Skip to main content
Log in

Development of Pressure-Robust Discontinuous Galerkin Finite Element Methods for the Stokes Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Pressure-robustness is an essential demand for the incompressible fluid simulation. In this paper, we develop the enhanced discontinuous Galerkin (DG) finite element methods for solving Stokes equations in the primary velocity-pressure formulation to achieve pressure-robustness. The velocity reconstruction operator has been designed for discontinuous functions and utilized to modify the external source assembling. The new schemes stay almost the same as that in the existing DG schemes but only differ for the source terms. The conforming discontinuous Galerkin and symmetric interior penalty DG have been employed to demonstrate the enhancement. Optimal-order error estimates are established for the corresponding numerical approximation in various norms. Several numerical experiments are performed to validate our theoretical conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Taweel, A., Wang, X.: A note on the optimal degree of the weak gradient of the stabilizer free weak Galerkin finite element method. Appl. Numer. Math. 150, 444–451 (2020)

    Article  MathSciNet  Google Scholar 

  2. Brennecke, C., Linke, A., Merdon, C., Schöberl, J.: Optimal and pressure-independent \(L^2\) velocity error estimates for a modified Crouzeix–Raviart Stokes element with BDM reconstructions. J. Comput. Math. 33, 191–208 (2015)

    Article  MathSciNet  Google Scholar 

  3. Brezzi, F., Boffi, D., Demkowicz, L., Durán, R.G., Falk, R.S., Fortin, M.: Mixed finite elements, compatibility conditions, and applications. Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 26–July 1, 2008. Springer, Berlin, Heidelberg (2008)

  4. Brezzi, F., Falk, R.S.: Stability of higher-order Hood–Taylor methods. SIAM J. Numer. Anal. 28, 581–590 (1991)

    Article  MathSciNet  Google Scholar 

  5. Chen, L., Wang, M., Zhong, L.: Convergence analysis of triangular MAC schemes for two dimensional Stokes equations. J. Sci. Comput. 63, 716–744 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74, 1067–1095 (2005)

    Article  MathSciNet  Google Scholar 

  7. Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. J. Sci. Comput. 31, 61–73 (2007)

    Article  MathSciNet  Google Scholar 

  8. Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. ESAIM: Mathematical Modelling and Numerical Analysis–Modélisation Mathématique et Analyse Numérique 7, 33–75 (1973)

  9. Falk, R., Neilan, M.: Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal. 51, 1308–1326 (2013)

    Article  MathSciNet  Google Scholar 

  10. Girault, V., Raviart, P.: Finite Element Methods for the Navier-Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)

    Book  Google Scholar 

  11. Gunzburger, M.D.: Finite Element Methods for Viscous Incompressible Flows. Practice and Algorithms. A Guide to Theory, Academic Press, San Diego (1989)

    MATH  Google Scholar 

  12. Guzmán, J., Neilan, M.: Conforming and divergence free Stokes elements on general triangular meshes. Math. Comput. 83, 15–36 (2014)

    Article  MathSciNet  Google Scholar 

  13. Guzmán, J., Neilan, M.: Conforming and divergence-free Stokes elements in three dimensions. IMA J. Numer. Anal. 34, 1489–1508 (2014)

    Article  MathSciNet  Google Scholar 

  14. Hansbo, P., Larson, M.G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsches method. Comput. Methods Appl. Mech. Eng. 191, 1895–1908 (2002)

    Article  MathSciNet  Google Scholar 

  15. Hood, P., Taylor, C.: Numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids 1, 1–28 (1973)

    Article  MathSciNet  Google Scholar 

  16. Jenkins, E., John, V., Linke, A., Rebholz, L.: On the parameter choice in grad-div stabilization for the Stokes equations. Adv. Comput. Math. 40, 491–516 (2014)

    Article  MathSciNet  Google Scholar 

  17. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.: On the divergence constraint in mixed finite element mehtods for incompressible flows. SIAM Review

  18. Lederer, P.: Pressure-robust discretizations for Navier-Stokes equations: Divergence-free reconstruction for Taylor–Hood elements and high order Hybrid Discontinuous Galerkin methods, master’s thesis, Vienna Technical University (2016)

  19. Lederer, P., Schöberl, J.: Polynomial robust stability analysis for h(div)-conforming finite elements for the stokes equations. IMA J. Numer. Anal. 38, 1832–1860 (2018)

    Article  MathSciNet  Google Scholar 

  20. Linke, A.: A divergence-free velocity reconstruction for incompressible flows. C. R. Math. Acad. Sci. Paris 350, 837–840 (2012)

    Article  MathSciNet  Google Scholar 

  21. Linke, A.: On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng. 268, 782–800 (2014)

    Article  MathSciNet  Google Scholar 

  22. Linke, A., Matthies, G., Tobiska, L.: Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors. ESAIM : M2AN 50, 289–309 (2016)

    Article  MathSciNet  Google Scholar 

  23. Mu, L.: Pressure robust weak Galerkin finite element methods for Stokes problems. SIAM J. Sci. Comput. 42, B608–B629 (2020)

    Article  MathSciNet  Google Scholar 

  24. Mu, L., Wang, X., Ye, X.: A modified weak Galerkin finite element method for the Stokes equations. J. Comput. Appl. Math. 275, 79–90 (2015)

    Article  MathSciNet  Google Scholar 

  25. Mu, L., Ye, X., Zhang, S.: A Stabilizer free, pressure robust, and superconvergence weak Galerkin finite element method for the stokes equations on polytopal mesh. SIAM J. Sci. Comput. (Preprint)

  26. Olshanskii, M., Olshanskii, A.: Grad-div stabilization for Stokes equations. Math. Comput. 73, 1699–1718 (2004)

    Article  MathSciNet  Google Scholar 

  27. Olshanskii, M., Lube, G., Heister, T., Löwe, J.: Grad-div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 198, 3975–3988 (2009)

    Article  MathSciNet  Google Scholar 

  28. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Society for Industrial and Applied Mathematics (2008)

  29. Scott, L., Vogelius, M.: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. ESAIM:M2AN 19, 111–143 (1985)

    Article  MathSciNet  Google Scholar 

  30. Wang, J., Ye, X.: New finite element methods in computational fluid dynamics by H(div) elements. SIAM J. Numer. Anal. 45, 1269–1286 (2007)

    Article  MathSciNet  Google Scholar 

  31. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comput. 83, 2101–2126 (2014)

    Article  MathSciNet  Google Scholar 

  32. Ye, X., Zhang, S.: A conforming discontinuous Galerkin finite element method. Int. J. Numer. Anal. Model. 17, 110–117 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Ye, X., Zhang, S.: A conforming discontinuous Galerkin finite element method: part II. Int. J. Numer. Anal. Model. 17, 281–296 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Ye, X., Zhang, S.: A conforming discontinuous Galerkin finite element method for the Stokes problem on polytopal meshes. Int. J. Numer. Meth. Fluids 93, 1913–1928 (2021)

    Article  MathSciNet  Google Scholar 

  35. Zhang, S.: Divergence-free finite elements on tetrahedral grids for \(k\ge 6\). Math. Comput. 80, 669–695 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Mu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the second author was supported in part by National Science Foundation Grant DMS-1620016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, L., Ye, X. & Zhang, S. Development of Pressure-Robust Discontinuous Galerkin Finite Element Methods for the Stokes Problem. J Sci Comput 89, 26 (2021). https://doi.org/10.1007/s10915-021-01634-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01634-5

Keywords

Mathematics Subject Classification

Navigation