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Abstract We present a hybrid continuous and discontinuous Galerkin spectral element approxima-
tion that leverages the advantages of each approach. The continuous Galerkin approximation is used
on interior element faces where the equation properties are continuous. A discontinuous Galerkin
approximation is used at physical boundaries and if there is a jump in properties at a face. The
approximation uses a split form of the equations and two-point fluxes to ensure stability for unstruc-
tured quadrilateral/hexahedral meshes with curved elements. The approximation is also conservative
and constant state preserving on such meshes. Spectral accuracy is obtained for all examples, which
include wave scattering at a discontinuous medium boundary.

Keywords Discontinuous Galerkin, Continuous Galerkin, Linear wave

1 Introduction

Spectral element methods, which have desired features of low dissipation and dispersion errors [11], [1],
[7] and spectral or even exponential convergence rates [3], have been used for many years to compute
linear wave propagation problems. They have been used for electromagnetic wave [14],[25],[9],[4],
elastic wave [26], linear acoustics [23],[6],[22], and optics [24] problems, for instance. The discontinuous
Galerkin Spectral Element Method (DGSEM) version is robust, and in recent years provably stable
forms have been developed for curved element meshes [13]. One of the reasons for its success is the
inter-element dissipation added at element faces introduced by the numerical fluxes. The DGSEM
approximations are also naturally suitable for problems with material interfaces where properties
jump.

Recently, a nodal Continuous (CG)/Discontinuous Galerkin (DG) hybrid method has been intro-
duced and used in the electromagnetics community for time domain Maxwell’s equations models [2]
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under the name of CGDGTD (CG/DG Time Domain). The authors note that hybrid approach has a
number of advantages. Parallelism, for instance, is enhanced at processor boundaries over a pure CG
approximation by exploiting the simplified coupling that DG elements have. On the other hand, in
smooth regions and away from processor boundaries the CG approximation requires fewer degrees of
freedom than DG, since nodes on both sides of a face do not have to be stored. The CG approxima-
tion also allows for a larger explicit time step, and has no inter-element dissipation. Combining the
approaches, then, allows for the advantages of each to be exploited. Second and third order methods
have been used with the hybrid approach.

The hybrid approach differs from a coupled CG/DG approximation, such as that proposed in [5].
In the mixed approach, some regions will be approximated by DG and other by CG, with a coupling
condition when the two approximations meet. In [5], for instance, the DG regions approximated
a first order system, while in CG regions a second order equation was approximated. Instead, the
hybrid approach approximates the first order system everywhere and the solutions and test functions
are allowed to be discontinuous along element faces along particular interfaces, specifically material,
physical, or processor boundaries.

In this paper, we present a hybrid continuous/discontinuous Galerkin spectral element method
(CG/DG-SEM) for systems of linear wave equations. As a spectral element version of the CGDGTD,
it has the advantages listed above for such a hybrid method, while stably allowing arbitrary order
approximations on curved elements. The approximation is applicable to, and stable on, unstructured
meshes on general domains with curved boundaries in up to three space dimensions with quadrilateral
or hexahedral elements. We show that the approximation is stable through the use of a split form
and two point fluxes. It is also conservative and constant state preserving even on meshes where the
elements have curved sides.

2 Linear Wave Propagation

We develop the CG/DG spectral element approximation for curved hexahedral elements to solve
wave propagation problems in multidimensional, multi-component domains as sketched in Fig. 1. The
domain Ω =

⋃Nmat

m=1 Ωm is composed of Nmat component subdomains, Ωm, each with uniform material
properties and constant wave propagation speeds within each domain. Although it is possible to imbed
additional components within subdomains, as Ω2 and Ω3 are embedded within Ω1, for simplicity of
exposition we do not enable such embedding here. We are also mostly interested in the multiple
material problem here, rather than parallel computing advantages, so we do not specifically consider
interfaces where the inter-element properties are continuous. In any case, the numerical properties at
such interfaces are already addressed in other papers, e.g. [13].

We write the wave equations on a domain Ω as hyperbolic linear systems of the form

ut +
3∑
i=1

∂fi
∂xi

= 0, (1)

where u is the state vector, fi = Aiu, i = 1, 2, 3 are the covariant fluxes,
→
x = (x, y, z) = (x1, x2, x3) is

the space coordinate vector, and Ai, i = 1, 2, 3 are the covariant coefficient matrices. The coefficient
matrices are expected to be piecewise constant, representing uniform properties, and are assumed to
be discontinuous at component boundaries in the domain.

Equations that can be written in the form (1) include the equations of linear acoustics [22], elastic
waves [26], geometric optics [24], and Maxwell’s equations [20]. The example we use here is that of
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Fig. 1 Two-dimensional diagram of the domain Ω composed of Nmat = 3 component subdomains, Ωm. Properties
may jump at interior component boundaries, Γ1 and Γ2

linear acoustics with state vector and coefficient matrices

u =


p

u

v

w

 , Ai =


0 δi1ρc

2 δi2ρc
2 δi3ρc

2

δi1/ρ 0 0 0
δi2/ρ 0 0 0
δi3/ρ 0 0 0

 , i = 1, 2, 3, (2)

where ρ is the density of the material medium, c is the sound speed, and δij is the Kronecker delta.

For the approximation to be stable, the coefficient matrices, Ai, must be simultaneously sym-
metrizable. To that end, we assume that there exists a constant symmetrizing matrix 0 < S <∞ such
that As

i = S−1AiS = (As
i )
T . For example, a symmetrization matrix for the wave equation coefficient

matrices (2) is

S =


c 0 0 0
0 1/ρ 0 0
0 0 1/ρ 0
0 0 0 1/ρ

 . (3)

To compact the equations and the operations on them, we define block vectors (with a double arrow).
The flux and solution gradient, which are three-space vectors of state vectors, are block vectors,

↔
f =

 f1
f2
f3

 , →
∇xu =

ux
uy
uz

 . (4)

Block vectors are multiplied by block matrices. For example a diagonal block matrix and full block
matrix are

S =

S 0 0
0 S 0
0 0 S

 , B =

B11 B12 B13

B21 B22 B23

B31 B32 B33

 . (5)
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The vector dot product of two block vectors is a scalar and the dot product of a block vector with
a space vector is a state vector,

↔
f ·↔g =

3∑
i=1

fi
Tgi,

→
g ·

↔
f =

3∑
i=1

gifi . (6)

In block vector notation, then, the divergence of a flux is represented as

→
∇x ·

↔
f =

3∑
i=1

∂fi
∂xi

, (7)

which allows the system (1) to be written compactly as

ut +
→
∇x ·

↔
f = 0. (8)

We re-write (8) in a split form by averaging it with the nonconservative system formed by applying
the product rule to the divergence of the flux, giving

ut +
1

2

{→
∇x ·

↔
f +

(→
∇x ·

↔
A
)

u +
↔
A ·

→
∇xu

}
= 0, (9)

where
↔
A is the block vector of coefficient matrices,

↔
A =

 A1

A2

A3

 . (10)

Split forms are needed to prove stability of the approximation [13]. Since the coefficient matrices
can have jump discontinuities at subdomain boundaries, derivatives must of course be interpreted
weakly. Since we assume in this paper that the coefficient matrices are piecewise constant, with
changes only at the component boundaries, (9) reduces to

ut +
1

2

{→
∇x ·

↔
f +

↔
A ·

→
∇xu

}
= 0. (11)

To completely pose the problem we must supply initial conditions, u(
→
x, t) = u0 in Ω, boundary

conditions g(
→
x, t) along incoming characteristics on the physical boundary, Γb, and interface conditions

on the Nintf subdomain interfaces,
Γ = ∪Nintf

i Γi, (12)

see Fig. 1.
Conservative or nonconservative interface conditions can be specified at the component interfaces

[19],[18]. Conservative interface conditions require that the normal flux be continuous. Using the jump
notation JuK = uR − uL, where left (L) and right (R) are defined relative to a normal direction,

→
n, the

conservative interface condition is r↔
A · →nu

z
= 0. (13)

Remark 2.1 Sometimes it is possible to write the system (1) in the non-conservative form

But +
↔
A · ∇u = 0, (14)

where B > 0 and
↔
A · →n is continuous across the subdomain interfaces. Examples include Maxwell’s

equations [9], or elastic wave equations [26]. In that case, the nonconservative interface condition is
JuK = 0.
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In light of the possibility that the equation form (11) can be conservative or nonconservative
depending on the interface condition (13) or JuK = 0, we define the conservative approximation as

Definition 2.1 The conservative scheme approximates the system (11) with the conservative interface
condition (13).

2.1 Energy Behavior of the Continuous Solution

We show stability of the approximation by discretely mimicking the energy behavior of the PDE
system [21], so it is necessary to specify the behavior to match. We define the energy through the L2

inner product and its induced norm

〈q,v〉Ω =

∫
Ω

qTvdV, ||u||Ω = 〈u,u〉1/2Ω . (15)

Except when it is necessary to explicitly designate the domain over which the inner product or norm
is applied, we will drop the subscript Ω.

To form the equation satisfied by the energy, we multiply (11) by
(
S−1

)T
S−1u and integrate over

Ω. Then 〈
ut,
(

S−1
)T

S−1u

〉
+

1

2

〈
→
∇x ·

↔
f ,
(

S−1
)T

S−1u

〉
+

1

2

〈
↔
A ·

→
∇xu,

(
S−1

)T
S−1u

〉
= 0. (16)

Let us then define the symmetry variables as us = S−1u to write (16) as

1

2

d

dt

∣∣∣∣us∣∣∣∣2 +
1

2

〈→
∇x ·

↔
fs,us

〉
+

1

2

〈↔
As ·

→
∇xus,us

〉
= 0, (17)

where As
i = S−1AiS, and fsi = As

iu
s.

To manage the discontinuities at the subdomain boundaries, we subdivide the integrals in (17)
into components. Let us re-define ∣∣∣∣us∣∣∣∣2 =

Nmat∑
m=1

∣∣∣∣us∣∣∣∣2
Ωm . (18)

Then

1

2

d

dt

∣∣∣∣us∣∣∣∣2 +

Nmat∑
m=1

{
1

2

〈→
∇x ·

↔
fs,us

〉
Ωm

+
1

2

〈↔
As ·

→
∇xus,us

〉
Ωm

}
= 0. (19)

The inner product of the second term in the braces of (19) can be re-written into a volume
and a surface contribution using multidimensional integration by parts. The divergence satisfies the
multidimensional integration by parts formula〈→

∇ · ↔v,u
〉
∂Ωm

=

∫
∂Ωm

uT
↔
v · →ndS−

〈
↔
v,

→
∇u
〉
∂Ωm

, (20)

for some u,v. So〈↔
As ·

→
∇xus,us

〉
∂Ωm

=
〈→
∇xus,

↔
Asus

〉
∂Ωm

=

∫
∂Ωm

us,T
↔
fs · →ndS−

〈→
∇ ·

↔
fs,us

〉
∂Ωm

. (21)
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Therefore, the second term of (22) cancels with the last term of (21) leaving

d

dt

∣∣∣∣us∣∣∣∣2 +

Nmat∑
m=1

∫
∂Ωm

us,T
↔
fs · →ndS = 0. (22)

Next, we separate the surface integrals over the physical boundary, Γb = ∂Ω, and the interior
interfaces,

d

dt

∣∣∣∣us∣∣∣∣2 +

Nmat∑
m=1

∫
∂Ωm\∂Ω

us,T
↔
fs · →ndS +

∫
∂Γb

us,T
↔
fs · →ndS = 0. (23)

The internal subdomain interfaces are counted twice in (23), with normals in opposite directions.
Gathering them, (23) becomes

d

dt

∣∣∣∣us∣∣∣∣2 − ∫
Γ

r
us,T

↔
fs · →n

z
dS +

∫
Γb

us,T
↔
fs · →ndS = 0, (24)

where a single normal vector is chosen between the two at each interface point.
To bound the physical boundary surface term in (23), we use the fact that the system is hyperbolic

so that
↔
fs · →n =

(↔
As · →n

)
us ≡ Asus = As,+us + As,−us, (25)

where A± = 1
2 (A± |A|) are matrices with only positive or negative eigenvalues. If we apply boundary

conditions g to the incoming waves, then

d

dt

∣∣∣∣us∣∣∣∣2 − ∫
Γ

r
us,T

↔
fs · →n

z
dS +

∫
Γb

us,TAs,+us dS =

∫
Γb

gs,T
∣∣∣As,−

∣∣∣gs dS. (26)

The third term is non-negative, so

d

dt

∣∣∣∣us∣∣∣∣2 ≤ ∫
Γ

r
us,T

↔
fs · →n

z
dS +

∫
Γb

gs,T
∣∣∣As,−

∣∣∣gs dS. (27)

The internal interface contribution is interesting in that it is not necessarily non-negative [19],[18]
if the interface condition is conservative. We will call the integrand of the jump term in the integral
over the interfaces

Q (uL,uR) =
1

2

r
us,T

↔
fs · →n

z
=

1

2

r
us,TAsus

z
= −1

2

{
us,TL As

LusL − us,TR As
RusR

}
, (28)

where As =
↔
As · →n. Since the system is hyperbolic and since As is symmetric, there exists a matrix

P such that As = PΛPT , and Λ is the diagonal matrix of eigenvalues. Then we can define the
characteristic variables

w = PTus =

[
w+

w−

]
, (29)

where w+ is associated with the positive eigenvalues of As and w− is associated with the negative
ones. The characteristic variables are chosen upwind at the interface according to

w+
R = w+

∗ , w−L = w−∗ , (30)

where the ‘∗’ variables are computed so that the jump condition, (13), is satisfied. In terms of the
characteristic variables, the jump condition is

PLΛL

[
w+
L

w−∗

]
= PRΛR

[
w+
∗

w−R

]
, (31)
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from which w±∗ can be computed in terms of w±
L/R

[18]. Let us also write

Λ =

[
Λ̄+ 0
0 Λ̄−

]
, Λ+ =

[
Λ̄+ 0
0 0

]
, Λ− =

[
0 0
0 Λ̄−

]
. (32)

Then we can write Q in terms of the characteristic variables as, [18],

Q (wL,wR) = −1

2

{
w+,T
L Λ̄+

Lw+
L −w+,T

∗ Λ̄+
Rw+
∗

}
− 1

2

{
w−,TR

∣∣∣Λ̄−R∣∣∣w−R −w−,T∗

∣∣∣Λ̄−L ∣∣∣w−∗ } . (33)

Finally, then, the behavior of the energy of the system with time is given by

d

dt

∣∣∣∣us∣∣∣∣2 ≤ 2

∫
Γ

QdS +

∫
Γb

gs,T
∣∣∣As,−

∣∣∣gs dS. Conservative (34)

It is not necessarily true that Q ≤ 0, so it is not necessarily true that the L2 energy norm is bounded
in terms of the initial and boundary data. In fact, the energy can grow by a bounded amount from
its initial value even if g = 0 [18]. However, there exists an alternate norm in which the energy is
bounded [19],[18], and since the L2 norm is easier to work with, we will follow [18] and use (34) as a
surrogate to determine when the CG/DG approximation is stable.

Remark 2.2 Alternatively, if the nonconservative form of the equation, (14), and the non-conservative
continuity condition JusK = 0 is used, then the energy is bounded in the norm ||us||2B = 〈us,Bus〉 for
homogeneous boundary conditions. For along with JAK = 0, Q = 0 . Following the same procedure
used to find (34),

d

dt

∣∣∣∣us∣∣∣∣2
B
≤
∫
Γb

gs,T
∣∣∣As,−

∣∣∣gs dS Nonconservative interface. (35)

Which, for g = 0, implies that ||us||B ≤ ||u
s
0||B .

Finally, ||us|| =
〈
u,
(
S−1

)T
S−1u

〉 1
2

defines an equivalent norm to the energy norm ||u||, so we can

equivalently use us or u when determining behavior of the energy.

3 The CG/DG-SEM for Hyperbolic Systems

To form the equations to be approximated, we multiply the split form equation (9) by a test function
ϕ ∈ L2(Ω) and integrate over the domain

〈ut,ϕ〉Ω +
1

2

〈→
∇x ·

↔
f ,ϕ

〉
Ω

+
1

2

〈↔
A ·

→
∇xu,ϕ

〉
Ω

= 0. (36)

For the hybrid scheme, the test functions will be further restricted to subspaces of L2(Ω) depending
on the continuity of the coefficient matrices. The split form is needed to ensure stability on curvilinear
meshes [13],[17].

Normally at this point one would apply integration by parts to separate the boundary and interior
contributions in (36) prior to forming a CG approximation. Alternatively, for a DG approximation
one would subdivide the domain into elements and then apply integration by parts to each element’s
contribution. Instead, for the hybrid approximation, we first decompose the integrals over the full
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domain into the sum of contributions over each component subdomain, since the domain is composed
of subdomains with different properties. Thus, we write

Nmat∑
m=1

{
〈ut,ϕ〉Ωm +

1

2

〈→
∇x ·

↔
f ,ϕ

〉
Ωm

+
1

2

〈↔
A ·

→
∇xu,ϕ

〉
Ωm

}
= 0, (37)

which we re-write as
Nmat∑
m=1

{
〈ut,ϕ〉Ωm + rm

}
= 0. (38)

To avoid approximating functions that are discontinuous within elements by polynomials, we require
that subdomains be meshed so that subdomain boundaries are element boundaries. Since only the
boundaries of the subdomains will contain discontinuities, we see that ϕ ∈ H1 (Ωm)

⋂
L2(Ω).

For each subdomain, we separate the boundary and interior contributions in (37) by applying
multidimensional integration by parts. The second term becomes〈→

∇x ·
↔
f ,ϕ

〉
Ωm

=

∫
∂Ωm

ϕT
↔
f · →ndS−

〈↔
f ,

→
∇xϕ

〉
Ωm

. (39)

Similarly, the third term can be re-written as〈↔
A ·

→
∇xu,ϕ

〉
Ωm

=
〈→
∇xu,

↔
A(T )ϕ

〉
Ωm

=

∫
∂Ωm

ϕT
↔
f · →ndS−

〈
u,

→
∇x ·

↔
f (T ) (ϕ)

〉
Ωm

, (40)

where

↔
A(T ) =

 AT
1

AT
2

AT
3

 , ↔
f (T ) (ϕ) =

 AT
1 ϕ

AT
2 ϕ

AT
3 ϕ

 . (41)

When we substitute (39) and (40) into the components of (37) and re-order the terms,

rm =

∫
∂Ωm

ϕT
↔
f · →ndS− 1

2

{〈
u,

→
∇x ·

↔
f (T )(ϕ)

〉
Ωm

+
〈↔
f(u),

→
∇xϕ

〉
Ωm

}
. (42)

Now we subdivide the domain into conforming hexahedral elements, which may have curved faces.
Then (42) becomes the sum over all elements, which we group by subdomain in the sets Ωmh , m =
1, . . . , Nmat. There is no restriction on the number of elements per subdomain, as long as the global
mesh is conforming. Thus,

Nmat∑
m=1

∑
e∈Ωm

h

{
〈ut,ϕ〉e + rme

}
= 0, (43)

where

rme =

∫
∂Ωm∩∂e

ϕT
↔
f · →ndS− 1

2

{〈
u,

→
∇x ·

↔
f (T )(ϕ)

〉
e

+
〈↔
f(u),

→
∇xϕ

〉
e

}
. (44)

We see, then, that an element contributes a surface flux term (like in DG) at element faces that lie on
a subdomain (including physical) boundary. Away from a subdomain boundary, there are no surface
terms, as in a CG approximation.

Since the test function is allowed to be independent between subdomains as in a DG scheme
between elements, it follows that∑

e∈Ωm
h

{
〈ut,ϕ〉e + rme

}
= 0, m = 1, 2, . . . Nmat. (45)
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Equation (45) implies that the approximation is stiffness summed within subdomains. Coupling be-
tween elements on subdomain boundaries is done through the surface flux as in DG.

We evaluate the elemental contributions on the reference element E = [−1, 1]3 and so transform
the inner products element by element. Elements are mapped from E to an individual element e by
an isoparametric mapping

→
x =

→
Xe(

→
ξ), (46)

where
→
ξ = (ξ , η , ζ) =

(
ξ1 , ξ2 , ξ3

)
(47)

are the reference space coordinates.
Now let [27]

M =

Ja
1
1I Ja21I Ja31I

Ja12I Ja22I Ja32I

Ja13I Ja23I Ja33I

 , (48)

where [12]

Jain = −x̂i ·
→
∇ξ ×

(
Xl

→
∇ξXm

)
, i = 1, 2, 3, n = 1, 2, 3, (n,m, l) cyclic, (49)

and the J
→
ai are the volume weighted contravariant basis vectors. Then converting to reference space

(c.f. [27]),
→
∇x ·

↔
f =

1

J
→
∇ξ ·

(
MT↔

f
)

=
1

J
→
∇ξ ·

↔

f̃ =
1

J
→
∇ξ ·

(↔

Ãu
)

(50)

and

→
∇xu =

ux
uy
uz

 =
1

JM

uξ
uη
uζ

 =
1

JM
→
∇ξu, (51)

where J is the volume Jacobian and
↔

Ã = MT ↔
A is the block vector of the contravariant coefficient

matrices.
When we represent the volume terms on the reference element, the elemental contributions become

〈ut,ϕ〉e = 〈Jut,ϕ〉E (52)

and

rme =

∫
∂Ωm∩∂e

ϕT
↔
f · →ndS− 1

2

{〈
u,

→
∇ξ ·

↔

f̃ (T )(ϕ)
〉
E

+
〈↔
f(u),M

→
∇ξϕ

〉
E

}
. (53)

The surface integrals can be written in either physical or reference space. The relation between
physical and reference surface differentials is [27]

dSi =
∣∣∣J→
ai
∣∣∣ dξjdξk = J if dSiξ, (54)

where the face Jacobian is J if =
∣∣J→
ai
∣∣. We can write the normal surface flux in either reference

element,
↔

f̃ · n̂, or physical,
↔
f · →n, variables through

↔

f̃ · n̂i dSξ =
(
MT↔

f
)
· n̂i dSξ =

↔
f ·
(
Mn̂i

)
dSξ =

↔
f · →n

∣∣∣J→
ai
∣∣∣ dSξ =

↔
f · →ni dS. (55)

Therefore, ∫
∂E

↔

f̃ · n̂dSξ =

∫
∂e

↔
f · →ndS. (56)



10 David A. Kopriva and Gregor J. Gassner

With an abuse of notation in the surface integral, we write the elemental weak form for each
element in the subdomain Ωm as

rme =

∫
∂Ωm∩∂E

ϕT
↔

f̃ · n̂dSξ −
1

2

{〈
u,

→
∇ξ ·

↔

f̃ (T )(ϕ)
〉
E

+
〈↔
f(u),M

→
∇ξϕ

〉
E

}
. (57)

The boundary contribution appears only on those element faces that lie on the subdomain boundaries.
All faces internal to a subdomain are handled by the continuity of the test functions and solution
through the stiffness summation, (45).

Finally, we can write (57) in terms of the contravariant fluxes by moving M over to the other side
of the second inner product of (57),

rme =

∫
∂Ωm∩∂E

ϕT
↔

f̃ · n̂dSξ −
1

2

{〈
u,

→
∇ξ ·

↔

f̃ (T )(ϕ)
〉
E

+
〈↔
f̃(u),

→
∇ξϕ

〉
E

}
. (58)

3.1 Approximation of Functions and Integrals

We are now ready to approximate the equations, which we do by using function and integral approxi-
mations that are spectrally accurate [3]. For the spatial approximation, we represent functions of the
reference domain coordinates by polynomials of degree N or less, written as PN (E) ⊂ L2(E).

A basis for the polynomials on E is the tensor product of the one dimensional Lagrange basis

`l (s) =
N∏

i=0;i 6=l

s− si
sl − si

, (59)

with the property `l (sm) = δlm, l,m = 0, 1, 2, . . . , N . The points si, i = 0, 1, 2, . . . , N are the interpo-
lation points, whose locations will be the Legendre Gauss-Lobatto quadrature points.

With the Lagrange basis, we write a polynomial, U , in terms of its nodal values Uijk = U (ξi, ηj , ζk)
as an upper case letter, which for three space dimensions is

U =
N∑

i,j,k=0

Uijk`i(ξ)`j(η)`k(ζ). (60)

One and two dimensional interpolants are special cases of (60). We also write the interpolation oper-
ator, IN : L2(E)→ PN (E), as

IN (u) =
N∑

i,j,k=0

u (ξi, ηj , ζk)`i(ξ)`j(η)`k(ζ). (61)

Solutions and fluxes are approximated by polynomials of degree N . Thus,

u ≈ U ∈ PN (E)

↔

f̃ ≈
↔

F̃ (U) = IN
(↔

ÃU
)

=
N∑

i,j,k=0

↔

ÃUijk`i (ξ) `j (η) `k (ζ)

J ≈ J = IN (J ) .

(62)
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Furthermore, for constant state preservation we restrict the mapping
→
Xe to be isoparametric, i.e.,

→
Xe ∈ PN (E) [12]. The metric terms are then approximated by polynomials of degree N ,

Jain = −x̂i ·
→
∇ξ × IN

(
Xl

→
∇ξXm

)
, i = 1, 2, 3, n = 1, 2, 3, (n,m, l) cyclic. (63)

Surface integrals and inner products are approximated by Legendre Gauss-Lobatto quadratures.
We represent the one dimensional quadrature of a function g(s) as∫ 1

−1

g(s)ds ≈
N∑
i=0

g (si)wi =
N∑
i=0

giwi ≡
∫
N

gds, (64)

where the wi are the quadrature weights, which is exact if g ∈ P2N−1. By tensor product extension,
three dimensional volume integral approximations are∫

E,N

gdξdηdζ ≡
N∑

i,j,k=0

gijkwijk, (65)

where wijk ≡ wiwjwk. Also by extension, we have the discrete inner product approximation

〈U, V 〉N =
N∑

i,j,k=0

UijkVijkwijk ≈ 〈U, V 〉 . (66)

Surface integral approximations are represented as the shorthand notation∫
∂E,N

→
g · n̂dS =

N∑
i,j=0

wijg1 (ξ, ηi, ζj)
∣∣1
ξ=−1

+
N∑

i,j=0

wijg2 (ξi, η, ζj)
∣∣1
η=−1

+
N∑

i,j=0

wijg3 (ξi, ηj , ζ)
∣∣1
ζ=−1

≡
∫
N

g1dηdζ|1ξ=−1 +

∫
N

g2dξdζ|1η=−1 +

∫
N

g3dξdη|1ζ=−1.

(67)

With the shorthand representations, the Gauss-Lobatto quadrature satisfies the important sum-
mation by parts rule [16],[27],〈→

∇ξ ·
↔
F,V

〉
N

=

∫
∂E,N

↔
F · n̂V dS −

〈↔
F,

→
∇ξV

〉
N
, (68)

for any block vector of polynomials
↔
F ∈ PN and any state vector polynomial V ∈ PN . Equation (68)

is the discrete equivalent of (20).

3.2 The CG/DG-SEM Approximation

We replace fluxes in (58) by polynomials and integrals by quadratures, and restrict the test functions
to be continuous polynomials over each subdomain and piecewise continuous over the full domain,
giving

Rm
e =

∫
∂Ωm∩∂E,N

ϕT
↔

F̃ · n̂dSξ −
1

2

{〈
U,

→
∇ξ ·

↔

F̃(T )(ϕ)
〉
N

+
〈↔

F̃(U),
→
∇ξϕ

〉
N

}
. (69)
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Then over each subdomain,∑
e∈Ωm

h

{
〈JUt,ϕ〉N + Rm

e

}
= 0, m = 1, 2, . . . Nmat, (70)

and over the whole domain,
Nmat∑
m=1

∑
e∈Ωm

h

{
〈JUt,ϕ〉N + Rm

e

}
= 0. (71)

We also need to couple the elements across subdomain boundaries and apply boundary conditions
to the physical boundary integrals, which is done as usual with a numerical flux. When we replace
the subdomain boundary flux with the numerical flux, F∗, the CG/DG-SEM approximation of the
hyperbolic system on element, e, is

R[W ] =

∫
∂Ωm∩∂E,N

ϕTF∗ dSξ −
1

2

{〈
U,

→
∇ξ ·

↔

F̃(T )(ϕ)
〉
N

+
〈↔

F̃(U),
→
∇ξϕ

〉
N

}
, (72)

which is the “weak form” of the approximation.
The upwind numerical flux is found using the jump condition (13) and the upwind evaluation of

the characteristic variables, (30),

F∗ (UL,UR) = ÃLPL

[
W+

L
W−
∗

]
= ÃRPR

[
W+
∗

W−
R

]
= PLΛL

[
W+

L
W−
∗

]
= PRΛR

[
W+
∗

W−
R

]
,

(73)

where Ã =
↔

Ã · n̂ and the matrix P now contains the eigenvectors of the matrix Ã. When the coefficient
matrices are constant, or at the physical boundary, the numerical flux (73) reduces to the usual form

F∗ (UL,UR) =
ÃUL + ÃUR

2
+

1

2

∣∣∣Ã∣∣∣ (UL −UR) = Ã {{U}} − 1

2

∣∣∣Ã∣∣∣ JUK , (74)

where {{·}} is the average of the left and right states.
Finally, like DG, it is possible to construct alternate forms using summation by parts [27]. Applying

(68) to the two terms in braces in (72), gives us an equivalent strong form

R[S1] =

∫
∂Ωm∩∂E,N

ϕTF∗ dSξ −
∫
∂E,N

ϕT
↔

F̃ · n̂dSξ

+
1

2

{〈→
∇ξU,

↔

F̃(T )(ϕ)
〉
N

+
〈→
∇ξ ·

↔

F̃(U),ϕ
〉
N

}
.

(75)

But R[S1] is used only in the context of the global sums, (70) and (71). When summing over all
elements, the surface fluxes from the interiors of subdomains cancel due to continuity of the test
functions and normal flux, except at the physical and subdomain boundaries. Therefore, it is acceptable
to ignore those terms in the local representation except at subdomain boundaries, leaving a functionally

equivalent strong form

R[S] =

∫
∂Ωm∩∂E,N

ϕT
{

F∗ −
↔

F̃ · n̂
}

dSξ +
1

2

{〈→
∇ξU,

↔

F̃(T )(ϕ)
〉
N

+
〈→
∇ξ ·

↔

F̃(U),ϕ
〉
N

}
. (76)
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If, on the other hand, we only use summation by parts on the flux divergence term in (72), and
again realize that we can ignore interior surface integrals because they will cancel in the stiffness
summation, then we get the “directly-stable” form

R[DS] =

∫
∂Ωm∩∂E,N

ϕT
{

F∗ − 1

2

↔

F̃ · n̂
}

dSξ +
1

2

{〈→
∇ξU,

↔

F̃(T )(ϕ)
〉
N
−
〈↔

F̃(U),
→
∇ξϕ

〉
N

}
. (77)

Remark 3.1 We re-state for emphasis that spatial approximations R[W ], R[S] and R[DS] are not pre-
cisely equivalent as they are for a purely DG scheme [16], but are functionally so when used in the
stiffness sum (70). The surface terms left out of R[S] and R[DS] would cancel at CG interfaces, and
hence contribute nothing to the global sum. Since they are not necessary, we drop those terms both
in the presentation and in the implementation.

3.2.1 Two-Point Flux Form

Each of the functionally equivalent spatial approximations, (72), (75), (76), (77), presented so far
suggest that three derivative (matrix-vector) operations must be performed per space direction, one
each to compute the volume quadratures. For example,

∇ ·
↔

F̃
∣∣∣
ijk

=
N∑
n=0

F̃
(1)
njkDin +

N∑
n=0

F̃
(2)
inkDjn +

N∑
n=0

F̃
(3)
ijnDkn, (78)

where Dnm = `′n (sm) is the derivative matrix. Then if we select the test function to be `i`j`k indi-
vidually for each component (c.f. [15]),

〈→
∇ξ ·

↔

F̃(U), `i`j`k

〉
N

= wijk

{
N∑
n=0

F
(1)
njkDin +

N∑
n=0

F
(2)
inkDjn +

N∑
n=0

F
(3)
ijnDkn

}
. (79)

The other volume terms can be represented similarly in such a matrix-vector multiplication form [27].
If we add back the zero equal to the divergence of the coefficient matrices [17], the three terms

can be combined into a single matrix-vector differentiation of a two-point flux [27],

1

2

{〈→
∇ξU,

↔

F̃(T )(ϕ)
〉
N

+
〈→
∇ξ ·

↔

F̃(U),ϕ
〉
N

}
+

1

2

〈(→
∇ξ ·

↔

Ã
)

U,ϕ
〉
N

=
〈→
D · (

↔

F̃)#,ϕ
〉
N
, (80)

where the special divergence operation is

→
D · (

↔

F̃)#(ξ, η, ζ) ≡ 2
N∑
n=0

`′n(ξ)F̃#,1(ξ, η, ζ; ξn, η, ζ)

+ `′n(η)F̃#,2(ξ, η, ζ; ξ, ηn, ζ)

+ `′n(ζ)F̃#,3(ξ, η, ζ; ξ, η, ζn).

(81)

The two point flux itself can be written as the product of the average of two point values, for example,

F̃
#,1
(n,i)jk =

{{
Ã1
}}

(n,i)jk
{{U}}(n,i)jk. (82)

where

{{V }}(n,i),jk =
1

2

(
Vijk + Vnjk

)
, (83)



14 David A. Kopriva and Gregor J. Gassner

etc. is the two-point average operator. Similar formulas apply to the other components.
Using the two-point flux form, we get a form equivalent to the strong form, R[S] (76),

R[T ] =

∫
∂Ωm∩∂E,N

ϕT
{

F∗ −
↔

F̃ · n̂
}

dSξ +
〈→
D · (

↔

F̃)#,ϕ
〉
N
. (84)

We gather the functionally equivalent forms of the spatial discretization inTable 1.

Table 1 Functionally Equivalent CG/DG approximations to the spatial terms.

Form Approximation

Strong [S]

∫
∂Ωm∩∂E,N

ϕT
{↔
F̃∗ −

↔
F̃ · n̂

}
dSξ +

1

2

{〈
→
∇ξU,

↔
F̃(T )(ϕ)

〉
N

+

〈
→
∇ξ ·

↔
F̃(U),ϕ

〉
N

}
Weak [W]

∫
∂Ωm∩∂E,N

ϕT
↔
F̃∗ dSξ −

1

2

{〈
U,

→
∇ξ ·

↔
F̃(T )(ϕ)

〉
N

+

〈↔
F̃(U),

→
∇ξϕ

〉
N

}
Directly Stable [DS]

∫
∂Ωm∩∂E,N

ϕT
{↔
F̃∗ −

1

2

↔
F̃ · n̂

}
dSξ +

1

2

{〈
→
∇ξU,

↔
F̃(T )(ϕ)

〉
N

−
〈↔
F̃(U),

→
∇ξϕ

〉
N

}
Two-Point [T]

∫
∂Ωm∩∂E,N

ϕT
{↔
F̃∗ −

↔
F̃ · n̂

}
dSξ +

〈
→
D · (

↔
F̃)#,ϕ

〉
N

4 Properties of the Approximation

The approximation with elemental contributions listed in Table 1 is stable. Furthermore, the conser-
vative approximation, as defined in Def. 2.1, is globally conservative and constant state preserving for
curved hexahedral elements.

4.1 Stability

To show stability of the CG/DG-SEM, we set ϕ =
(
S−1

)T
S−1U in the form [DS], (77). The volume

terms immediately cancel, because〈
→
∇ξU,

↔
F (T )

((
S−1

)T
S−1U

)〉
N

=

〈
S

→
∇ξS−1U,

(
S−1↔

F (Us)
)T〉

N

=

〈
→
∇ξS−1U,

(
S−1↔

F (Us)S
)T〉

N

=
〈→
∇ξUs,

↔
Fs (Us)

〉
N
,

(85)

leaving only the subdomain boundary terms. The elemental contribution to the subdomain sum (70)
is therefore 〈

JUs
t ,U

s〉
N

+ Rm
e =

1

2

d

dt

∣∣∣∣Us
∣∣∣∣2
J,N

+

∫
∂Ωm∩∂E,N

Us,T

{
Fs,∗ − 1

2

↔

F̃s · n̂
}

dSξ (86)
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where ||Us||2J,N = 〈JUs,Us〉N .
Therefore, on each subdomain,

1

2

d

dt

∑
e∈Ωm

h

∣∣∣∣Us
∣∣∣∣2
J,N

+
∑
e∈Ωm

h

∫
∂Ωm∩∂E,N

Us,T

{
Fs,∗ − 1

2

↔

F̃s · n̂
}

dSξ = 0. (87)

When we continue and sum over all subdomains,

1

2

d

dt

Nmat∑
m=1

∑
e∈Ωm

h

∣∣∣∣Us
∣∣∣∣2
J,N

+

Nmat∑
m=1

∑
e∈Ωm

h

∫
∂Ωm∩∂E,N

Us,T

{
Fs,∗ − 1

2

↔

F̃s · n̂
}

dSξ = 0. (88)

As in the continuous problem, the interior subdomain interfaces combine as in a DG scheme so that

Nmat∑
m=1

∑
e∈Ωm

h

∫
∂Ω∩∂E,N

Us,T

{
Fs,∗ − 1

2

↔

F̃s · n̂
}

dSξ =−
∑

interiorDG
faces

∫
N

{r
Us,T

z
Fs,∗ − 1

2

s
Us,T

↔

F̃s · n̂
{}

dSξ

+
∑

boundary
faces

∫
N

Us,T

{
Fs,∗ − 1

2

↔

F̃s · n̂
}

dSξ.

(89)

Let us now define the discrete norm over the entire domain

∣∣∣∣Us
∣∣∣∣2
N

=

Nmat∑
m=1

∑
e∈Ωm

h

∣∣∣∣Us
∣∣∣∣2
J,N

. (90)

Then

1

2

d

dt

∣∣∣∣Us
∣∣∣∣2
N

= +
∑

interiorDG
faces

∫
N

{r
Us,T

z
Fs,∗ − 1

2

s
Us,T

↔

F̃s · n̂
{}

dSξ

−
∑

boundary
faces

∫
N

Us,T

{
Fs,∗ − 1

2

↔

F̃s · n̂
}

dSξ.

(91)

Comparing (91) with (34), we can state: The conservative CG/DG-SEM approximation is stable if

−Us,T

{
Fs,∗ − 1

2

↔

F̃s · n̂
}
≤ 1

2
gs,T

∣∣∣As,−
∣∣∣gs (92)

at physical boundary points, and the jump condition

QN ≡
r
Us,T

z
Fs,∗ − 1

2

s
Us,T

↔

F̃s · n̂
{
≤ Q (WL,WR) (93)

holds at points along the subdomain boundaries. For if (93) and (92) hold, then

d

dt

∣∣∣∣Us
∣∣∣∣2
N
≤ 2

∑
interiorDG

faces

∫
N

QdSξ +
∑

boundary
faces

∫
N

gs,T
∣∣∣As,−

∣∣∣gs dSξ, (94)

which is the discrete equivalent of the PDE bound (34).
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The required bounds (92) and (93) have been proved previously in [13] and [18]. The physical
boundary bound, (92), was proved in another form in [13]. We include a simpler proof in Appendix
A, where we show that

−Us,T

{
↔

F̃s,∗ − 1

2

↔

F̃s · n̂
}

= −1

2
(Ūs

L − ḡs)
2

+
1

2
ḡs,2 − 1

2
Us
LA

s,+Us
L ≤

1

2
gs,T

∣∣∣As,−
∣∣∣gs, (95)

where Ū ≡
√
|As,−|U, and ḡs is defined similarly. The bound (93) was proved in [18], which showed

that

QN = Q(WL,WR)−
(
W̄+
∗ − W̄+

R

)2 − (W̄−
∗ − W̄−

L

)2
≤ Q(WL,WR), (96)

where W̄± =
√∣∣Λ̄±∣∣W±.

Remark 4.1 The approximation of the nonconservative form of the system (14) with the nonconser-
vative interface leads to a stronger condition like (35). In that case, the L2 norm is replaced by the
B-weighted norm, and the interface condition with continuous coefficient matrices

r
Us,T

z
Fs,∗ − 1

2

s
Us,T

↔

F̃s · n̂
{

= −1

2

q
UsyT

∣∣∣Ãs
∣∣∣ qUsy 6 0 (97)

was shown in [8]. Then
d

dt

∣∣∣∣Us
∣∣∣∣2
B,N

≤
∑

boundary
faces

∫
N

gs,T
∣∣∣As,−

∣∣∣gs dSξ, (98)

which is the discrete equivalent of the PDE bound (35).

4.2 Conservation

The approximation of the conservative system (Def. 2.1) is globally conservative in the sense that the
total state changes only due to flux through the physical boundary. We show conservation with form

[W]. Let ϕ = 1. Then
→
∇ξϕ = 0 and

→
∇ξ ·

↔

F̃(T )(ϕ) =
→
∇ξ ·

↔

Ã = 0. Then all three volume terms vanish.
Summing over all subdomains and elements, and using the fact that the numerical flux is continuous
at subdomain boundaries,

d

dt

∑
e

∫
E

JUdΩ =
∑
e

∫
∂Ω∩∂E,N

F∗ dSξ. (99)

4.3 Constant State Preservation

In wave propagation problems, especially, it is important that spurious waves are not generated by
the grid and element shapes. In particular, if the solution state is constant, its time derivative should
be zero, provided that the constant states satisfy the Rankine-Hugoniot (conservation) conditions at
the subdomain boundaries.

We use the strong form [S] of the spatial approximation, reproduced here,

R[S] =

∫
∂Ωm∩∂E,N

ϕT
{↔

F̃∗ −
↔

F̃ · n̂
}

dSξ +
1

2

{〈→
∇ξU,

↔

F̃(T )(ϕ)
〉
N

+
〈→
∇ξ ·

↔

F̃(U),ϕ
〉
N

}
(100)
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to show that a constant state is preserved. If the state is constant within a subdomain Ωm, U = Cm,
the gradient is zero so immediately the first volume term,〈→

∇ξCm,
↔

F̃(T )(ϕ)
〉
N

= 0. (101)

The divergence of the contravariant flux for the constant state is (
→
∇ξ ·MT )

↔
AmCm, where we have

explicitly expanded the contravariant coefficient matrix for the subdomain Ωm. Then〈→
∇ξ ·

↔

F̃(U),ϕ
〉
N

=
〈

(
→
∇ξ ·MT )

↔
AmCm,ϕ

〉
N
. (102)

If the metric terms are computed isoparametrically as in (63), then
→
∇ξ ·M = 0 [12], and the term

(102) also vanishes. Otherwise, this term is non-zero.
Lastly, the subdomain surface terms vanish if the Rankine-Hugoniot (conservative) conditions,

↔

F̃∗ (Um1 ,Um2) =
↔

Ãm1 · n̂Um1 = −
↔

Ãm2 · n̂Um2 (103)

hold for the constant states in subdomains Ωm1 and Ωm2 on either side of the interface. For then, in
Ωm1

↔

F̃∗ −
↔

F̃ · n̂ =
↔

Ãm1 · n̂Um1 −
↔

Ãm1 · n̂Um1 = 0 (104)

and similarly in Ωm2 .
Summing over all elements and subdomains, and remembering that the form [S] has dropped the

non-subdomain face contributions that cancel in the stiffness summation,

Nmat∑
m=1

∑
e∈Ωm

h

〈JUt,ϕ〉N = 0. (105)

The test functions are independent at points interior to an element and at subdomain interface points,
so for those points, it is immediate that Ut|ijk = 0 at any such point ijk. Similarly, at shared points,

Nmat∑
m=1

∑
e∈Ωm

h

〈JUt,ϕ〉N =

 ∑
shared

interface points

Jijkwijkϕijk

 Ut|shared = 0, (106)

so the time derivative is also zero at shared CG points, and the time derivative of the solution state
is zero at all points in all elements.

5 Implementation Notes

The implementation differs from DG because of stronger coupling between the elements due to conti-
nuity of the approximate solution and test functions. It can be split between element interior points
and element face points. Interior points are decoupled, for we can choose ϕ = `i(ξ)`j(η)`k(ζ) at those
points. Element face points on subdomain boundaries are treated as in a DG approximation and are
coupled through the numerical flux. Face points in the interior of a subdomain are coupled through
stiffness summation.

Although the four forms listed in Table 1 are functionally equivalent, we implement the two-
point flux form since it requires only one matrix vector multiplication in each direction to compute
the divergence. Using the two point flux form, we can write down the spatial part of the elemental
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contribution to the global sum by replacing the test function with the local nodal basis functions,
giving

Rijk =

∫
∂Ωm∩∂E,N

`i`j`k

{↔

F̃∗ −
↔

F̃ · n̂
}

dSξ +
〈→
D · (

↔

F̃)#, `i`j`k

〉
N
. (107)

When we evaluate the quadratures we get the explicit representations of the pointwise values of
Rijk [15]. The boundary terms are non-zero only at physical or subdomain boundary nodes so we
introduce a function χijk that is one at physical boundary and subdomain interface points and zero
otherwise. Then

Rijk =

[{
F̃∗Njk − F̃Njk · ξ̂

}
δiN wjk χNjk −

{
F̃∗0jk − F̃0jk · ξ̂

}
δi0 wjk χ0jk + wijk

N∑
n=0

2F̃#,1
(n,i)jkDin

]

+

[{
F̃∗iNk − F̃iNk · η̂

}
δjN wik χiNk −

{
F̃∗i0k − F̃i0k · η̂

}
δj0 wik χi0k + wijk

N∑
n=0

2F̃#,2
i(n,j)kDjn

]

+

[{
F̃∗ijN − F̃ijN · ζ̂

}
δkN wij χijN −

{
F̃∗ij0 − F̃ij0 · ζ̂

}
δ0k wij χij0 + wijk

N∑
n=0

2F̃#,3
ij(n,k)Dkn

]
.

(108)

The time derivative term is 〈
JUt, `i`j`k

〉
= JijkU̇ijkwijk, (109)

and since element interior and DG face points are decoupled, at those points

U̇ijk = − 1

Jijkwijk
Rijk. (110)

Element faces inside a subdomain are coupled by stiffness summation. The solution value is con-
tinuous and the test function is taken to be one at a shared point and zero everywhere else. Then all
elements sharing that point contribute both in the time derivative term and the space approximation
terms. For a particular Lagrange polynomial `∗ that is one at a given point (i, j, k) = ∗ and zero
everywhere else, ∑

e

U̇e
∗J
e
∗w∗ =

∑
e

Re
∗. (111)

Since the solution value is continuous among all the elements at the point, we can factor that out of
the sum on the left so

U̇∗ =

∑
eRe
∗∑

e J
e∗w∗

. (112)

The sum will contain contributions only from the elements that contribute to the point.
Finally, the equations (110) and (112) are integrated in time with an explicit high order Runge-

Kutta method, which has a typical CFL type restriction on the step size.

6 Examples

We present three examples comparing the use of CG, DG and the hybrid approach for the propagation
of waves through single and multiple media. In the first example, we compute waves on a Cartesian
mesh with a single material and demonstrate spectral accuracy for all three approaches. The second
example is computed on domain with curved elements. The final example demonstrates spectral
accuracy for plane wave reflection at a material interface.
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6.1 Planewave Propagation on a Cartesian Mesh

In the first example we solve the acoustic wave equation in the split form (9) with the coefficient
matrices (2) in two space dimensions on the domain Ω = [−5, 5]2. The mesh consists of 20 elements
of equal size in each direction. Time steps in all examples were chosen small enough so that the error
is dominated by the spatial approximation.

The exact plane wave solution to the system is

u = aψ
(→
k · →x− ω(t− t0)

) 1
kx
ρc
ky
ρc

 , (113)

where ψ is a given wave function, a is the amplitude,
→
k is the wavevector, and ω is the frequency. We

present results for ρ = 1 and c = 1, a = 1,
→
k =

(√
3
2 , 12

)
, ω = 5π/2 and, t0 = 3. For the wave function,

we choose the wavepacket

ψ(s) = sin(ωs)e−s
2/(ωσ)2 , (114)

with σ2 = −(MT )2/(4 ln(10−4)), where M = 4 is the number of modes in the significant part of the
envelope and T = 2π/ω is the period.

Results for pure CG, pure DG, and a CG/DG approximation are shown in Figs. 2 and 3. In the
case of the hybrid approximation, all interfaces are CG except along the line x = 0, where DG is
applied, even though the properties are continuous there. Fig. 2 shows solution contours for the CG
solution.

Error convergence at time t = 5 is shown in Fig. 3. The hybrid CG/DG mesh produces the same
error as the CG to four digits. Most important to note is that the CG approximation shows an
even-odd convergence behavior, whereas the full DG approximation, with an upwind numerical flux
at all element interfaces, does not in this example. Note, however, that DG can also exhibit such
behavior when using the central flux [10]. For all the approximations the error decay is exponential,
and doubling the number of nodes in each direction decreases the error by about three orders of
magnitude.

6.2 Planewave Propagation on a Curved Element Mesh

We compute the second example on a non-Cartesian mesh with curved elements. This time, we choose
ψ to be a sine function. Contours of p from the CG approximation are shown in Fig. 4, overset on the
spectral element mesh with internal degrees of freedom.

We show the spectral error convergence on the non-Cartesian mesh in Fig. 5. As in the previous
example, the CG approximation shows even-odd behavior whereas the DG does not, though not to as
pronounced an effect. Doubling the polynomial order from six to 12 decreases the error by over five
orders of magnitude.

6.3 Constant State Preservation

We demonstrate the expected constant state preservation using the curved element grid shown in
Fig. 4, where the curved circular boundaries are approximated by polynomials of order five. For that
geometry, the approximation is isoparametric for N = 5, and so the metric identities hold discretely
for N ≥ 5 [12].
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Fig. 2 Contours of p for the CG approximation to (113) on the Cartesian mesh at time t = 4.
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Fig. 3 Convergence of DG, CG and hybrid approximations for wavepacket convergence on a Cartesian mesh
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Fig. 4 Contours of p for the CG approximation to a sinusoid on a non-Cartesian mesh with curved elements
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Fig. 5 Convergence of DG and CG for the non-Cartesian mesh
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Fig. 6 Convergence of the CG approximation on a constant state solution and the mesh of Fig. 4

We plot the maximum error for a constant state as a function of polynomial order in Fig. 6. As
expected, the error is non-zero when the boundary approximation is superparametric. As soon as the
geometry and solution approximation orders match, the error drops to rounding error levels.

6.4 Wave Scattering at a Material Interface

In the final example, we show exponential convergence for the hybrid CD/DG approximation of wave
scattering at a material interface as sketched in Fig. 7.

⃗k t

⃗k i

⃗k r

̂x

ρL, cL ρR, cR

Fig. 7 Geometry of wave scattering at a plane material interface
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Table 2 Parameters for Plane Wave Reflection Problem

Parameter M ω kix kiy ρL ρR cL cR t0

Value 4 5π/2 0.5
√

3/2 1 0.4 1 0.7 3

The exact solution is the sum of incident, reflected and transmitted waves. With the incident
wavevector defined to be

→
ki =

ω

cL

(
kixx̂+ kiy ŷ

)
, (115)

the reflected and transmitted wavevectors are

→
kr =

ω

cL

(
−kixx̂+ kiy ŷ

)
→
kt =

ω

cR

√1−
(
cR
cL

)2 (
kiy
)2
x̂+

cR
cL
kiy ŷ

 . (116)

The corresponding exact amplitudes are

ar

ai
=

1

J

(
ρRcRk

t
x/k

t − ρLcLkix/ki
)
,

at

ai
=

1

J

(
ρLcLk

r
x/k

r − ρRcLkix/ki
)
,

(117)

where k = |k|, and
J = −ρRcRktx/kt + ρLcLk

r
x/k

r. (118)

Then each component of the solution has the form (113) with the appropriate amplitude and wavevec-
tor.

We compute the solution on the square domain Ω = [−5, 5]2 with the material interface at x = 0.
The mesh is Cartesian with 20 equal size elements in each direction. Other parameters for the problem
are shown in Table 2.

Fig. 8 shows the contours of p at time t = 5 for N = 10. Clearly seen at the material interface is
the solution jump, which is where the DG approximation is applied. Exponential convergence of the
error is shown in Fig. 9, where increasing the polynomial order from five to ten decreases the error by
over three orders of magnitude.

Regarding stability, we plot the energy behavior measured as the L2 norm as a function of time
in Fig. 10. As expected from (34) and (94), the energy of the continuous and discrete problem have
the same behavior and is not bounded by the intitial value. Nevertheless the L2 energy is bounded
for both and vanishes as the waves exit the domain.
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Fig. 8 Contours of p for the transmission and reflection of a wavepacket at a material interface using the hybrid
CG/DG approximation
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Fig. 9 Convergence of the hybrid CG/DG approximation for scattering at a material interface
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Fig. 10 Time variation of the L2 energy for the scattering problem shown in Fig. 8

7 Summary

We have presented a stable, conservative, constant-state preserving spectral element method for
isoparametric curved quadrilateral or hexahedral elements. It is a hybrid continuous and discontinuous
Galerkin method where faces along subdomain boundaries use a DG numerical flux and otherwise
use a continuous Galerkin ansatz. The hybrid approach allows the strengths of each method to be
exploited. Numerical experiments show that the method is spectrally convergent for continuous and
for discontinuous solutions when the discontinuities fall along element boundaries.
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A Proof of Physical Boundary Dissipation

We show that (92) holds. As for the continuous problem, let As =
↔
Ãs · n̂ be the normal coefficient matrix. The

physical boundary can be viewed as being between two identical media so the numerical flux reduces to the standard
upwind flux (74),

Fs,∗ (UL,UR) = As,+UL + As,−UR =
1

2
(FsL + FsR)−

1

2
|As| (UR −UL) . (119)

Then

Fs,∗ −
1

2

↔
F̃s · n̂ =

1

2
As (UL + UR)−

1

2
|As| (UR −UL)−

1

2
AsUL =

1

2
(As − |As|)UR +

1

2
|As|UL. (120)

Since Us is the value taken from the interior, i.e. UL,

Us,T

{
Fs,∗ −

1

2

↔
F̃s · n̂

}
= ULAs,−UR +

1

2
UL |As|UL (121)
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But |As| = As,+ −As,−, so

Us,T

{
Fs,∗ −

1

2

↔
F̃s · n̂

}
= ULAs,−UR +

1

2
ULAs,+UL −

1

2
ULAs,−UL. (122)

Also, As,− = −
∣∣As,−∣∣, so

Us,T

{
Fs,∗ −

1

2

↔
F̃s · n̂

}
= −UL

∣∣As,−∣∣UR +
1

2
UL

∣∣As,−∣∣UL +
1

2
ULAs,+UL (123)

The last two terms are non-negative.

To simplify the next few steps, we define Ū ≡
√∣∣As,−∣∣U. Then

Us,T

{
Fs,∗ −

1

2

↔
F̃s · n̂

}
=

1

2

(
ŪL

)2 − ŪLŪR +
1

2
ULAs,+UL. (124)

Completing the square,

Us.T

{↔
F̃s,∗ −

1

2

↔
F̃s · n̂

}
=

1

2

(
ŪL − ŪR

)2 − 1

2

(
ŪR

)2
+

1

2
ULA+UL. (125)

Replacing the external state ŪR with a boundary condition ḡ,

Us,T

{↔
F̃s,∗ −

1

2

↔
F̃s · n̂

}
=

1

2

(
ŪL − ḡ

)2 − 1

2
ḡ2 +

1

2
ULAs,+UL. (126)

Therefore,

−Us,T

{↔
F̃s,∗ −

1

2

↔
F̃s · n̂

}
≤

1

2
ḡ2. (127)

When we return to the original variables, we get the desired result, (92).
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