for triangular mixed
finite elements. Numer. Math. 68(3), 311–324 (1994). DOI 10.1007/s002110050064

11. Brenner, S.C., Gudi, T., Sung, L.y.: An a posteriori error estimator for a quadratic
C0-interior penalty method for the biharmonic problem. IMA J. Numer. Anal. 30(3),
777–798 (2010). DOI 10.1093/imanum/drn057

12. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, Texts
in Applied Mathematics, 15, vol. 35, 3 edn. Springer, New York (2008)

13. Brenner, S.C., Sung, L.Y.: C0 interior penalty methods for fourth order elliptic boundary
value problems on polygonal domains. J. Sci. Comput. 22/23, 83–118 (2005). DOI
10.1007/s10915-004-4135-7

14. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems
arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche
Opérationnelle Sér. Rouge 8(R-2), 129–151 (1974)

15. Ciarlet, P.G., Raviart, P.A.: A mixed finite element method for the biharmonic equation.
In: Mathematical aspects of finite elements in partial differential equations, pp. 125–145.
Publication No. 33. Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis.
(1974)

16. Comodi, M.I.: The Hellan-Herrmann-Johnson method: some new error estimates and
postprocessing. Math. Comp. 52(185), 17–29 (1989)

17. Dedner, A., Giesselmann, J., Pryer, T., Ryan, J.: Residual estimates for post-processors
in elliptic problems. arXiv e-prints, arXiv:1906.04658 (2020)

18. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer.
Anal. 33(3), 1106–1124 (1996). DOI 10.1137/0733054

19. Georgoulis, E.H., Houston, P., Virtanen, J.: An a posteriori error indicator for discontin-
uous Galerkin approximations of fourth-order elliptic problems. IMA J. Numer. Anal.
31(1), 281–298 (2011). DOI 10.1093/imanum/drp023

20. Grisvard, P.: Singularities in boundary value problems. Research in Applied Mathemat-
ics, 22. Springer-Verlag, Berlin (1992)

21. Gudi, T.: Residual-based a posteriori error estimator for the mixed finite element ap-
proximation of the biharmonic equation. Numer. Methods Partial Differential Equations
27(2), 315–328 (2011). DOI 10.1002/num.20524



26 Y. Li

22. Gustafsson, T., Stenberg, R., Videman, J.: A posteriori estimates for conforming
Kirchhoff plate elements. SIAM J. Sci. Comput. 40(3), A1386–A1407 (2018). DOI
10.1137/17M1137334

23. Hansbo, P., Larson, M.G.: A discontinuous Galerkin method for the plate equation.
Calcolo 39(1), 41–59 (2002). DOI 10.1007/s100920200001

24. Hansbo, P., Larson, M.G.: A posteriori error estimates for continuous/discontinuous
Galerkin approximations of the Kirchhoff-Love plate. Comput. Methods Appl. Mech.
Engrg. 200(47-48), 3289–3295 (2011). DOI 10.1016/j.cma.2011.07.007

25. Hellan, K.: Analysis of elastic plates in flexure by a simplified finite element method.
Acta Polytech. Scand. Civil Engrg. Ser. 46, 1–28 (1967)

26. Herrmann, L.R.: Finite-element bending analysis for plates. Journal of the Engineering
Mechanics Division 93, 13–26 (1967)

27. Hu, J., Ma, L., Ma, R.: Optimal superconvergence analysis for the Crouzeix-Raviart
and the Morley elements. Advances in Computational Mathematics 47 (2021). DOI
10.1007/s10444-021-09874-7

28. Hu, J., Ma, R.: Superconvergence of both the Crouzeix-Raviart and Morley elements.
Numer. Math. 132(3), 491–509 (2016)

29. Huang, J., Huang, X., Xu, Y.: Convergence of an adaptive mixed finite element method
for Kirchhoff plate bending problems. SIAM J. Numer. Anal. 49(2), 574–607 (2011)

30. Johnson, C.: On the convergence of a mixed finite-element method for plate bending
problems. Numer. Math. 21, 43–62 (1973)

31. Li, Y.: Superconvergent flux recovery of the Rannacher-Turek nonconforming element.
J. Sci. Comput. 87(1), Paper No. 32, 19 (2021). DOI 10.1007/s10915-021-01445-8

32. Li, Y.W.: Global superconvergence of the lowest-order mixed finite element on mildly
structured meshes. SIAM J. Numer. Anal. 56(2), 792–815 (2018). DOI 10.1137/
17M112587X

33. Lovadina, C., Stenberg, R.: Energy norm a posteriori error estimates for mixed fi-
nite element methods. Math. Comp. 75(256), 1659–1674 (2006). DOI 10.1090/
S0025-5718-06-01872-2

34. Miyoshi, T.: A finite element method for the solution of fourth order partial differential
equation. Kunamoto J. Sci. (Math.) 9, 87–116 (1973)

35. Morley, L.S.D.: The triangular equilibrium element in the solutions of plate bending
problem. Aero. Q. 19, 149–169 (1968)

36. Naga, A., Zhang, Z.: A posteriori error estimates based on the polynomial preserving
recovery. SIAM J. Numer. Anal. 42(4), 1780–1800 (2004)

37. Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods:
an introduction, pp. 409–542. Springer, Berlin (2009)

38. Stenberg, R.: Postprocessing schemes for some mixed finite elements. RAIRO Modél.
Math. Anal. Numér. 25(1), 151–167 (1991). DOI 10.1051/m2an/1991250101511

39. Sun, P., Huang, X.: Quasi-optimal convergence rate for an adaptive hybridizable C0

discontinuous Galerkin method for Kirchhoff plates. Numer. Math. 139(4), 795–829
(2018). DOI 10.1007/s00211-018-0953-7

40. Beirão da Veiga, L., Niiranen, J., Stenberg, R.: A posteriori error estimates for the
Morley plate bending element. Numer. Math. 106(2), 165–179 (2007)

41. Beirão da Veiga, L., Niiranen, J., Stenberg, R.: A posteriori error analysis for the Morley
plate element with general boundary conditions. Internat. J. Numer. Methods Engrg.
83(1), 1–26 (2010). DOI 10.1002/nme.2821

42. Verfürth, R.: A posteriori error estimation techniques for finite element methods. Nu-
merical Mathematics and Scientific Computation. Oxford University Press, Oxford
(2013). DOI 10.1093/acprof:oso/9780199679423.001.0001

43. Wang, M., Xu, J.: The Morley element for fourth order elliptic equations in any dimen-
sions. Numer. Math. 103(1), 155–169 (2006). DOI 10.1007/s00211-005-0662-x

44. Wu, H., Zhang, Z.: Can we have superconvergent gradient recovery under adaptive
meshes? SIAM J. Numer. Anal. 45(4), 1701–1722 (2007)

45. Xu, J., Zhang, Z.: Analysis of recovery type a posteriori error estimators for
mildly structured grids. Math. Comp. 73(247), 1139–1152 (2004). DOI 10.1090/
S0025-5718-03-01600-4

46. Xu, J., Zikatanov, L.: Some observations on Babuška and Brezzi theories. Numer. Math.
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