Skip to main content

Advertisement

Log in

Local Energy Dissipation Rate Preserving Approximations to Driven Gradient Flows with Applications to Graphene Growth

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a paradigm for developing local energy dissipation rate preserving (LEDRP) approximations to general gradient flow models driven by source terms. In driven gradient flow models, the deduced energy density transport equation possesses an indefinite source. Local energy-dissipation-rate preserving algorithms are devised to respect the mathematical structure of both the driven gradient flow model and its deduced energy density transport equation. The LEDRP algorithms are also global energy-dissipation-rate preserving under proper boundary conditions such as periodic boundary conditions. However, the contrary may not be true. We then apply the paradigm to a phase field model for growth of a graphene sheet to produce a set of LEDRP algorithms. Numerical refinement tests are conducted to confirm the convergence property of the new algorithms and simulations of graphene growth are demonstrated to benchmark against existing results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Allen, S.M., Cahn, J.W.: Ground state structures in ordered binary alloys with second neighbor interactions. Acta Metall. 20, 423 (1972)

    Article  Google Scholar 

  2. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  MATH  Google Scholar 

  3. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford University Press, Oxford (1986)

    Google Scholar 

  4. Heo, T.W., Colas, K.B., Motta, A.T., Chen, L.Q.: A phase-field model for hydride formation in polycrystalline metals: application to \(\delta \)-hydride in zirconium alloys. Acta Mater. 181, 262–277 (2019)

    Article  Google Scholar 

  5. Doi, M.: Onsager’s variational principle in soft matter. J. Phys. Condens. Matter 23, 284118 (2011)

  6. Yang, X., Forest, M.G., Wang, Q.: Near equilibrium dynamics and one-dimensional spatial-temporal structures of polar active liquid crystals. Chin. Phys. B 23, 118701 (2014)

    Article  Google Scholar 

  7. Yang, X., Li, J., Forest, M.G., Wang, Q.: Hydrodynamic theories for flows of active liquid crystals and the generalized Onsager principle. Entropy 18, 202 (2016)

    Article  MathSciNet  Google Scholar 

  8. Wang, Q.: Generalized Onsager principle and its application. In: Frontiers and Progress of Current Soft Matter Research

  9. Michely, T., Krug, J.: Islands, Mounds, and Atoms: Patterns and Processes in Crystal Growth Far from Equilibrium. Springer, Berlin (2004)

    Book  Google Scholar 

  10. Zhuang, J., Zhao, W., Qiu, L., Xin, J., Dong, J., Ding, F.: Morphology evolution of graphene during chemical vapor deposition growth: a phase-field theory simulation. J. Phys. Chem. C 123, 9902–9908 (2019)

    Article  Google Scholar 

  11. Mattevi, C., Kim, H., Chhowalla, M.: A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21, 3324 (2011)

    Article  Google Scholar 

  12. Hao, Y., Bharathi, M.S., Wang, L., Liu, Y., Chen, H., et al.: The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720–723 (2013)

    Article  Google Scholar 

  13. Wu, B., Geng, D., Xu, Z., Guo, Y., Huang, L., Xue, Y., Chen, J., Yu, G., Liu, Y.: Self-organized graphene crystal patterns. NPG Asia Mater. 5, e36 (2013)

    Article  Google Scholar 

  14. Wu, B., Geng, D., Xu, Z., Guo, Y., Huang, L., Xue, Y., Chen, J., Yu, G., Liu, Y.: Phase-field modeling of two-dimensional crystal growth with anisotropic diffusion. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 88, 052409 (2013)

    Article  Google Scholar 

  15. Shahil, K.M.F., Balandin, A.A.: Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 152(15), 1331–1340 (2012)

    Article  Google Scholar 

  16. Avouris, P., Xia, F.: Graphene applications in electronics and photonics. Mrs Bull. 37(12), 1225 (2012)

    Article  Google Scholar 

  17. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010)

    Article  Google Scholar 

  18. Jo, G., Choe, M., Lee, S., Park, W., Kahng, Y.H., Lee, T.: The application of graphene as electrodes in electrical and optical devices. Nanotechnology 23(11), 112001 (2012)

    Article  Google Scholar 

  19. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  Google Scholar 

  20. Song, J., Kam, F.Y., Png, R.Q., Seah, W.L., Zhuo, J.M., Lim, G.K., Ho, P.K.H., Chua, L.L.: A general method for transferring graphene onto soft surfaces. Nat. Nanotechnol. 8, 356–362 (2013)

    Article  Google Scholar 

  21. Meca, E., Lowengrub, J., Kim, H., Mattevi, C., Shenoy, V.B.: Epitaxial graphene growth and shape dynamics on copper: phase- field modeling and experiments. Nano Lett. 13, 5692–5697 (2013)

    Article  Google Scholar 

  22. Sun, L., Lin, L., Zhang, J., Wang, H., Peng, H., Liu, Z.: Visualizing fast growth of large single-crystalline graphene by tunable isotopic carbon source. Nano Res. 10, 355–363 (2016)

    Article  Google Scholar 

  23. Zhang, Y., Zhang, L., Kim, P., Ge, M., Li, Z., Zhou, C.: Vapor trapping growth of single-crystalline graphene flowers: synthesis, morphology, and electronic properties. Nano Lett. 12, 2810–2816 (2012)

    Article  Google Scholar 

  24. Wofford, J.M., Nie, S., McCarty, K.F., Bartelt, N.C., Dubon, O.D.: Graphene islands on cu foils: the interplay between shape, orientation, and defects. Nano Lett. 10, 4890–4896 (2010)

    Article  Google Scholar 

  25. Rasool, H.I., Song, E.B., Mecklenburg, M., Regan, B.C., Wang, K.L., Weiller, B.H., Gimzewski, J.K.: Atomic-scale characterization of graphene grown on copper (100) single crystals. J. Am. Chem. Soc. 133, 12536–12543 (2011)

    Article  Google Scholar 

  26. Wang, H., Wang, G., Bao, P., Yang, S., Zhu, W., Xie, X., Zhang, W.: Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. J. Am. Chem. Soc. 134, 3627–3630 (2012)

    Article  Google Scholar 

  27. Yokoyama, E., Sekerka, R.F.: A numerical study of the combined effect of anisotropic surface tension and interface kinetics on pattern formation during the growth of two-dimensional crystals. J. Cryst. Growth 125, 389–403 (1992)

    Article  Google Scholar 

  28. Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30(6), 1622–1663 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49(3), 945–969 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Guan, Z., Lowengrub, J.S., Wang, C., Wise, S.M.: Second order convex splitting schemes for periodic nonlocal Cahn–Hilliard and Allen–Cahn equations. J. Comput. Phys. 277, 48–71 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Christlieb, A., Jones, J., Promislow, K., Wetton, B., Willoughby, M.: High accuracy solutions to energy gradient flows from material science models. J. Comput. Phys. 257, 193–215 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst 28(4), 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Guillén-González, F., Tierra, G.: On linear schemes for a Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, X., Ju, L.: Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. 315, 691–712 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, X., Zhao, J., He, X.: Linear, second order and unconditionally energy stable schemes for the viscous Cahn–Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J. Comput. Appl. Math. 343, 80–97 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang, X.: Numerical approximations for the Cahn–Hilliard phase field model of the binary fluid–surfactant system. J. Sci. Comput. 74(3), 1533–1553 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhao, X., Wang, Q.: A second order fully-discrete linear energy stable scheme for a binary compressible viscous fluid model. J. Comput. Phys. 395, 382–409 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gong, Y., Zhao, J.: Energy-stable Runge–Kutta schemes for gradient flow models using the energy quadratization approach. Appl. Math. Lett. 94, 224–231 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhao, J., Yang, X., Gong, Y., Wang, Q.: A novel linear second order unconditionally energy stable scheme for a hydrodynamic Q-tensor model of liquid crystals. Comput. Method. Appl. Mech. 318, 803–825 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, J., Zhao, J., Wang, Q.: Energy and entropy preserving numerical approximations of thermodynamically consistent crystal growth models. J. Comput. Phys. 382, 202–220 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhao, J., Yang, X., Gong, Y., Zhao, X., Yang, X., Li, J., Wang, Q.: A general strategy for numerical approximations of non-equilibrium models-part I: thermodynamical systems. Int. J. Numer. Anal. Model. 15(6), 884–918 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56(5), 2895–2912 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhao, Y., Li, J., Zhao, J., Wang, Q.: A linear energy and entropy-production-rate preserving scheme for thermodynamically consistent crystal growth models. Appl. Math. Lett. 98, 142–148 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Gong, Y., Zhao, J., Wang, Q.: Arbitrarily high-order unconditionally energy stable SAV schemes for gradient flow models. Comput. Phys. Commun. 249, 107033 (2020)

    Article  MathSciNet  Google Scholar 

  48. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, Berlin (2006)

    MATH  Google Scholar 

  49. Hong, Q., Li, J., Wang, Q.: Supplementary variable method for structure-preserving approximations to partial differential equations with deduced equations. Appl. Math. Lett. 110, 106576 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sun, S., Li, J., Zhao, J., Wang, Q.: Structure-preserving numerical approximations to thermodynamically consistent non-isothermal models of binary viscous fluid flows. J. Sci. Comput. 83, 50 (2020)

    Article  Google Scholar 

  51. Cheng, Q., Liu, C., Shen, J.: A new Lagrange multiplier approach for gradient flows. Comput. Method Appl. Mech. 367, 113070 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  52. Marsden, J.E., Patrick, G.W., Shkoller, S.: Multisymplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys. 199, 351–395 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  53. Bridges, T.J.L Multi-symplectic structures and wave propagation. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol 121, pp 147–190. Cambridge University Press (1997)

  54. Reich, S.: Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157, 473–499 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  55. Furihata, D.: Finite difference schemes for \(\frac{\partial u}{\partial t} = (\frac{\partial }{\partial x})^{\alpha }\frac{\delta G}{\delta u}\) that inherit energy conservation or dissipation property. J. Comput. Phys. 156, 181–205 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  56. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method. J. Comput. Phys. 231, 6770–6789 (2012)

  57. Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian boundary value methods (Energy preserving discrete line integral methods). J. Numer. Anal. Ind. Appl. Math. 5, 17–37 (2010)

    MathSciNet  MATH  Google Scholar 

  58. Wang, Y., Wang, B., Qin, M.: Local structure-preserving algorithms for partial differential equations. Sci. China Ser. A Math. 51, 2115–2136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Cai, J., Wang, Y., Liang, H.: Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrödinger system. J. Comput. Phys. 239, 30–50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Cai, J., Wang, Y.: Local structure-preserving algorithms for the “good” equation. J. Comput. Phys. 239, 72–89 (2013)

  61. Gong, Y., Cai, J., Wang, Y.: Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs. J. Comput. Phys. 279, 80–102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  62. Cai, J., Wang, Y., Jiang, C.: Local structure-preserving algorithms for general multi-symplectic Hamiltonian PDEs. Comput. Phys. Comm. 235, 210–220 (2019)

    Article  MathSciNet  Google Scholar 

  63. Mu, Z., Gong, Y., Cai, W., Wang, Y.: Efficient local energy dissipation preserving algorithms for the Cahn–Hilliard equation. J. Comput. Phys. 374, 654–667 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  64. Lu, L., Wang, Q., Song, Y., Wang, Y.: Local structure-preserving algorithms for the molecular beam epitaxy model with slope selection. Discrete Contin. Dyn. B 26, 4745–4765 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11771213, 61872422), the National Key Research and Development Project of China (Grant No. 2018YFC1504205), the Major Projects of Natural Sciences of University in Jiangsu Province of China (Grant No. 18KJA1100 03). Qi Wang’s work is partially supported by National Science Foundation (award DMS-1815921, DMS-1954532 and OIA-1655740), DOE DE-SC0020272 award and a GEAR award from SC EPSCoR/IDeA Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushun Wang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled “Local Energy Dissipation Rate Preserving Approximations to Driven Gradient Flows with Applications to Graphene Growth”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Some Theorems in Sect. 2

a. Proof for Theorem 2.1:  Multiplying \(\mu \) and \(\phi _t\) on both sides of the first equation and the second equation of (2.8), respectively, we obtain

$$\begin{aligned} \left\{ \begin{aligned}&\phi _t \mu = -\mu {\mathcal {M}}\mu ,\\&\phi _t\mu = \phi _t\sum _{i=0}^m (-1)^i \nabla ^i \frac{\partial f}{\partial \nabla ^i \phi }. \end{aligned} \right. \end{aligned}$$
(6.1)

Combining the two equations in (6.1), we have

$$\begin{aligned} -\mu {\mathcal {M}}\mu = \phi _t\sum _{i=0}^m (-1)^i \nabla ^i \frac{\partial f}{\partial \nabla ^i \phi }. \end{aligned}$$
(6.2)

Applying Lemma 2.1 and substituting all the terms on the right hand of (6.2), we arrive at

$$\begin{aligned} \begin{aligned} -\mu {\mathcal {M}}\mu = \sum _{i=0}^m (-1)^i\nabla \cdot \left( (-1)^{k-1}\sum _{k=1}^i \nabla ^{k-1}\phi _t\cdot \nabla ^{i-k}\frac{\partial f}{\partial \nabla ^i \phi } \right) +\sum _{i=0}^m\nabla ^i \phi _t \cdot \frac{\partial f}{\partial \nabla ^i \phi }. \end{aligned} \end{aligned}$$
(6.3)

Meanwhile, the time derivative of energy density (2.2) is given by

$$\begin{aligned} \frac{\mathrm {d}E}{\mathrm {d}t} = \sum _{i=0}^m\nabla ^i \phi _t \cdot \frac{\partial f}{\partial \nabla ^i \phi }. \end{aligned}$$
(6.4)

Inserting (6.4) into (6.3), we complete the proof.

b. Proof for Theorem 2.2:  Multiplying \(\mu \) and \(\phi _t\) on both sides of the first equation and the second equation in (2.15), respectively, we have

$$\begin{aligned} \left\{ \begin{aligned}&\phi _t \mu = -\mu {\mathcal {M}}\mu ,\\&\mu \phi _t= \left( \sum _{p=1}^{\frac{m+1}{2}} \Delta ^{p-1}k_p -\sum _{q=1}^{\frac{m+1}{2}} \nabla \Delta ^{q-1}{\mathbf {h}}_q\right) \cdot \phi _t. \end{aligned} \right. \end{aligned}$$
(6.5)

Using the Leibnitz rule repeatedly, we obtain

$$\begin{aligned} \begin{aligned}&\nabla \cdot \left[ \sum _{p=2}^{\frac{m+1}{2}} \sum _{l=0}^{2p-3}\left( \left( -1\right) ^{l+1}\nabla ^lk_p\cdot \nabla ^{2p-3-l}\phi _t \right) + \sum _{q=1}^{\frac{m+1}{2}} \sum _{r=0}^{2q-2}\left( \left( -1\right) ^{r+1}\nabla ^r{\mathbf {h}}_q\cdot \nabla ^{2q-2-r}\phi _t \right) \right] \\&+ \sum _{p=1}^{\frac{m+1}{2}} \left( k_p\cdot \Delta ^{p-1}\phi _t \right) + \sum _{q=1}^{\frac{m+1}{2}} \left( {\mathbf {h}}_q\cdot \nabla \Delta ^{q-1}\phi _t \right) = - \mu {\mathcal {M}}\mu . \end{aligned} \end{aligned}$$
(6.6)

It follows from the definition of the energy density (2.2)

$$\begin{aligned} \partial _t E = \sum _{p=1}^{\frac{m+1}{2}} \left( k_p\cdot \Delta ^{p-1}\phi _t \right) + \sum _{q=1}^{\frac{m+1}{2}} \left( {\mathbf {h}}_q\cdot \nabla \Delta ^{q-1}\phi _t \right) , \end{aligned}$$
(6.7)

substituting (6.7) into (6.6), we complete the proof.

c. Proof for Theorem 2.3:  Using Lemma 2.3m times, we have

$$\begin{aligned} -A_t \mu ^n{\mathcal {M}}A_t \mu ^n = \,&\nabla _h^+\cdot \left( \sum _{p=2}^{\frac{m+1}{2}}\sum _{l=0}^{p-2}\left( \delta _t^+\Delta _h^l\phi ^n\cdot \nabla _h^-\Delta _h^{p-2-l}A_t k_p^n-\delta _t^+\nabla _h^-\Delta _h^l\phi ^n\cdot \Delta _h^{p-2-l}A_t k_p^n \right) \right. \nonumber \\&\left. -\sum _{q=1}^{\frac{m+1}{2}}\delta _t^+\Delta _h^{q-1}\phi ^n \cdot A_t {\overline{{\mathbf {h}}}}_q^n \right. \nonumber \\&\left. +\sum _{q=2}^{\frac{m+1}{2}}\sum _{r=0}^{q-2}\left( -\delta _t^+\Delta _h^r\phi ^n\cdot \nabla _h^-\nabla _h^- \Delta _h^{q-2-r}A_t {\mathbf {h}}_q^n +\delta _t^+\nabla _h^-\Delta _h^r\phi ^n\cdot \nabla _h^-\Delta _h^{q-2-r}A_t {\mathbf {h}}_q^n \right) \right) \nonumber \\&+\sum _{p=1}^{\frac{m+1}{2}}A_t k_p^n\cdot \delta _t^+ \Delta _h^{p-1} \phi ^n +\sum _{q=1}^{\frac{m+1}{2}}A_t {\mathbf {h}}_q^n\cdot \delta _t^+\nabla _h^+ \Delta _h^{q-1} \phi ^n. \end{aligned}$$
(6.8)

It follows from the definition of the energy density, \(E^n\), (2.18),

$$\begin{aligned} \begin{aligned} \delta _t^+E^n = \sum _{p=1}^{\frac{m+1}{2}}A_t k_p^n\cdot \delta _t^+ \Delta _h^{p-1} \phi ^n +\sum _{q=1}^{\frac{m+1}{2}}A_t {\mathbf {h}}_q^n\cdot \delta _t^+\nabla _h^+ \Delta _h^{q-1} \phi ^n. \end{aligned} \end{aligned}$$
(6.9)

Applying (6.9), we complete the proof.

d. Proof for Theorem 2.4:  With the aid of Lemma 2.4, we arrive at the conclusion readily.

e. Proof for Theorem 2.5

It follows from the definition of energy density, \(E^n\), (2.34)

$$\begin{aligned} \begin{aligned} \delta _t^+E^n = \,&\sum _{p=1}^{\frac{m+1}{2}}A_t A_x^{m}A_y^{m}k_p^n\cdot \delta _t^+{\overline{\Delta }}_h^{p-1}A_x^{m-2p+2}A_y^{m-2p+2} \phi ^n\\&+\sum _{q=1}^{\frac{m+1}{2}}A_t A_x^{m}A_y^{m}{\mathbf {h}}_q^n\cdot \delta _t^+{\overline{\nabla }}_h{\overline{\Delta }}_h^{q-1}A_x^{m-2q+1}A_y^{m-2q+1} \phi ^n. \end{aligned} \end{aligned}$$
(6.10)

With the aid of Lemma 2.5, we complete the proof.

f. Proof for Theorem 2.6:  Multiply \(\mu ,\phi _t,q\) on both sides of the three equations in (2.46), respectively,

$$\begin{aligned} \left\{ \begin{aligned}&\mu \phi _t = -\mu {\mathcal {M}}\mu ,\\&\mu \phi _t= 2 \sum _{i=0}^{m} (-1)^i g_i(\epsilon )\cdot \nabla ^{2i}\phi \cdot \phi _t +2\sum _{i=0}^{m-1} (-1)^i \nabla ^i \left( q\cdot \frac{\partial q}{\partial \nabla ^i \phi }\right) \cdot \phi _t,\\&qq_t = \sum _{i=0}^{m-1} q\frac{\partial q}{\partial \nabla ^i \phi }\cdot \frac{\partial \nabla ^i \phi }{\partial t}. \end{aligned} \right. \end{aligned}$$
(6.11)

With Lemma 2.6, we derive from (6.11)

$$\begin{aligned} \begin{aligned} -\mu {\mathcal {M}}\mu&= 2\sum _{i=0}^m\left[ (-1)^ig_i(\epsilon )\nabla \left( \sum _{k=1}^i (-1)^{k-1}\nabla ^{k-1}\phi _t\cdot \nabla ^{2i-k}\phi \right) \right] \\&\quad +2\sum _{i=0}^{m-1}\left[ (-1)^i\nabla \left( (-1)^{k-1}\sum _{k=1}^i \nabla ^{k-1}\phi _t\cdot \nabla ^{i-k}\left( q\frac{\partial q}{\partial \nabla ^i \phi }\right) \right) \right] \\&\quad +2\sum _{i=0}^mg_i(\epsilon )\nabla ^i \phi _t \cdot \nabla ^i \phi _t+2qq_t, \end{aligned} \end{aligned}$$
(6.12)

Meanwhile, the time derivative of energy density E, (2.45), is given by

$$\begin{aligned} \frac{\mathrm {d}E}{\mathrm {d}t} = 2\sum _{i=0}^mg_i(\epsilon )\nabla ^i \phi _t \cdot \nabla ^i \phi _t+2qq_t. \end{aligned}$$
(6.13)

Inserting (6.13) into (6.12), we arrive at the conclusion.

Appendix B: LEDRP Algorithms in Sect. 2.2.3

Here we list the three LEDRP algorithms based on the energy quadratization technique presented in Sect. 2.2.3. We present the first algorithm based on the energy quadratization method next. Eliminating the intermediate variables in system (2.54)–(2.56), we arrive at the first LEDRP algorithm based on the EQ method as follows.

Algorithm 4

(EQ-LEDRP-I)

$$\begin{aligned} \left\{ \begin{aligned} \delta _t^+\phi ^n=\,&-2{\mathcal {M}} \left[ \sum _{i=0}^m (-1)^i g_i(\epsilon )\cdot A_t\Delta _h^i\phi ^n +\sum _{p=1}^{\frac{m+1}{2}} \Delta _h^{p-1}\left( A_tq^n\frac{\partial q^{n,\star }}{\partial \Delta _h^{p-1} \phi ^{n,\star }}\right) \right. \\&\left. \quad -\sum _{q=1}^{\frac{m-1}{2}} \nabla _h^-\Delta _h^{q-1}\left( A_tq^n\frac{\partial q^{n,\star }}{\partial \nabla _h^+\Delta _h^{q-1} \phi ^{n,\star }}\right) \right] ,\\ \delta _t^+q^n =\,&\sum _{p=1}^{\frac{m+1}{2}} \frac{\partial q^{n,\star }}{\partial \Delta _h^{p-1} \phi ^{n,\star }}\cdot \delta _t^+\Delta _h^{p-1}\phi ^n+\sum _{q=1}^{\frac{m-1}{2}} \frac{\partial q^{n,\star }}{\partial \nabla _h^+\Delta _h^{q-1} \phi ^{n,\star }}\cdot \delta _t^+\nabla _h^+\Delta _h^{q-1}\phi ^n. \end{aligned} \right. \end{aligned}$$

The transport equation for the discrete energy density in Algorithm 4 is given below.

Theorem 6.1

Model (2.54)–(2.56) satisfies the following discrete LEDL

$$\begin{aligned} \begin{aligned}&\delta _t^+ E^n+2\nabla _h^+\cdot \left( \sum _{p=2}^{\frac{m+1}{2}}\sum _{l=0}^{p-2}\left( \delta _t^+\Delta _h^l\phi ^n\cdot \nabla _h^-\Delta _h^{p-2-l}A_t k_p^n+\delta _t^+\nabla _h^-\Delta _h^l\phi ^n\cdot \Delta _h^{p-2-l}A_t k_p^n \right) \right. \\&\quad -\delta _t^+\phi ^n\cdot A_t {\overline{{\mathbf {h}}}}_1^n \\&\quad +\sum _{q=2}^{\frac{m-1}{2}}\left( \sum _{r=0}^{q-2}\left( -\delta _t^+\Delta _h^r\phi ^n\cdot \nabla _h^-\nabla _h^- \Delta _h^{q-2-r}A_t {\mathbf {h}}_q^n +\delta _t^+\nabla _h^-\Delta _h^r\phi ^n\cdot \nabla _h^-\Delta _h^{q-2-r}A_t {\mathbf {h}}_q^n \right) \right. \\&\quad \left. -\delta _t^+\Delta _h^{q-1}\phi ^n \cdot A_t {\overline{{\mathbf {h}}}}_q^n \right) \\&\quad \left. {+}\sum _{i=1 ~2\not \mid i}^m g_i(\epsilon )\left( {-}\sum _{l=\frac{i-1}{2}}^{i-1}\nabla _h^-\Delta _h^lA_t\phi ^n\cdot \delta _t^+\Delta _h^{i-1-l}\phi ^n{+} \sum _{l=\frac{i+1}{2}}^{i-1}\Delta _h^lA_t\phi ^n\cdot \delta _t^+\nabla _h^-\Delta _h^{i-1-l}\phi ^n \right) \right. \\&\quad \left. +\sum _{i=1~2| i}^m g_i(\epsilon ) \sum _{l=\frac{i}{2}}^{i-1}\left( \nabla _h^-\Delta _h^lA_t\phi ^n\cdot \delta _t^+\Delta _h^{i-1-l}\phi ^n- \Delta _h^lA_t\phi ^n\cdot \delta _t^+\nabla _h^-\Delta _h^{i-1-l}\phi ^n \right) \right) \\&\quad +A_t \mu ^n{\mathcal {M}}A_t \mu ^n=0, \end{aligned} \end{aligned}$$

with discrete energy density \(E^n\) defined in (2.53).

Proof

We note that the time derivative of discrete energy density (2.53) is given by

$$\begin{aligned} \begin{aligned} \delta _t^+ E^n =\,&2\sum _{p=1}^{\frac{m+1}{2}}A_t k_p^n\cdot \delta _t^+ \Delta _h^{p-1} \phi ^n +2\sum _{q=1}^{\frac{m-1}{2}}A_t {\mathbf {h}}_q^n\cdot \delta _t^+\nabla _h^+ \Delta _h^{q-1} \phi ^n \\&+2\sum _{i=0~ 2|i}^m g_i(\epsilon )\Delta _h^{\frac{i}{2}}A_t \phi ^n\cdot \Delta _h^{\frac{i}{2}}\delta _t^+ \phi ^n+2\sum _{i=1 ~2\not \mid i}^m g_i(\epsilon )\nabla _h^+\Delta _h^{\frac{i}{2}}A_t \phi ^n\cdot \nabla _h^+\Delta _h^{\frac{i-1}{2}}\delta _t^+ \phi ^n. \end{aligned} \end{aligned}$$
(6.14)

Analogous to the proof of Theorem 2.3, we can easily arrive at the conclusion. \(\square \)

Then we present second LEDRP algorithm. Eliminating the intermediate variables, system (2.58)–(2.60) can be written into the following two-equation system.

Algorithm 5

(EQ-LEDRP-II)

$$\begin{aligned} \left\{ \begin{aligned}&\delta _t^+\phi ^n= -2{\mathcal {M}} \left[ \sum _{i=0}^m (-1)^i g_i(\epsilon )\cdot A_t\Delta _h^i\phi ^n +\sum _{p=1}^{\frac{m+1}{2}} \Delta _h^{p-1}\left( A_tq^n\frac{\partial q^{n,\star }}{\partial \Delta _h^{p-1} \phi ^{n,\star }}\right) \right. \\&\quad \qquad \left. -\sum _{q=1}^{\frac{m-1}{2}} \nabla _h^+\Delta _h^{q-1}\left( A_tq^n\frac{\partial q^{n,\star }}{\partial \nabla _h^-\Delta _h^{q-1} \phi ^{n,\star }}\right) \right] ,\\&\delta _t^+q^n = \sum _{p=1}^{\frac{m+1}{2}} \frac{\partial q^{n,\star }}{\partial \Delta _h^{p-1} \phi ^{n,\star }}\cdot \delta _t^+\Delta _h^{p-1}\phi ^n+\sum _{q=1}^{\frac{m-1}{2}} \frac{\partial q^{n,\star }}{\partial \nabla _h^-\Delta _h^{q-1} \phi ^{n,\star }}\cdot \delta _t^+\nabla _h^-\Delta _h^{q-1}\phi ^n. \end{aligned} \right. \end{aligned}$$

The discrete energy density in Algorithm 5 obeys a transport equation given in the following theorem.

Theorem 6.2

Model (2.58)–(2.60) satisfies the following discrete local energy density transport equation

$$\begin{aligned} \begin{aligned}&\delta _t^+ E^n+2\nabla _h^-\cdot \left( \sum _{p=2}^{\frac{m+1}{2}}\sum _{l=0}^{p-2}\left( \delta _t^+\Delta _h^l\phi ^n\cdot \nabla _h^+\Delta _h^{p-2-l}A_t k_p^n- \delta _t^+\nabla _h^+\Delta _h^l\phi ^n\cdot \Delta _h^{p-2-l}A_t k_p^n \right) \right. \\&\quad -\delta _t^+\phi ^n\cdot A_t {\widetilde{{\mathbf {h}}}}_1^n \\&\quad +\sum _{q=2}^{\frac{m-1}{2}}\left( \sum _{r=0}^{q-2}\left( -\delta _t^+\Delta _h^r\phi ^n\cdot \Delta _h^{q-1-r}A_t {\widetilde{{\mathbf {h}}}}_q^n +\delta _t^+\nabla _h^+\Delta _h^r\phi ^n\cdot \nabla _h^+\Delta _h^{q-2-r}A_t {\mathbf {h}}_q^n \right) \right. \\&\quad \left. -\delta _t^+\Delta _h^{q-1}\nabla _h^-\phi ^n \cdot A_t {\widetilde{{\mathbf {h}}}}_q^n\right) \\&\quad \left. +\sum _{i=1 ~2\not \mid i}^m g_i(\epsilon )\left( -\sum _{l=\frac{i-1}{2}}^{i-1}\nabla _h^+\Delta _h^lA_t\phi ^n\cdot \delta _t^+\Delta _h^{i-1-l}\phi ^n{+} \sum _{l=\frac{i+1}{2}}^{i-1}\Delta _h^lA_t\phi ^n\cdot \delta _t^+\nabla _h^+\Delta _h^{i-1-l}\phi ^n \right) \right. \\&\quad \left. +\sum _{i=1~2| i}^m g_i(\epsilon ) \sum _{l=\frac{i}{2}}^{i-1}\left( \nabla _h^+\Delta _h^lA_t\phi ^n\cdot \delta _t^+\Delta _h^{i-1-l}\phi ^n- \Delta _h^lA_t\phi ^n\cdot \delta _t^+\nabla _h^+\Delta _h^{i-1-l}\phi ^n \right) \right) \\&\quad +A_t \mu ^n{\mathcal {M}}A_t \mu ^n=0, \end{aligned} \end{aligned}$$

with discrete energy density \(E^n\) defined in (2.57).

Analogously, we obtain the third LEDRP algorithm the same way.

Algorithm 6

(EQ-LEDRP-III)

$$\begin{aligned} \left\{ \begin{aligned}&\delta _t^+A_x^{2m}A_y^{2m}\phi ^n = 2 \sum _{i=0}^m (-1)^i g_i(\epsilon )\cdot A_tA_x^{2m-2i}A_y^{2m-2i}{\overline{\Delta }}_h^i\phi ^n\\&\quad +2 \left[ \sum _{p=1}^{\frac{m+1}{2}} {\overline{\Delta }}_h^{p-1}A_x^{m-2p+2}A_y^{m-2p+2}A_tA_x^mA_y^mq^n\frac{\partial q^{n,\star }}{\partial {\overline{\Delta }}_h^{p-1} A_x^{m-2p+2}A_y^{m-2p+2}\phi ^{n,\star }} \right. \\&\left. \quad -\sum _{q=1}^{\frac{m-1}{2}} {\overline{\nabla }}_h{\overline{\Delta }}_h^{q-1}A_x^{m-2q+2}A_y^{m-2q+2}A_tA_x^mA_y^mq^n\frac{\partial q^{n,\star }}{\partial {\overline{\nabla }}_h{\overline{\Delta }}_h^{q-1} A_x^{m-2q+1}A_y^{m-2q+1}\phi ^{n,\star }} \right] ,\\&\delta _t^+A_x^mA_y^mq^n = \sum _{p=1}^{\frac{m+1}{2}} \frac{\partial q^{n,\star }}{\partial {\overline{\Delta }}_h^{p-1} A_x^{m-2p+2}A_y^{m-2p+2}\phi ^{n,\star }}\cdot \delta _t^+{\overline{\Delta }}_h^{p-1} A_x^{m-2p+2}A_y^{m-2p+2}\phi ^{n}\\&\quad +\sum _{q=1}^{\frac{m-1}{2}} \frac{\partial q^{n,\star }}{\partial {\overline{\nabla }}_h{\overline{\Delta }}_h^{q-1} A_x^{m-2q+2}A_y^{m-2q+2}\phi ^{n,\star }}\cdot \delta _t^+{\overline{\nabla }}_h{\overline{\Delta }}_h^{q-1} A_x^{m-2q+2}A_y^{m-2q+2}\phi ^n. \end{aligned} \right. \end{aligned}$$

Algorithm 6 has a discrete transport equation for the discrete energy density.

Theorem 6.3

Model (2.62)–(2.64) satisfies the following discrete energy density transport equation

$$\begin{aligned} \begin{aligned}&\delta _t^+ E^n+ 2\sum _{i=0~2|i}^{m}g_i(\epsilon ) \sum _{j=0}^{\frac{i}{2}}\left( \nabla _h^{[m-j]}\cdot \left( \delta _t^+{\overline{\nabla }}_h^j\phi ^n\cdot A_tA_x^{m-(2i-j)} A_y^{m-(2i-j)} {\overline{\nabla }}_h^{2i-j-1}\phi ^n \right) \right. \\&\quad \left. -\nabla _h^{[m-(2i-2-j)]}\cdot \left( A_t{\overline{\nabla }}_h^{2i-2-j}\phi ^n\cdot \delta _t^+A_x^{m-(j+2)} A_y^{m-(j+2)} {\overline{\nabla }}_h^{j+1}\phi ^n \right) \right) \\&\quad - 2\sum _{i=0~2\not \mid i}^{m}g_i(\epsilon )\left( \sum _{j=0}^{\frac{i+1}{2}} \nabla _h^{[m-j]}\cdot \left( \delta _t^+{\overline{\nabla }}_h^j\phi ^n\cdot A_tA_x^{m-(2i-j)} A_y^{m-(2i-j)} {\overline{\nabla }}_h^{2i-j-1}\phi ^n \right) \right. \\&\quad \left. -\sum _{j=0}^{\frac{i-1}{2}} \nabla _h^{[m-(2i-2-j)]}\cdot \left( A_t{\overline{\nabla }}_h^{2i-2-j}\phi ^n\cdot \delta _t^+A_x^{m-(j+2)} A_y^{m-(j+2)} {\overline{\nabla }}_h^{j+1}\phi ^n \right) \right) \\&\quad - 2\sum _{q=1}^{\frac{m-1}{2}} \sum _{l=0}^{q-1}\nabla _h^{[m-2l]}\cdot \left( {\overline{\Delta }}_h^{l}\delta _t^+\phi ^n\cdot {\overline{\Delta }}_h^{q-l-1}A_x^{m-2q+2l+1}A_y^{m-2q+2l+1}A_t {\mathbf {h}}_q^n \right) \\&\quad +2\sum _{q=2}^{\frac{m-1}{2}} \sum _{l=0}^{q-2} \nabla _h^{[m-2l-1]}\cdot \left( {\overline{\nabla }}_h{\overline{\Delta }}_h^{l}A_t{\mathbf {h}}_q^n\cdot {\overline{\nabla }}_h{\overline{\Delta }}_h^{q-l-2}A_x^{m-2q+2l+2} A_y^{m-2q+2l+2}\delta _t^+\phi ^n \right) \\&\quad +2\sum _{p=2}^{\frac{m+1}{2}}\left\{ \sum _{r=0}^{p-2}\nabla _h^{[m-2r]}\cdot \left( {\overline{\Delta }}_h^{r}\delta _t^+\phi ^n\cdot {\overline{\nabla }}_h{\overline{\Delta }}_h^{p-r-2}A_x^{m-2p+2r+2} A_y^{m-2p+2r+2}A_tk_p^n\right. \right. \\&\quad \left. \left. -{\overline{\Delta }}_h^{r}A_tk_p^n\cdot {\overline{\nabla }}_h{\overline{\Delta }}_h^{p-r-2}A_x^{m-2p+2r+2} A_y^{m-2p+2r+2}\delta _t^+\phi ^n \right) \right\} \\&\quad + A_tA_x^mA_y^m\mu ^n{\mathcal {M}}A_tA_x^mA_y^m\mu ^n=0, \end{aligned} \end{aligned}$$

with \(E^n\) the discrete energy density defined by (2.61).

Proof

We again omit the proof here. \(\square \)

Appendix C: LEDRP Algorithms for Driven Gradient Flows

We list the algorithms and the corresponding discrete energy density transport equations for the driven gradient flow system in the following.

Algorithm 7

(LEDRP-I for driven gradient flows) Given the free energy density in (2.18), the intermediate variables (2.19)–(2.20), the discrete system reads as follows

$$\begin{aligned} \left\{ \begin{aligned}&\delta _t^+ \phi ^n = -{\mathcal {M}}A_t\mu ^n + A_tg(\phi ^n),\\&A_t\mu ^n = \sum _{p=1}^{\frac{m+1}{2}}\Delta _h^{p-1}A_t k_p^n - \nabla _h^-\sum _{q=1}^{\frac{m+1}{2}}\Delta _h^{q-1}A_t {\mathbf {h}}_q^n. \end{aligned} \right. \end{aligned}$$
(6.15)

Next we state the local energy dissipation rate property for Algorithm 7 as follows.

Theorem 6.4

Model (2.19)–(2.20), (6.15) has the following discrete energy density transport equation

$$\begin{aligned} \begin{aligned}&\delta _t^+ E^n+\nabla _h^+\cdot \left( \sum _{p=2}^{\frac{m+1}{2}}\sum _{l=0}^{p-2}\left( \delta _t^+\Delta _h^l\phi ^n\cdot \nabla _h^-\Delta _h^{p-2-l}A_t k_p^n-\delta _t^+\nabla _h^-\Delta _h^l\phi ^n\cdot \Delta _h^{p-2-l}A_t k_p^n \right) \right. \\&\quad \left. -\sum _{q=1}^{\frac{m+1}{2}}\delta _t^+\Delta _h^{q-1}\phi ^n \cdot A_t {\overline{{\mathbf {h}}}}_q^n \right. \\&\quad \left. +\sum _{q=2}^{\frac{m+1}{2}}\sum _{r=0}^{q-2}\left( -\delta _t^+\Delta _h^r\phi ^n\cdot \nabla _h^-\nabla _h^- \Delta _h^{q-2-r}A_t {\mathbf {h}}_q^n +\delta _t^+\nabla _h^-\Delta _h^r\phi ^n\cdot \nabla _h^-\Delta _h^{q-2-r}A_t {\mathbf {h}}_q^n \right) \right) \\&\quad +A_t \mu ^n{\mathcal {M}}A_t \mu ^n=A_tg(\phi ^n)\cdot A_t\mu ^n, \end{aligned} \end{aligned}$$

with E the discrete energy density defined by (2.18).

Algorithm 8

(LEDRP-II for driven gradient flows) Given the free energy density (2.28), the intermediate variables (2.29)–(2.30), the discrete gradient flow system reads as follows

$$\begin{aligned} \left\{ \begin{aligned}&\delta _t^+ \phi ^n = -{\mathcal {M}}A_t\mu ^n+ A_tg(\phi ^n),\\&A_t\mu ^n = \sum _{p=1}^{\frac{m+1}{2}}\Delta _h^{p-1}A_t k_p^n - \nabla _h^+\sum _{q=1}^{\frac{m+1}{2}}\Delta _h^{q-1}A_t {\mathbf {h}}_q^n. \end{aligned} \right. \end{aligned}$$
(6.16)

Theorem 6.5

Model (2.29)–(2.30), (6.16) has the following discrete energy density transport equation

$$\begin{aligned} \begin{aligned}&\delta _t^+ E^n+\nabla _h^-\cdot \left( \sum _{p=2}^{\frac{m+1}{2}}\sum _{l=0}^{p-2}\left( \delta _t^+\Delta _h^l\phi ^n\cdot \nabla _h^+\Delta _h^{p-2-l}A_t k_p^n- \delta _t^+\nabla _h^+\Delta _h^l\phi ^n\cdot \Delta _h^{p-2-l}A_t k_p^n \right) \right. \\&\quad \left. -\sum _{q=1}^{\frac{m+1}{2}}\delta _t^+\Delta _h^{q-1}\phi ^n \cdot A_t {\widetilde{{\mathbf {h}}}}_q^n \right. \\&\quad \left. +\sum _{q=2}^{\frac{m+1}{2}}\sum _{r=0}^{q-2}\left( -\delta _t^+\Delta _h^r\phi ^n\cdot \Delta _h^{q-1-r}A_t {\widetilde{{\mathbf {h}}}}_q^n +\delta _t^+\nabla _h^+\Delta _h^r\phi ^n\cdot \nabla _h^+\Delta _h^{q-2-r}A_t {\mathbf {h}}_q^n \right) \right) \\&\quad +A_t \mu ^n{\mathcal {M}}A_t \mu ^n=A_tg(\phi ^n)\cdot A_t\mu ^n, \end{aligned} \end{aligned}$$

with E the discrete energy density defined by (2.28).

Algorithm 9

(LEDRP-III for driven gradient flows) Given the free energy density in (2.34), the intermediate variables (2.35)–(2.36), the discrete gradient flow system reads as follows

$$\begin{aligned} \left\{ \begin{aligned}&\delta _t^+ A_x^mA_y^m \phi ^n = -{\mathcal {M}}A_tA_x^mA_y^m\mu ^n+A_tg(A_x^mA_y^m\phi ^n),\\&A_tA_x^mA_y^m\mu ^n = \sum _{p=1}^{\frac{m+1}{2}}{\overline{\Delta }}_h^{p-1}A_t A_x^{m-2p+2}A_y^{m-2p+2} k_p^n - \sum _{q=1}^{\frac{m+1}{2}}{\overline{\nabla }}_h{\overline{\Delta }}_h^{q-1}A_t A_x^{m-2q+1}A_y^{m-2q+1} {\mathbf {h}}_q^n.\qquad \end{aligned} \right. \end{aligned}$$
(6.17)

Theorem 6.6

Model (2.35)–(2.36), (6.17) has the following energy density transport equation

$$\begin{aligned} \begin{aligned}&\delta _t^+ E^n- \sum _{q=1}^{\frac{m+1}{2}} \sum _{l=0}^{q-1}\nabla _h^{[m-2l]}\cdot \left( {\overline{\Delta }}_h^{l}\delta _t^+\phi ^n\cdot {\overline{\Delta }}_h^{q-l-1}A_x^{m-2q+2l+1}A_y^{m-2q+2l+1}A_t {\mathbf {h}}_q^n \right) \\&\quad +\sum _{q=2}^{\frac{m+1}{2}} \sum _{l=0}^{q-2} \nabla _h^{[m-2l-1]}\cdot \left( {\overline{\nabla }}_h{\overline{\Delta }}_h^{l}A_t{\mathbf {h}}_q^n\cdot {\overline{\nabla }}_h{\overline{\Delta }}_h^{q-l-2}A_x^{m-2q+2l+2}A_y^{m-2q+2l+2}\delta _t^+\phi ^n \right) \\&\quad +\sum _{p=2}^{\frac{m+1}{2}}\Big \{ \sum _{r=0}^{p-2}\nabla _h^{[m-2r]}\cdot \left( {\overline{\Delta }}_h^{r}\delta _t^+\phi ^n\cdot {\overline{\nabla }}_h{\overline{\Delta }}_h^{p-r-2}A_x^{m-2p+2r+2}A_y^{m-2p+2r+2}A_tk_p^n \right. \\&\quad \left. -{\overline{\Delta }}_h^{r}A_tk_p^n\cdot {\overline{\nabla }}_h{\overline{\Delta }}_h^{p-r-2}A_x^{m-2p+2r+2}A_y^{m-2p+2r+2}\delta _t^+\phi ^n \right) \Big \}\\&\quad + A_tA_x^mA_y^m\mu ^n{\mathcal {M}}A_tA_x^mA_y^m\mu ^n=A_tg(A_x^mA_y^m\phi ^n)\cdot A_tA_x^mA_y^m\mu ^n, \end{aligned} \end{aligned}$$

with E the discrete energy density defined by (2.34).

In the following, we list the algorithms and the discrete energy density transport equation for the driven gradient flow system based on the EQ technique.

Algorithm 10

(EQ-LEDRP-I for driven gradient flows) Given the free energy density in (2.53) and intermediate variables (2.54)–(2.55), we discritize driven gradient flow (3.5) as follows

$$\begin{aligned} \left\{ \begin{aligned}&\delta _t^+\phi ^n= -{\mathcal {M}}A_t\mu ^n+g(\phi ^{n,\star }),\\&A_t\mu ^n = 2 \sum _{i=0}^m (-1)^i g_i(\epsilon )\cdot A_t\Delta _h^i\phi ^n +2 \left[ \sum _{p=1}^{\frac{m+1}{2}} \Delta _h^{p-1}A_tk_p -\sum _{q=1}^{\frac{m-1}{2}} \nabla _h^-\Delta _h^{q-1}A_t{\mathbf {h}}_q \right] ,\\&\delta _t^+q^n = \sum _{p=1}^{\frac{m+1}{2}} \frac{\partial q^{n,\star }}{\partial \Delta _h^{p-1} \phi ^{n,\star }}\cdot \delta _t^+\Delta _h^{p-1}\phi ^n+\sum _{q=1}^{\frac{m-1}{2}} \frac{\partial q^{n,\star }}{\partial \nabla _h^+\Delta _h^{q-1} \phi ^{n,\star }}\cdot \delta _t^+\nabla _h^+\Delta _h^{q-1}\phi ^n.\nonumber \end{aligned} \right. \\ \end{aligned}$$
(6.18)

Theorem 6.7

System (6.18) admits the following discrete energy density transport equation

$$\begin{aligned}&\delta _t^+ E^n+2\nabla _h^+\cdot \left( \sum _{p=2}^{\frac{m+1}{2}}\sum _{l=0}^{p-2}\left( \delta _t^+\Delta _h^l\phi ^n\cdot \nabla _h^-\Delta _h^{p-2-l}A_t k_p^n+\delta _t^+\nabla _h^-\Delta _h^l\phi ^n\cdot \Delta _h^{p-2-l}A_t k_p^n \right) \right. \\&\quad -\delta _t^+\phi ^n\cdot A_t {\overline{{\mathbf {h}}}}_1^n \\&\quad +\sum _{q=2}^{\frac{m-1}{2}}\left( \sum _{r=0}^{q-2}\left( -\delta _t^+\Delta _h^r\phi ^n\cdot \nabla _h^-\nabla _h^- \Delta _h^{q-2-r}A_t {\mathbf {h}}_q^n +\delta _t^+\nabla _h^-\Delta _h^r\phi ^n\cdot \nabla _h^-\Delta _h^{q-2-r}A_t {\mathbf {h}}_q^n \right) \right. \\&\quad \left. -\delta _t^+\Delta _h^{q-1}\phi ^n \cdot A_t {\overline{{\mathbf {h}}}}_q^n \right) \\&\quad \left. +\sum _{i=1 ~2\not \mid i}^m g_i(\epsilon )\left( -\sum _{l=\frac{i-1}{2}}^{i-1}\nabla _h^-\Delta _h^lA_t\phi ^n\cdot \delta _t^+\Delta _h^{i-1-l}\phi ^n+ \sum _{l=\frac{i+1}{2}}^{i-1}\Delta _h^lA_t\phi ^n\cdot \delta _t^+\nabla _h^-\Delta _h^{i-1-l}\phi ^n \right) \right. \\&\quad \left. +\sum _{i=1~2| i}^m g_i(\epsilon ) \sum _{l=\frac{i}{2}}^{i-1}\left( \nabla _h^-\Delta _h^lA_t\phi ^n\cdot \delta _t^+\Delta _h^{i-1-l}\phi ^n- \Delta _h^lA_t\phi ^n\cdot \delta _t^+\nabla _h^-\Delta _h^{i-1-l}\phi ^n \right) \right) \\&\quad +A_t \mu ^n{\mathcal {M}}A_t \mu ^n= g(\phi ^{n,\star })A_t \mu ^n, \end{aligned}$$

Algorithm 11

(EQ-LEDRP-II for driven gradient flows) Given the discrete energy density in (2.57), and intermediate variables (2.58)–(2.59), we discretize driven gradient flow (3.5) as follows

$$\begin{aligned} \left\{ \begin{aligned}&\delta _t^+\phi ^n= -{\mathcal {M}}A_t\mu ^n+g(\phi ^{n,\star }),\\&A_t\mu ^n = 2 \sum _{i=0}^m (-1)^i g_i(\epsilon )\cdot A_t\Delta _h^i\phi ^n +2 \left[ \sum _{p=1}^{\frac{m+1}{2}} \Delta _h^{p-1}A_tk_p -\sum _{q=1}^{\frac{m-1}{2}} \nabla _h^+\Delta _h^{q-1}A_t{\mathbf {h}}_q \right] ,\\&\delta _t^+q^n = \sum _{p=1}^{\frac{m+1}{2}} \frac{\partial q^{n,\star }}{\partial \Delta _h^{p-1} \phi ^{n,\star }}\cdot \delta _t^+\Delta _h^{p-1}\phi ^n+\sum _{q=1}^{\frac{m-1}{2}} \frac{\partial q^{n,\star }}{\partial \nabla _h^-\Delta _h^{q-1} \phi ^{n,\star }}\cdot \delta _t^+\nabla _h^-\Delta _h^{q-1}\phi ^n.\nonumber \end{aligned} \right. \!\!\!\!\!\!\!\!\!\\ \end{aligned}$$
(6.19)

Theorem 6.8

Model (6.19) satisfies the following discrete energy density transport equation

$$\begin{aligned} \begin{aligned}&\delta _t^+ E^n+2\nabla _h^-\cdot \left( \sum _{p=2}^{\frac{m+1}{2}}\sum _{l=0}^{p-2}\left( \delta _t^+\Delta _h^l\phi ^n\cdot \nabla _h^+\Delta _h^{p-2-l}A_t k_p^n- \delta _t^+\nabla _h^+\Delta _h^l\phi ^n\cdot \Delta _h^{p-2-l}A_t k_p^n \right) \right. \\&\quad -\delta _t^+\phi ^n\cdot A_t {\widetilde{{\mathbf {h}}}}_1^n \\&\quad +\sum _{q=2}^{\frac{m-1}{2}}\left( \sum _{r=0}^{q-2}\left( -\delta _t^+\Delta _h^r\phi ^n\cdot \Delta _h^{q-1-r}A_t {\widetilde{{\mathbf {h}}}}_q^n +\delta _t^+\nabla _h^+\Delta _h^r\phi ^n\cdot \nabla _h^+\Delta _h^{q-2-r}A_t {\mathbf {h}}_q^n \right) \right. \\&\quad \left. -\delta _t^+\Delta _h^{q-1}\nabla _h^-\phi ^n \cdot A_t {\widetilde{{\mathbf {h}}}}_q^n\right) \\&\quad \left. +\sum _{i=1 ~2\not \mid i}^m g_i(\epsilon )\left( -\sum _{l=\frac{i-1}{2}}^{i-1}\nabla _h^+\Delta _h^lA_t\phi ^n\cdot \delta _t^+\Delta _h^{i-1-l}\phi ^n+ \sum _{l=\frac{i+1}{2}}^{i-1}\Delta _h^lA_t\phi ^n\cdot \delta _t^+\nabla _h^+\Delta _h^{i-1-l}\phi ^n \right) \right. \\&\quad \left. +\sum _{i=1~2| i}^m g_i(\epsilon ) \sum _{l=\frac{i}{2}}^{i-1}\left( \nabla _h^+\Delta _h^lA_t\phi ^n\cdot \delta _t^+\Delta _h^{i-1-l}\phi ^n- \Delta _h^lA_t\phi ^n\cdot \delta _t^+\nabla _h^+\Delta _h^{i-1-l}\phi ^n \right) \right) \\&\quad +A_t \mu ^n{\mathcal {M}}A_t \mu ^n=g(\phi ^{n,\star })A_t\mu ^n, \end{aligned} \end{aligned}$$

with discrete energy density \(E^n\) defined in (2.57).

Algorithm 12

(EQ-LEDRP-III for driven gradient flows) Given the discrete energy density in (2.61), and intermediate variables (2.62)–(2.63), we discretize system (3.5) as follows

$$\begin{aligned} \left\{ \begin{aligned}&\delta _t^+A_x^mA_y^m\phi ^n= -{\mathcal {M}}A_tA_x^mA_y^m\mu ^n+g(A_x^{m}A_y^{m}\phi ^{n,\star }),\\&A_tA_x^mA_y^m\mu ^n = 2 \sum _{i=0}^m (-1)^i g_i(\epsilon )\cdot A_tA_x^{m-2i}A_y^{m-2i}{\overline{\Delta }}_h^i\phi ^n\\&\quad +2 \left[ \sum _{p=1}^{\frac{m+1}{2}} {\overline{\Delta }}_h^{p-1}A_tA_x^{m-2p+2}A_y^{m-2p+2}k_p^n -\sum _{q=1}^{\frac{m-1}{2}} {\overline{\nabla }}_h{\overline{\Delta }}_h^{q-1}A_tA_x^{m-2q+2}A_y^{m-2q+2}{\mathbf {h}}_q^n \right] ,\\&\delta _t^+A_x^mA_y^mq^n = \sum _{p=1}^{\frac{m+1}{2}} \frac{\partial q^{n,\star }}{\partial {\overline{\Delta }}_h^{p-1} A_x^{m-2p+2}A_y^{m-2p+2}\phi ^{n,\star }}\cdot \delta _t^+{\overline{\Delta }}_h^{p-1} A_x^{m-2p+2}A_y^{m-2p+2}\phi ^{n}\\&\quad +\sum _{q=1}^{\frac{m-1}{2}} \frac{\partial q^{n,\star }}{\partial {\overline{\nabla }}_h{\overline{\Delta }}_h^{q-1} A_x^{m-2q+2}A_y^{m-2q+2}\phi ^{n,\star }}\cdot \delta _t^+{\overline{\nabla }}_h{\overline{\Delta }}_h^{q-1} A_x^{m-2q+2}A_y^{m-2q+2}\phi ^n.\nonumber \end{aligned} \right. \\ \end{aligned}$$
(6.20)

Theorem 6.9

Model (6.20) satisfies the following discrete energy density transport equation

$$\begin{aligned} \begin{aligned}&\delta _t^+ E^n+ 2\sum _{i=0~2|i}^{m}g_i(\epsilon ) \sum _{j=0}^{\frac{i}{2}}\left( \nabla _h^{[m-j]}\cdot \left( \delta _t^+{\overline{\nabla }}_h^j\phi ^n\cdot A_tA_x^{m-(2i-j)} A_y^{m-(2i-j)} {\overline{\nabla }}_h^{2i-j-1}\phi ^n \right) \right. \\&\quad \left. -\nabla _h^{[m-(2i-2-j)]}\cdot \left( A_t{\overline{\nabla }}_h^{2i-2-j}\phi ^n\cdot \delta _t^+A_x^{m-(j+2)} A_y^{m-(j+2)} {\overline{\nabla }}_h^{j+1}\phi ^n \right) \right) \\&\quad - 2\sum _{i=0~2\not \mid i}^{m}g_i(\epsilon )\left( \sum _{j=0}^{\frac{i+1}{2}} \nabla _h^{[m-j]}\cdot \left( \delta _t^+{\overline{\nabla }}_h^j\phi ^n\cdot A_tA_x^{m-(2i-j)} A_y^{m-(2i-j)} {\overline{\nabla }}_h^{2i-j-1}\phi ^n \right) \right. \\&\quad \left. -\sum _{j=0}^{\frac{i-1}{2}} \nabla _h^{[m-(2i-2-j)]}\cdot \left( A_t{\overline{\nabla }}_h^{2i-2-j}\phi ^n\cdot \delta _t^+A_x^{m-(j+2)} A_y^{m-(j+2)} {\overline{\nabla }}_h^{j+1}\phi ^n \right) \right) \\&\quad - 2\sum _{q=1}^{\frac{m-1}{2}} \sum _{l=0}^{q-1}\nabla _h^{[m-2l]}\cdot \left( {\overline{\Delta }}_h^{l}\delta _t^+\phi ^n\cdot {\overline{\Delta }}_h^{q-l-1}A_x^{m-2q+2l+1}A_y^{m-2q+2l+1}A_t {\mathbf {h}}_q^n \right) \\&\quad +2\sum _{q=2}^{\frac{m-1}{2}} \sum _{l=0}^{q-2} \nabla _h^{[m-2l-1]}\cdot \left( {\overline{\nabla }}_h{\overline{\Delta }}_h^{l}A_t{\mathbf {h}}_q^n\cdot {\overline{\nabla }}_h{\overline{\Delta }}_h^{q-l-2}A_x^{m-2q+2l+2}A_y^{m-2q+2l+2}\delta _t^+\phi ^n \right) \\&\quad +2\sum _{p=2}^{\frac{m+1}{2}}\left\{ \sum _{r=0}^{p-2}\nabla _h^{[m-2r]}\cdot \left( {\overline{\Delta }}_h^{r}\delta _t^+\phi ^n\cdot {\overline{\nabla }}_h{\overline{\Delta }}_h^{p-r-2}A_x^{m-2p+2r+2}A_y^{m-2p+2r+2}A_tk_p^n \right. \right. \\&\quad \left. \left. -{\overline{\Delta }}_h^{r}A_tk_p^n\cdot {\overline{\nabla }}_h{\overline{\Delta }}_h^{p-r-2}A_x^{m-2p+2r+2}A_y^{m-2p+2r+2}\delta _t^+\phi ^n \right) \right\} \\&\quad + A_tA_x^mA_y^m\mu ^n{\mathcal {M}}A_tA_x^mA_y^m\mu ^n= g\big (A_x^mA_y^m\phi ^{n,\star }\big )A_tA_x^mA_y^m\mu ^n, \end{aligned} \end{aligned}$$

with \(E^n\) the discrete energy density defined by (2.61).

Appendix D: Proof of Some Theorems in Sect. 4

a. Proof for Theorem 4.1:  Multiplying \(\varvec{\mu }\) and \({\mathbf {u}}_t\) on both sides of the first and the second equation in (4.9), we have

$$\begin{aligned} \left\{ \begin{aligned}&{\mathbf {u}}_t\cdot \varvec{\mu } = -\varvec{\mu }^T\cdot \varvec{M}(\Theta ) \cdot \varvec{\mu } +{\mathbf {g}}({\mathbf {u}})\cdot \varvec{\mu },\\&\varvec{\mu }\cdot {\mathbf {u}}_t = \left( \begin{matrix} -\epsilon ^2\nabla \cdot \left[ \xi _{s,n}(\Theta )^2 \nabla \phi \right] +\epsilon ^2\partial _x\left[ \xi _{s,n}(\Theta )\xi _{s,n}'(\Theta )\partial _y\phi \right] \ \epsilon ^2\partial _y\left[ \xi _{s,n}(\Theta )\xi _{s,n}'(\Theta )\partial _x\phi \right] +f'(\phi ) \frac{u}{\tau _v}-\nabla \cdot \left( D\cdot \nabla u \right) \end{matrix}\right) \\&\quad \quad \quad \quad \cdot {\mathbf {u}}_t. \end{aligned} \right. \end{aligned}$$
(6.21)

Using derivative rule, we arrive at

$$\begin{aligned} \begin{aligned}&\left[ \epsilon ^2\xi _{s,n}(\Theta )^2 \nabla \phi + \left( \begin{matrix} -\epsilon ^2 \xi _{s,n}(\Theta )\xi _{s,n}'(\Theta )\partial _y \phi \\ \epsilon ^2 \xi _{s,n}(\Theta )\xi _{s,n}'(\Theta )\partial _x \phi \end{matrix} \right) \right] \cdot \nabla \phi _t+f'(\phi )\phi _t +\frac{u}{\tau _v} u_t\\&+\nabla u^T\cdot D \cdot \nabla u_t +\nabla \cdot \left[ - \epsilon ^2\xi _{s,n}(\Theta )^2 \nabla \phi \cdot \phi _t+ \left( \begin{matrix} \epsilon ^2 \xi _{s,n}(\Theta )\xi _{s,n}'(\Theta )\partial _y \phi \\ -\epsilon ^2 \xi _{s,n}(\Theta )\xi _{s,n}'(\Theta )\partial _x \phi \end{matrix} \right) \cdot \phi _t-D\cdot \nabla u \cdot u_t \right] \\&+\varvec{\mu }^T\cdot \varvec{M}(\Theta ) \cdot \varvec{\mu } ={\mathbf {g}}({\mathbf {u}})\cdot \varvec{\mu }, \end{aligned} \end{aligned}$$
(6.22)

from the definition of the local free energy, (4.13), we have

$$\begin{aligned} \begin{aligned} \frac{\mathrm {d}E}{\mathrm {d}t}&= \left[ \epsilon ^2\xi _{s,n}(\Theta )^2 \nabla \phi + \left( \begin{matrix} -\epsilon ^2 \xi _{s,n}(\Theta )\xi _{s,n}'(\Theta )\partial _y \phi \\ \epsilon ^2 \xi _{s,n}(\Theta )\xi _{s,n}'(\Theta )\partial _x \phi \end{matrix} \right) \right] \cdot \nabla \phi _t+f'(\phi )\phi _t\\&\quad +\frac{u}{\tau _v} u_t+ \nabla u^T\cdot D\cdot \nabla u_t, \end{aligned} \end{aligned}$$
(6.23)

Combing the results, we complete the proof.

b. Proof of Theorem 4.2:  The proof is similar to that of Theorem 4.1 and is thus omitted.

c. Proof of Theorem 4.3:  Multiplying \(A_t \varvec{\mu }^n\) and \(\delta _t^+ {\mathbf {u}}^n\) on both sides of the second and third line in (4.28), respectively, we have

$$\begin{aligned} \left\{ \begin{aligned}&\delta _t^+ {\mathbf {u}}^n \cdot A_t \varvec{\mu }^n = -(A_t {\varvec{\mu }^n}) ^T\cdot \varvec{M}\left( {\overline{\Theta }}^{n,\star } \right) \cdot A_t\varvec{\mu ^n}+{\mathbf {g}}({\mathbf {u}}^{n,\star })\cdot A_t \varvec{\mu }^n ,\\&A_t \varvec{\mu }^n\cdot \delta _t^+ {\mathbf {u}}^n = A_t\varvec{k}^n\cdot \delta _t^+ {\mathbf {u}}^n-\nabla _h^-\cdot A_t \varvec{H}^n\cdot \delta _t^+ {\mathbf {u}}^n. \end{aligned} \right. \end{aligned}$$
(6.24)

Inserting the first and second equation which are in the first line of (4.28) into (6.24), we obtain

$$\begin{aligned} \begin{aligned}&\left( \begin{array}{l} \frac{1}{2}A_t V^n\cdot P^{n,\star } \\ \frac{A_t u^n}{\tau _v} \end{array} \right) \cdot \delta _t^+ {\mathbf {u}}^n - \nabla _h^-\cdot \left( \begin{array}{l} \epsilon ^2 A_tU^n\cdot \varvec{R}^{n,\star } \\ D\cdot \nabla _h^+A_t u^n \end{array} \right) \cdot \delta _t^+ {\mathbf {u}}^n\\&= -(A_t {\varvec{\mu }^n}) ^T\cdot \varvec{M}\left( {\overline{\Theta }}^{n,\star } \right) \cdot A_t\varvec{\mu ^n}+{\mathbf {g}}({\mathbf {u}}^{n,\star })\cdot A_t \varvec{\mu }^n . \end{aligned} \end{aligned}$$
(6.25)

With the aid of Lemma 2.3, we have

$$\begin{aligned} \begin{aligned}&\epsilon ^2 A_t U^n\cdot \varvec{R}^{n,\star }\cdot \delta _t^+\nabla _h^+\phi ^n+\frac{1}{2}A_t V^n \cdot P^{n,\star }\cdot \delta _t^+\phi ^n\\&\quad +\frac{A_t u^n}{\tau _v}\delta _t^+ u^n+(\delta _t^+\nabla _h^+ u^n)^T\cdot D\cdot \nabla _h^+A_t u^n- \nabla _h^+\cdot \left( A_t \overline{\varvec{H}}^n\cdot \delta _t^+{\mathbf {u}}^n \right) \\&\quad +\left( A_t \varvec{\mu }^n\right) ^T\cdot \varvec{M}({\overline{\Theta }}^{n,\star })\cdot A_t \varvec{\mu }^n = {\mathbf {g}}\left( {\mathbf {u}}^{n,\star } \right) \cdot A_t \varvec{\mu }^n.\\ \end{aligned} \end{aligned}$$
(6.26)

Inserting the last two equations of (4.28) into the time derivative of local energy (4.27), we arrive at

$$\begin{aligned} \begin{aligned} \delta _t^+E^n = ~&\epsilon ^2 A_t U^n\cdot \varvec{R}^{n,\star }\cdot \delta _t^+\nabla _h^+\phi ^n+\frac{1}{2}A_t V^n \cdot P^{n,\star }\cdot \delta _t^+\phi ^n\\&+\frac{A_t u^n}{\tau _v}\delta _t^+ u^n+(\delta _t^+\nabla _h^+ u^n)^T\cdot D\cdot \nabla _h^+A_t u^n. \end{aligned} \end{aligned}$$
(6.27)

Combining all the results, we complete the proof.

d. Proof of Theorem 4.4:  We multiply \(A_t \varvec{\mu }^n\) and \(\delta _t^+ {\mathbf {u}}^n\) on both sides of the second and third equation in (4.34), respectively, we have

$$\begin{aligned} \left\{ \begin{aligned}&\delta _t^+ {\mathbf {u}}^n \cdot A_t \varvec{\mu }^n = -(A_t {\varvec{\mu }^n}) ^T\cdot \varvec{M}\left( {\overline{\Theta }}^{n,\star } \right) \cdot A_t\varvec{\mu ^n}+{\mathbf {g}}({\mathbf {u}}^{n,\star })\cdot A_t \varvec{\mu }^n ,\\&A_t \varvec{\mu }^n\cdot \delta _t^+ {\mathbf {u}}^n = A_t\varvec{k}^n\cdot \delta _t^+ {\mathbf {u}}^n-\nabla _h^+\cdot A_t \varvec{H}^n\cdot \delta _t^+ {\mathbf {u}}^n, \end{aligned} \right. \end{aligned}$$
(6.28)

Inserting the first and second equation which are in the first line of (4.34) into (6.28), we have

$$\begin{aligned} \begin{aligned}&\left( \begin{array}{l} \frac{1}{2}A_t V^n\cdot P^{n,\star } \\ \frac{A_t u^n}{\tau _v} \end{array} \right) \cdot \delta _t^+ {\mathbf {u}}^n - \nabla _h^+\cdot \left( \begin{array}{l} \epsilon ^2 A_tU^n\cdot \varvec{R}^{n,\star } \\ D\cdot \nabla _h^-A_t u^n \end{array} \right) \cdot \delta _t^+ {\mathbf {u}}^n\\&= -(A_t {\varvec{\mu }^n}) ^T\cdot \varvec{M}\left( {\overline{\Theta }}^{n,\star } \right) \cdot A_t\varvec{\mu ^n}+{\mathbf {g}}({\mathbf {u}}^{n,\star })\cdot A_t \varvec{\mu }^n . \end{aligned} \end{aligned}$$
(6.29)

With the aid of Lemma 2.4, we have

$$\begin{aligned} \begin{aligned}&\epsilon ^2 A_t U^n\cdot \varvec{R}^{n,\star }\cdot \delta _t^+\nabla _h^-\phi ^n+\frac{1}{2}A_t V^n \cdot P^{n,\star }\cdot \delta _t^+\phi ^n\\&\quad +\frac{A_t u^n}{\tau _v}\delta _t^+ u^n+(\delta _t^+\nabla _h^- u^n)^T\cdot D\cdot \nabla _h^-A_t u^n- \nabla _h^-\cdot \left( A_t \widetilde{\varvec{H}}^n\cdot \delta _t^+{\mathbf {u}}^n \right) \\&\quad +\left( A_t \varvec{\mu }^n\right) ^T\cdot \varvec{M}({\overline{\Theta }}^{n,\star })\cdot A_t \varvec{\mu }^n = {\mathbf {g}}\left( {\mathbf {u}}^{n,\star } \right) \cdot A_t \varvec{\mu }^n.\\ \end{aligned} \end{aligned}$$
(6.30)

Inserting the last two equations of (4.34) into the time derivative of energy density (4.33), we arrive at

$$\begin{aligned} \begin{aligned} \delta _t^+E^n = ~&\epsilon ^2 A_t U^n\cdot \varvec{R}^{n,\star }\cdot \delta _t^+\nabla _h^-\phi ^n+\frac{1}{2}A_t V^n \cdot P^{n,\star }\cdot \delta _t^+\phi ^n \\&+\frac{A_t u^n}{\tau _v}\delta _t^+ u^n+(\delta _t^+\nabla _h^- u^n)^T\cdot D\cdot \nabla _h^-A_t u^n. \end{aligned} \end{aligned}$$
(6.31)

Inserting (6.31) into (6.30), we complete the proof.

e. Proof of Theorem 4.5:  Multiplying \(A_tA_xA_y\varvec{\mu }^n\), \(\delta _t^+A_xA_y{\mathbf {u}}^n\) on both sides of the second and third equation in(4.39), we obtain

$$\begin{aligned} \left\{ \begin{aligned}&\delta _t^+A_xA_y{\mathbf {u}}^n \cdot A_tA_xA_y\varvec{\mu }^n= -\left( A_t A_xA_y\varvec{\mu }^n\right) ^T\cdot \varvec{M}({\overline{\Theta }}^{n,\star })\cdot A_t A_xA_y\varvec{\mu }^n +{\mathbf {g}}(A_xA_y{\mathbf {u}}^{n,\star })\cdot \\ {}&A_tA_xA_y\varvec{\mu }^n, A_tA_xA_y\varvec{\mu }^n \cdot \delta _t^+A_xA_y{\mathbf {u}}^n = A_tA_xA_y\varvec{k}^n\cdot \delta _t^+A_xA_y{\mathbf {u}}^n - {\overline{\nabla }}_h\cdot A_t\varvec{H}^n\\ {}&\cdot \delta _t^+A_xA_y{\mathbf {u}}^n. \end{aligned} \right. \end{aligned}$$
(6.32)

Combing the two equations, we have

$$\begin{aligned} \begin{aligned}&\left( \begin{array}{l} \frac{1}{2}A_t A_xA_yV^n\cdot A_xA_yP^{n,\star } \\ \frac{A_t A_xA_yu^n}{\tau _v} \end{array} \right) \cdot \delta _t^+ A_xA_y{\mathbf {u}}^n- {\overline{\nabla }}_h\cdot A_t \varvec{H}^n\cdot \delta _t^+A_xA_y{\mathbf {u}}^n\\&= -\left( A_t A_xA_y\varvec{\mu }^n\right) ^T\cdot \varvec{M}({\overline{\Theta }}^{n,\star })\cdot A_t A_xA_y\varvec{\mu }^n +{\mathbf {g}}(A_xA_y{\mathbf {u}}^{n,\star })\cdot A_tA_xA_y\varvec{\mu }^n, \end{aligned} \end{aligned}$$
(6.33)

with the aid of Lemma 4.1, the term \(- {\overline{\nabla }}_h\cdot A_t\varvec{H}^n\cdot \delta _t^+A_xA_y{\mathbf {u}}^n\) can be transformed into

$$\begin{aligned} - {\overline{\nabla }}_h\cdot A_t\varvec{H}^n\cdot \delta _t^+A_xA_y{\mathbf {u}}^n =\,&-\nabla _h^{[1]}\cdot \left( \delta _t^+{\mathbf {u}}^n \cdot A_t\varvec{H}^n \right) \nonumber \\&+\left( \begin{matrix} \epsilon ^2 A_t A_xA_yU^n\cdot A_xA_y\varvec{R}^{n,\star } \\ D\cdot {\overline{\nabla }}_hA_t u^n \end{matrix} \right) \cdot \delta _t^+{\overline{\nabla }}_h{\mathbf {u}}^n. \end{aligned}$$
(6.34)

Then, we have

$$\begin{aligned} \begin{aligned}&\epsilon ^2 A_t A_xA_yU^n\cdot A_xA_y\varvec{R}^{n,\star }\cdot \delta _t^+{\overline{\nabla }}_h\phi ^n+\frac{1}{2}A_t A_xA_yV^n \cdot A_xA_yP^{n,\star }\cdot \delta _t^+ A_xA_y\phi ^n\\&\qquad +\frac{A_t A_xA_yu^n}{\tau _v}\delta _t^+ A_xA_y u^n\\&\qquad +(\delta _t^+{\overline{\nabla }}_h u^n)^T\cdot D\cdot {\overline{\nabla }}_hA_t u^n - \nabla _h^{[1]}\cdot \left( A_t \varvec{H}^n\cdot \delta _t^+{\mathbf {u}}^n \right) \\&\qquad + \left( A_t A_xA_y\varvec{\mu }^n\right) ^T\cdot \varvec{M}({\overline{\Theta }}^{n,\star })\cdot A_t A_xA_y\varvec{\mu }^n\\&\quad ={\mathbf {g}}(A_xA_y{\mathbf {u}}^{n,\star })\cdot A_t A_xA_y\varvec{\mu }^n \end{aligned} \end{aligned}$$
(6.35)

Inserting the last two equations of (4.39) into (4.38) arrives at

$$\begin{aligned} \begin{aligned} \delta _t^+ E^n&= \epsilon ^2 A_t A_xA_yU^n\cdot A_xA_y\varvec{R}^{n,\star }\cdot \delta _t^+{\overline{\nabla }}_h\phi ^n+\frac{1}{2}A_t A_xA_yV^n \cdot A_xA_yP^{n,\star }\cdot \delta _t^+ A_xA_y\phi ^n\\&\quad +\frac{A_t A_xA_yu^n}{\tau _v}\delta _t^+ A_xA_y u^n+(\delta _t^+{\overline{\nabla }}_h u^n)^T\cdot D\cdot {\overline{\nabla }}_hA_t u^n. \end{aligned} \end{aligned}$$
(6.36)

Inserting (6.36) into (6.35), we complete the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Wang, Q., Song, Y. et al. Local Energy Dissipation Rate Preserving Approximations to Driven Gradient Flows with Applications to Graphene Growth. J Sci Comput 90, 6 (2022). https://doi.org/10.1007/s10915-021-01676-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01676-9

Keywords

Navigation