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Abstract. We study the problem of predicting highly localized low-lying

eigenfunctions (−∆ +V )φ = λφ in bounded domains Ω ⊂ Rd for rapidly vary-
ing potentials V . Filoche & Mayboroda introduced the function 1/u, where

(−∆ + V )u = 1, as a suitable regularization of V from whose minima one can

predict the location of eigenfunctions with high accuracy. We proposed a fast
method that produces a landscapes that is exceedingly similar, can be used

for the same purposes and can be computed very efficiently: the computation

time on an n×n grid, for example, is merely O(n2 logn), the cost of two FFTs.
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1. Introduction

1.1. The Landscape Function. Eigenfunctions of elliptic differential operators
are typically of comparable size throughout the domain. However, underlying back-
grounds composed of inhomogenious materials will sometimes produce localized
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vibration patterns. Let Ω ∈ Rd be an open, bounded domain in which we consider

(−∆ + V )φ = λφ in Ω

φ = 0 on ∂Ω.

Here V : Ω→ R≥0 is a real-valued, nonnegative potential which one should assume
to be rapidly oscillating or possibly changing its behavior rapidly from one region to
the next; in this setting, low-lying eigenfunctions that are strongly localized in space
become possible [4]. Since low-lying eigenfunctions of such a Schrödinger operator
determine the long-time behavior of many associated dynamical systems (say, the
heat equation, the wave equation or the Schrödinger equation), they are of obvious
interest. Filoche & Mayboroda [12] provided an astonishingly effective method to
predict the behavior of low-energy eigenfunctions for such operators −∆+V . They
define the landscape function as the unique function u : Ω : R→ R solving

(−∆ + V )u = 1 in Ω

u = 0 on ∂Ω

and show that u exerts pointwise control on all eigenfunctions (−∆ + V )φ = λφ

|φ(x)| ≤ λu(x)‖φ‖L∞(Ω).

An eigenfunction φ can only localize in {x : u(x) ≥ 1/λ} ⊂ Ω. This inequality,
however, is not the full story: the landscape function is much more effective than is
indicated by that inequality alone. Numerical experiments [5, 7, 12, 13, 14] suggest
that the largest local maxima correspond precisely to the location where the first few
eigenfunctions localize and that many more properties (including refined eigenvalue
estimates and improvements on the Weyl law) are being captured. A different way
of thinking about it as that the inverse 1/u acts as a suitably regularized potential.
The accuracy of these refined predictions is quite striking and have already led to
many interesting results [5, 6, 7, 8, 9, 12, 13, 14, 15, 18, 19, 21].

1.2. The Universal Kernel. The main problem is to extract the localization
information out of the potential V . The landscape function does this by solving
(−∆ + V )u = 1. In a recent work [25], the third author proposed an alternative
approach: the starting point is the interpretation of localized eigenstates as critical
points of

J(φ) =

∫
Ω

|∇φ(x)|2dx+

∫
Ω

V (x)φ(x)2dx

(subject to some orthogonality condition with respect to earlier eigenfunctions).
This energy functional clearly illustrates that the relevant quantity is not the point-
wise value of V but, as seen in the second integral, the integral average of V over
a certain scale. One question remains: which average? If kt is a smooth, radial,
probability density centered at the origin and having most of its mass at a ball
of radius ∼

√
t (the scaling is motivated by the Theorem below), we could see

what happens in our PDE when we replace the potential V by a slightly smoothed
version:

−∆φ(x) + (V ∗ kt)(x)φ(x) = λφ(x) + error(x, t).

Certainly, the error will now depend on which type of kernel kt we choose. As it
turns out, there is a unique distinguished kernel that results in the best possible
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dependence of the error term. This kernel kt : Rd → R≥0 is given by

kt(x) =
1

t

∫ t

0

exp
(
−‖x‖2/(4s)

)
(4πs)d/2

ds.

The kernel depends only on a scale parameter t > 0 and the dimension d of the
domain Ω ⊂ Rd. We note that, in practice, the boundary conditions of the domain
Ω should also be relevant. However, in the setting that we consider, the potential
V implicitly isolates subregions: whenever V is large, or ‘larger than average’, low-
frequency eigenfunctions will be small in that region, leading to boundary conditions
that have a negligible effect. This is also in line with the discussion in [5, 6, 7,
12, 13, 14]: the boundary conditions are only relevant near the boundary since
localized solutions eigenfunctions have, unless localized near the boundary, limited
interaction with the boundary.

0 0

Figure 1. The radial profile of the convolution kernel kt(r) in
d = 1 dimensions (left) and d = 2 (right) that we derive below.

We quickly comment on the distinguished role that the kernel plays. As indicated
above, what is special about this kernel is that the error term depends linearly on
t (which is not too surprising: the average is taken over a ball of radius ∼

√
t,

the linear part cancels) with a constant depending only on φ and ‖V ‖L∞ . It is not
difficult to see that by changing the kernel a tiny bit, one usually expects a change
that is dependent on the size of ∆V (which may not even be defined since V ∈ L∞).

Theorem ([25]). Let Ω ⊂ Rn be an open, bounded domain with smooth boundary,
let 0 ≤ V ∈ C(Ω) be a continuous potential and let φ be a solution of

(−∆ + V )φ = λφ in Ω

φ = 0 on ∂Ω.

Then, for any fixed x ∈ Ω, as t→ 0, we have, for kt as above,

−∆φ(x) + (V ∗ kt)(x)φ(x) = λφ(x) +Oφ,‖V ‖L∞ (t),

where the implicit constant depends only on φ and ‖V ‖L∞ .

It is also shown that the landscape function (−∆+V )u = 1 has a natural connection
to this universal kernel and exhibits a similar type of stability property

−∆u(x) + (V ∗ kt)(x)u(x) = 1 +Ou,‖V ‖L∞ (t).
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Other methods for the purpose of fast computation of the location of localized
low-lying eigenfunctions have been proposed [1, 2, 3, 17, 20, 24]. We also mention
a curious localization phenomenon for Neumann boundary conditions [11, 16, 22]
that does seem to be of a different overall flavor.

2. Fast Prediction of Localized Eigenstates

We can now present the main contributions of this paper:

(1) an alternative formulation of the universal convolution kernel that reduces
the problem to two applications of the Fast Fourier Transform. This has a
dramatic effect on computational cost, allowing computations on a discrete
n× n grid to be done in O(n2 log n) allowing for much finer resolution.

(2) exhaustive tests showing that kt∗V has remarkable agreement with the reg-
ularized kernel 1/u derived from the landscape function and has comparable
predictive power (partially explained by the results mentioned above).

(3) and some results showing how the underlying idea can be extended to other
operators, with special emphasis on the fractional Laplacian (−∆)α and the
bi-Laplacian (−∆)2.

We first discuss, in §2.1, the main idea behind the universal convolution kernel and
how we will use it. §2.2 contains a precise description of the fast algorithm. §2.3
discusses the extension to other operators with special emphasis on the fractional
Laplacian (−∆)α. Numerical Results are given in §3.

2.1. The Main Idea. We first explain the main idea behind the universal kernel:
in [25], this was derived using the Feynman-Kac formula, here we present a simpler
motivation that only relies on the Duhamel principle. Let us suppose that

(−∆ + V )φ = λφ.

We can then solve the heat propagator associated to the equation

∂u

∂t
−∆u = −V u

starting with the initial condition u(0, x) = φ(x). Since eigenfunctions diagonalize
that operator, we have u(t, x) = e−λtφ(x). In particular, the solution changes
slowly and u(t, x) ∼ (1 − λt)φ(x) for t small. At the same time, we can interpret
this as an equation of the type ut−∆u = f and apply Duhamel’s principle leading
to

u(t, x) = et∆φ+

∫ t

0

e(t−s)∆f(s, x)ds.

However, since we know the explicit solution, we have

f(s, x) = −V (x)u(s, x) = −V (x)e−λsφ(x).

We see that φ appears on all sides of the equation whereas V appears in exactly
one spot; what turns out to be relevant is the quantity

Vt =
1

t

∫ t

0

e(t−s)∆V ds.

However, et∆f is simply the convolution with a Gaussian and thus Vt can also be
written as a convolution of averaged Gaussians. We refer to [25] for details.
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2.2. The Choice of t. In summary, we have described a natural kernel kt such
that Vt = kt ∗ V serves as a canonical mollification of the potential at scale ∼

√
t.

It remains to understand how one should choose t. We emphasize that one of the
advantages of our method being so fast is that one would reasonably check various
values of t. It is clear from the motivation that we would like

√
t (the scale of the

convolution kernel kt) to roughly correspond to the scale where most of the mass
of the eigenfunction is supported – the goal is to understand that scale without
computing the eigenfunction first. Let us now suppose that V ≥ 0 is given and
that we have an eigenfunction

−∆φ+ V φ = λφ.

We can assume w.l.o.g. that the eigenfunction is mostly supported at scale ∼ r and
is normalized in L2, then multiplying by φ and integrating by parts shows∫

B(x0,r)

|∇φ|2dx+

∫
B(x0,r)

V (x)φ(x)2dx = λ+ very small error,

where the very small error comes from the mass of the eigenfunction outside the
ball (which for the heuristic reasoning in this section we only need to be smaller
than, say, λ/2). Since these eigenfunctions are usually exponentially decaying, this
is not a strong assumption. This computation does assume Dirichlet boundary
conditions on ∂Ω but remains valid or very nearly valid in the general case for the
same reason. We now try to understand the scaling of the first term: if φ is a bump
function with ‖φ‖L∞ = h, then the L2−normalization implies

h2rd ∼ 1 and thus

∫
B(x0,r)

|∇φ|2dx ∼
(
h2

r2

)
rd =

1

r2
.

At the same time, we expect that∫
B(x0,r)

V (x)φ(x)2dx ∼ h2

∫
B(x0,r)

V (x)dx

and we also expect that both terms should yield roughly the same contribution; if
the gradient term was much larger, we would find a function with smaller energy
by spreading out (note that in our setting, orthogonality tends to be less of an
issue since we are only looking at localized low-frequency eigenfunctions). If the
potential term was much larger, we may prefer to localize in a slightly smaller area
(and preferably one where the potential is slightly smaller on average). Thus, we
expect that

1

r2
∼ h2

∫
B(x0,r)

V (x)dx.

Multiplying both sides of the equation with r2 and using h2rd ∼ 1 gives

1 ∼ 1

rd−2

∫
B(x0,r)

V (x)dx

and thus suggests a natural scale definition of an eigenfunction at x0 as

r(x0, V ) = sup

{
r > 0 :

1

rd−2

∫
B(x0,r)

V (x)dx ≤ 1

}
.
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This is equivalent to a concept introduced by Fefferman & Phong [10]. In particular,
we expect that

1

r(x0, V )2
∼
∫
B(x0,r)

|∇φ|2dx ∼ λ.

This has been made precise [10]. From a proof given by Shen [23], we have∫
Ω

|φ(x)|2

r(x, V )2
dx .d

∫
Ω

|∇φ|2dx+

∫
Ω

V (x)φ(x)2dx.

In particular, this tells us that when looking for low-frequency localized eigenfunc-
tion near a point x0, we should select t ∼ r(x0, V )2.

2.3. The Fast Algorithm. We will now describe the fast algorithm. Since all
the computations ultimately happen on a discretization of the underlying domain
(see, for example, [3] or [7]), we will describe the algorithm on a discretization of
Ω = [0, 1)2 with periodic boundary conditions. The extension to higher dimensions
will be obvious. We quickly note that this is, in some sense, the most general
domain: the underlying impact of the potential to the localized eigenfunctions is
ultimately local. It therefore does not matter whether we solve the problem on a
square or on any other domain (and, for the same reason, it does not matter which
boundary condition is imposed). In particular, we choose periodic boundary con-
dition for the simplicity in applying fast Fourier transform (FFT). Other boundary
conditions can also be used with corresponding changes to the algorithm. For ex-
ample, a fast discrete sine transform can be used for Dirichlet boundary conditions.

Description of the Algorithm. We assume the domain [0, 1)2 is discretized with
uniform grid with mesh size h = 1

n , the resulting grid will be denoted by Ωh. We
consider the discrete Laplacian ∆h defined by

(1) (∆hf)(x, y) =
1

h2

(
f(x+h, y)+f(x−h, y)+f(x, y+h)+f(x, y−h)−4f(x, y)

)
.

Define the discrete Fourier transform for (ξ, η) ∈ Ω∗h = (2π)
{

0, 1, . . . , n− 1
}2

(2) f̂(ξ, η) = h2
∑

(x,y)∈Ωh

e−i(ξx+ηy)f(x, y).

The inverse Fourier transform is given by

(3) f(x, y) =
∑

(ξ,η)∈Ω∗h

ei(ξx+ηy)f̂(ξ, η).

In particular, we observe that

(4)
∆̂hf(ξ, η) =

1

h2

(
e−iξh + eiξh + e−iηh + eiηh − 4

)
f̂(ξ, η)

= − 4

h2

(
sin2

(ξh
2

)
+ sin2

(ηh
2

))
f̂(ξ, η) =: Mh(ξ, η)f̂(ξ, η),

where the last equality defines the Fourier multiplier associated with the discrete
Laplacian. To construct the convolutional kernel corresponding to the discrete
operator, we consider the parabolic equation

∂tu = ∆hu, in (0,∞)× Ωh;(5)

u(t = 0, ·) = g, on Ωh.(6)
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To obtain the corresponding semi-group, by taking the Fourier transform we have

(7) ∂tû(t, ξ, η) = Mh(ξ, η)û(t, ξ, η),

and thus

(8) û(t, ξ, η) = etMh(ξ,η)û(0, ξ, η) = etMh(ξ,η)ĝ(ξ, η).

The convolutional landscape funciton (at scale t) is given by

(9) Wt(x, y) = h2
∑

(x′,y′)∈Ωh

Gt(x− x′, y − y′)V (x′, y′),

where the convolutional kernel Gt is given by the time average of the semigroup of
the parabolic equation (5). In the Fourier space, it is thus

(10) Ĝt(ξ, η) =
1

t

∫ t

0

esMh(ξ,η)ds =
1

tMh(ξ, η)

(
etMh(ξ,η) − 1

)
.

The above is well defined for any non-zero (ξ, η) ∈ Ω∗h; since we have periodic

boundary conditions, w.l.o.g. we can set Ĝt(0, 0) = 1. The algorithm for computing
Wt is as follows

• Given V a grid function on Ωh, compute the discrete Fourier transform V̂
by FFT algorithm;

• For each nonzero (ξ, η) ∈ Ω∗h, define

(11) Mh(ξ, η) := − 4

h2

(
sin2

(ξh
2

)
+ sin2

(ηh
2

))
,

and calculate Ĝt(ξ, η) according to (10);
• For each nonzero (ξ, η) ∈ Ω∗h, calculate

(12) Ŵt(ξ, η) = Ĝt(ξ, η)V̂ (ξ, η);

• Obtain Wt by an inverse discrete Fourier transform applying on Ŵt using
FFT algorithm.

The main computational cost of the algorithm amounts to two applications of FFT,
and hence is of size O(n2 log n).

2.4. The Fractional Laplacian. Our approach is more widely applicable: the key
ingredients are a good understanding of the short-time behavior of the associated
parabolic equation, and such estimates are widely available. We illustrate this with
the fractional Laplacian

(−∆)αu+ V u = λu.

Since we are working with the uniform grid in domain [0, 1)2 with periodic bound-
ary condition, we can define the fractional Laplacian spectrally to avoid the usual
difficulties in properly defining the fractional Laplacian on a bounded domain. For
any α ≥ 0, we define the fractional Laplacian as the operator that sends

(−∆)αei(ξx+ηy) =
(
|ξ|2 + |η|2

)α
ei(ξx+ηy)

for complex exponentials with (ξ, η) ∈ Ω∗h = (2π)
{
−N/2,−N/2 + 1, . . . , N/2−1

}2
.

Naturally, we recover the standard Laplacian (with pseudospectral discretization)
for α = 1. We see that 0 < α < 1 impacts the extent to which frequencies get
dampened: the smaller α, the more contribution we get from small frequencies.
Formulated on the spatial side, the operator (−∆)α is non-local and α governs
the scale of the of non-locality. The smaller α, the stronger the non-locality and



8

the harder it becomes for eigenstates to localize. Nonetheless, our method remains
applicable. Setting

Mh(ξ, η) = −
(
|ξ|2 + |η|2

)α
,

we have the corresponding multiplier completely unchanged

(13) Ĝt(ξ, η) =
1

t

∫ t

0

esMh(ξ,η)ds =
1

tMh(ξ, η)

(
etMh(ξ,η) − 1

)
and we can proceed as above. We refer to §3.5 for numerical examples.

3. Numerical Results

This section discusses a variety of numerical results. We first show, in §3.1, that
the regularized potential Wt = kt ∗ V approximates the landscape function fairly
well. This is further evidence that the two notions are, on some level, connected
(see also [25, Theorem 2]). In particular, if one were to solve (−∆ + V )u = 1 by
means of an iterative method, Wt may be a good initial value to choose from. In
§3.2. we investigate to what extent the local minima of Wt do indeed correspond
to low-frequency eigenfunctions and, conversely, analyze how many low-frequency
eigenfunctions are being detected by the local minima.

3.1. Setup. We use the same uniform setup for all examples: computations were
carried out on a 256× 256 grid with boundary identified to obtain the Torus geom-
etry. The potential V at each point is an i.i.d. random variable chosen uniformly
from [0, Vmax]. For small values of Vmax, the corresponding eigenfunctions are quite
delocalized – as Vmax increases, eigenfunctions become more localized and we have
chosen parameters to cover that entire range, this happens to be 1 ≤ Vmax ≤ 5. For
each setting of Vmax, we simulated 100 random instances on which we solved the
eigenvalue problem, computed the Filoche-Mayboroda Landscape function 1/u and
our regularized potential Wt for various choices of t. In each instance, we compute
the first 64 true eigenfunctions for −∆+V . For both the landscape function as well
as the regularized potential, we look for the 16 smallest local minima and ordered
them increasing in size. We say that a local minimum has found an eigenfunction
whenever the grid point in which the minimum occurs and the grid point in which
an eigenfunction has its largest absolute value are at most 5h (in Euclidean dis-
tance) apart (recall that h is the mesh size); we then associate that eigenfunction
to that minimum. This will usually lead to us localizing 16 eigenfunctions (which,
by default, are always taken from the first 64).

We used the following test-statistics to quantify the performance of various ap-
proaches:

(1) Eigenvalue Ratios (EigRat)
(2) The First Missing Eigenfunction (FirstMissEig)
(3) The First Unused Minimum (FirstMissMin)
(4) The Number of Unused Minima (DismissedMin)

3.1.1. The Eigenvalue Ratio. Given our 16 local minima, we associate a number
of eigenfunctions φi1 , . . . , φik to them. We would ideally like to have k = 16, but
it certainly occurs that some of the first minima do not correspond to any of the
first 64 eigenfunctions; in that case k is the number of minima with corresponding
eigenvalues. Moreover, we would ideally like i1 = 1, i2 = 2, .... However, this again
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is a misleading metric since the quantity relevant to the underlying physical system
is, in actuality, given by the eigenvalue. Thus, for each such realization, we define
the eigenvalue ratio EigRat via

EigRat =
λi1 + · · ·+ λik
λ1 + · · ·+ λk

.

This number is always at least 1. The smaller this number is, the closer it is to 1,
the better we perform at finding low-frequency localized eigenstates.

3.1.2. The First Missing Eigenfunction. Once we have found our 16 local minima
and associated (at most) 16 eigenfunctions to it. However, these eigenfunctions
will, generally, not be in order and there is certainly an eigenfunction φk which is
not being found by any of the 16 local minima. FirstMissEig simply returns the
smallest value k for which this happens, the smallest eigenfunction that is being
missed by the first 16 minima. The larger FirstMissEig, the better the method
performs at finding all small eigenfunctions.

3.1.3. The First Unused Minimum. After having found the first 16 minima and
ordering them in increasing size, it will usually happen that some minimum will
not correspond to any nearby eigenfunction. FirstMissMin lists the smallest (as
ordered by size) index of a minimum that does not correspond to one of the first
64 eigenfunctions. The smaller the value in the minimum, the more strongly we
expect it to correspond to a small eigenfunction and thus, for FirstMissMin, the
larger the value, the better.

3.1.4. The Number of Unused Minima. In a similar spirit as FirstMissMin, Dis-
missedMin counts the number of the first 16 minima that do not end up corre-
sponding to one of the first 64 eigenfunctions. The smaller the number, the better.

Figure 2. The landscape function and Wt. We see that the re-
sulting pictures are visually quite similar (see §3.2).
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These statistics are designed to capture aspects of an ideal approximating potential:
it finds most low-frequency eigenfunctions accurately and roughly in the right order
(where errors are to be measured in terms of the actual eigenvalues as opposed to
the ordering itself). Moreover, most minima are supposed to correspond to local
eigenfunctions. We emphasize that there are many other notions of quality that
could be used.

Vmax = 2 ‖ · − · ‖L1 ‖ · − · ‖L2 ‖ · − · ‖L∞
t=0.10 0.092 0.120 0.446
t=0.25 0.071 0.087 0.318
t=0.40 0.065 0.075 0.233

Vmax = 5 ‖ · − · ‖L1 ‖ · − · ‖L2 ‖ · − · ‖L∞
t=0.5 0.067 0.083 0.309
t=1.0 0.058 0.071 0.252
t=1.5 0.053 0.063 0.211

Table 1. The average difference between (normalized) landscape
function and (normalized) regularized potential Wt (see §3.2).

3.2. Approximation to 1/u. The purpose of this section is to point out that,
visually, both the landscape function as well as our regularization are often quite
similar (see Fig. 2). The effect is rather striking in d = 1 dimensions (see the exam-
ples in [25]). We briefly compare this by considering the Lp norm between the two
types of regularized potentials. Since we eventually end up localizing eigenfunctions
by looking at the location of minima of the respective functions, we normalize them
to assume minimal value 0 and maximal value 1. A comparison between the two
functions shows that they are typically quite close. We see that the similarity in all
norms increases with larger values of t. One should interpret this with great care:
for the purpose of localization, we care about the location and the value of the
minima – this is not easily captured by comparing Lp−norms. However, the results
discussed in this section do suggest that both methods, the landscape function and
the regularized potential, capture the same type of object.

3.3. Summary of Results. We observe that our approach yields satisfying results
across a wide range of parameters; indeed, we observe that, in the setting we
study, our approach generally leads to results that are superior to that of the
landscape functions in the setting where eigenfunctions are localized over a wider
area (Vmax ∈ {1, 1.5, 2}). For more localized eigenfunctions (Vmax ∈ {5}), the
landscape function produces more accurate results. Both methods seem to be more
or less comparable – both tend to find low-frequency eigenfunctions with remarkable
efficiency (the values of EigRat are very close to 1). Our method has also proven
remarkably robust for many values of t (there is an overall tendency that picking the
scale of the kernel to be roughly at the scale of the eigenfunction leads to slightly
better results, we refer to §2.2. for what we would expect this scale to be in the
setting of a random potential).

3.3.1. Fairly delocalized eigenfunctions, Vmax = 1. We start with the case where
each lattice point assumes a random value in [0, 1]. We see (in Fig. 3) that this
leads to dispersed eigenfunctions that are spread out over a large area. We see
that, for all values of t, our method finds eigenfunctions corresponding to small
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Figure 3. Two instances of Vmax = 1 and the first 20 eigenfunc-
tions on each (colored by sign).

EigRat FirstMissEig FirstMissMin DismissedMin
Landscape 1/u 1.0094 3.19 6.55 3.32

t=0.01 1.0103 2.13 1.66 3.32
t=0.05 1.0030 7.35 6.39 2.84
t=0.10 1.0031 8.01 8.20 1.49
t=0.20 1.0063 5.45 8.80 1.80

Table 2. Statistics for Vmax = 1.

eigenvalues – however, it rarely finds all of them and FirstMissEig, the average
index of the first eigenfunction not uncovered by the first 16 minima, is quite
small. However, the moment t corresponds to slightly more localized kernels, we
obtain very strong results: the first 16 local minima uncover, on average, the first
7 eigenfunctions exactly and, moreover, the first 6 minima do correspond to one of
the first few eigenfunctions.

3.3.2. Moderately delocalized eigenfunctions, Vmax = 1.5. Our next case deals with
eigenfunctions that may still be spread out over larger regions, but tend to be more
concentrated on average (see Fig. 4). We observe again that both the landscape as
well as our method perform remarkably well. For a suitable range of parameters,
virtually all minima correspond to local eigenfunctions. In that regime we also
observe that our method finds twice as many low-frequency eigenfunctions as the
landscape function. EigRat is uniformly small.

3.3.3. Localized eigenfunctions, Vmax = 2. The next case, the potential assuming
i.i.d. values uniformly in [0, 2], corresponds to even better behaved eigenfunctions
which now exhibit a strong-form concentration (see Fig. 5): very few are spread
out, though all of them extend over a certain nontrivial region. Again, we observe
stability and efficiency of our method for a wide range of parameters.
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Figure 4. Two instances of Vmax = 1.5 and the first 20 eigen-
functions on each (colored by sign).

EigRat FirstMissEig FirstMissMin DismissedMin
Landscape 1/u 1.0097 4.17 8.01 2.52

t=0.06 1.0071 4.50 6.30 2.42
t=0.12 1.0032 7.91 8.27 1.03
t=0.18 1.0036 7.9 9.17 0.81
t=0.24 1.0050 6.92 10.05 0.87
t=0.30 1.0061 6.13 10.39 1.11

Table 3. Statistics for Vmax = 1.5.

Figure 5. Two instances of Vmax = 2 and the first 20 eigenfunc-
tions on each (colored by sign).

3.3.4. Highly Localized eigenfunctions, Vmax = 5. Our next case corresponds to a
much larger potential, with values assigned uniformly from [0, 5], and this comes
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EigRat FirstMissEig FirstMissMin DismissedMin
Landscape 1/u 1.0097 5.13 9.64 1.80

t=0.1 1.0077 4.77 8.76 1.57
t=0.2 1.0045 7.98 9.84 0.67
t=0.3 1.0052 7.68 10.76 0.49
t=0.4 1.0068 6.76 11.06 0.73

Table 4. Statistics for Vmax = 2.

with more concentrated eigenfunctions that are now strongly localized (many of
them carry most of their mass on a 8 × 8 grid). We observe that the landscape
function produces slightly more accurate results. Both methods show remarkably
large values of FirstMissMin, which means that the minima do correspond quite
strongly to the ordering of the eigenvalues. This is, in some sense, the easiest
case: the potential is quite large which leads to strong localization properties –
in particular, the only relevant information whether there might be a localized
eigenfunction near any given point is the behavior of V in a small neighborhood
(‘small’ compared to what it would be for smaller potentials).

Figure 6. Two instances of Vmax = 5 and the first 20 eigenfunc-
tions on each (colored by sign).

EigRat FirstMissEig FirstMissMin DismissedMin
Landscape 1/u 1.0077 8.16 12.12 0.43

t=0.50 1.0149 4.60 9.89 1.35
t=0.75 1.0125 6.06 11.05 0.93
t=1.00 1.0122 6.20 10.91 0.81
t=1.25 1.0121 6.18 11.16 1.07

Table 5. Statistics for Vmax = 5.
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3.4. Comparison with Gaussian Filtering. Our approach is based on the idea
that taking suitable local averages of the potential can create a reasonable enough
approximation of the effective potential so that one can read off the location of
localized low-frequency eigenstates from the minimum of this convolution. Our
particular choice of convolution kernel is motivated by theory, however, it does
raise the question of what happens if we merely take a Gaussian (note also that
our convolution kernel is a specific superposition of Gaussians). We observe that it
suffices to change Equation (10) in the algorithm to

(14) Ĝt(ξ, η) = etMh(ξ,η).

We observe that simple Gaussian filtering by itself is also remarkably effective;
perhaps this is not all that surprising considering that the Gaussian is actually the
short time asymptotic profile of the associated parabolic equation, and seeing as
well that our kernel kt is actually a superposition of Gaussians.

Vmax = 1 EigRat FirstMissEig FirstMissMin DismissedMin
Landscape 1/u 1.0094 3.61 6.6 3.18

k0.1 ∗ V 1.0031 8.01 8.20 1.49
g0.2 ∗ V 1.0035 6.55 7.51 1.94
g0.3 ∗ V 1.0040 6.74 8.87 1.30
g0.4 ∗ V 1.0055 5.56 9.31 1.38

Vmax = 2 EigRat FirstMissEig FirstMissMin DismissedMin
Landscape 1/u 1.0096 5.27 10.14 1.64

k0.2 ∗ V 1.0045 7.98 9.84 0.67
g0.3 ∗ V 1.0092 4.56 9.23 1.52
g0.6 ∗ V 1.0048 7.58 9.67 0.75
g0.9 ∗ V 1.0061 6.65 10.34 0.65

Vmax = 5 EigRat FirstMissEig FirstMissMin DismissedMin
Landscape 1/u 1.0096 5.27 10.14 1.64

k1 ∗ V 1.0122 6.20 10.91 0.81
g1 ∗ V 1.0197 3.4 9.38 2.11
g2 ∗ V 1.0116 5.91 11.07 0.87
g3 ∗ V 1.0141 4.97 10.55 1.41

Table 6. Statistics for the landscape, the convolution with our
kernel kt and the convolution with a Gaussian gt.

Nonetheless, we do observe consistently that our kernel is better at localizing low-
frequency eigenfunctions (EigRat being smaller and FirstMissEig being larger).
However, when it comes to having minima roughly correspond with some low-
frequency eigenfunctions (DismissedMin) the Gaussian sometimes yields the best
results. The Gaussian kernel and our convolution kernel being so similar, we chose
to compare with another method of averaging that is distinctly non-Gaussian in
nature: computing the average in surrounding 3×3 and 5×5 pixel boxes and using
these averages as an effective potential; seeing as it is the local behavior of V that
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Vmax = 2 EigRat FirstMissEig FirstMissMin DismissedMin
Landscape 1/u 1.0094 3.61 6.6 3.18

k0.2 ∗ V 1.0045 7.98 9.84 0.67
g0.6 ∗ V 1.0048 7.58 9.67 0.75

3× 3 box 1.0223 2.03 3.38 6.13
5× 5 box 1.0127 3.87 7.44 2.8

Table 7. Statistics for the landscape, the convolution with our
kernel kt and a Gaussian gt and compared to the approximation
of the effective potential arising from averages over pixel boxes.

enables localization, this is not an unreasonable way of computing an average. We
see that the method works, but that it behaves quite differently from our method.

3.5. The Fractional Laplacian. As discussed in §2.3, our method naturally ex-
tends to the fractional Laplacian as well. We will quickly discuss examples for
the operator (−∆)3/4 + V , where V is again an i.i.d. random potential assuming
random values, uniformly in [0, Vmax]. We will compare the performance of our
method against the fractional Landscape 1/u, where u solves

[(−∆)α + V ]u = 1.

The problem is much harder due to strong non-locality in the operator. We adjust
Vmax such that the localization is roughly equivalent to the standard Laplacian
cases with Vmax = 1, 2, 5. To find this rough equivalence, we examine the heat-
maps generated from our standard Laplacian cases and choose Vmax such that the
local peaks are roughly the same diameter for α = 3/4. The spreading of the
eigenfunctions beyond those peaks are much larger for the fractional Laplacian
case. We found comparable Vmax values for the fractional Laplacian at α = 3/4
to be 3/40, 5/40, and 10/40. Since the discretized fractional Laplacian leads to a
dense matrix, we define it as an operator acting on vectors and use iterative solvers
for the Landscape function and eigenfunctions.

Vmax = 3/40 EigRat FirstMissEig FirstMissMin DismissedMin
fractional Landscape 1.014 2.02 4.66 5.24

t = 0.01 1.009 3.41 6.34 3.51
t = 0.02 1.011 2.55 6.05 4.13

Vmax = 5/40 EigRat FirstMissEig FirstMissMin DismissedMin
fractional Landscape 1.009 4.32 9.01 2.28

t = 0.01 1.005 6.2 7.72 1.83
t = 0.02 1.005 6.99 8.91 1.08

Vmax = 10/40 EigRat FirstMissEig FirstMissMin DismissedMin
fractional Landscape 1.009 6.73 11.7 0.61

t = 0.02 1.017 3.6 8.38 2.05
t = 0.05 1.011 5.65 11.2 1.13

Table 8. Statistics for the non-local problem (−∆)3/4 + V .
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We observe behavior that is consistent with the purely Laplacian case: as the po-
tential increases, eigenfunctions become increasingly localized and, therefore, easier
to detect. Moreover, local minima in the regularized potential carry more and more
information. As in the Laplacian case, the fractional landscape becomes more ac-
curate as eigenfunctions become more localized.

3.6. The Bi-Laplacian. We also test the bi-Laplacian operator (−∆)2 +V , where
V is again an i.i.d. random potential assuming values uniformly at random in
[0, Vmax]. We will again compare this to an adapted landscape function 1/u, where[

(−∆)2 + V
]
u = 1.

Compared with the Laplacian or the fractional Laplacian examples tested, the
bi-Laplacian operator is much more singular. We again adjust Vmax such that
the localization is roughly equivalent to the standard Laplacian trials with Vmax =
1, 2, 5. By similar procedure as for the fractional Laplacian case, we find comparable
Vmax values for the bi-Laplacian to be 1/200000, 4/200000, and 10/200000. Note
that the potential value is much smaller due to the stronger singularity of the
bi-Laplacian operator. For discretization, we simply take the square of the finite
difference approximation of the Laplacian operator, which is still quite sparse.

Vmax = 1/200000 EigRat FirstMissEig FirstMissMin DismissedMin
Landscape 1/u 1.011 3.73 5.97 3.42

(−∆)2− Landscape 1.006 6.7 1.06 8.3
t = 2 · 10−3 1.005 5.85 7.73 1.65
t = 6 · 10−3 1.001 10.05 9.80 0.5

Vmax = 4/200000 EigRat FirstMissEig FirstMissMin DismissedMin
Landscape 1/u 1.022 2.7 5.09 5.06

(−∆)2− Landscape 1.005 7.92 11.34 0.24
t = 1 · 10−2 1.013 3.94 10.28 1.02
t = 1 · 10−1 1.006 7.73 11.78 0.32

Vmax = 10/200000 EigRat FirstMissEig FirstMissMin DismissedMin
Landscape 1/u 1.037 1.83 3.6 5.83

(−∆)2− Landscape 1.005 9.03 10.6 0.19
t = 1 · 10−1 1.008 7.54 10.90 0.22
t = 4 · 10−1 1.014 5.41 10.22 1.26

Table 9. Statistics for the non-local problem (−∆)2 + V .

We observe again results that are fairly consistent with what we have seen in other
cases: as the potential increases, eigenfunctions become more localized and the cor-
responding problem becomes easier. We see that the classical landscape function
does not do very well (nor is there any reason it should, it was not designed for this
problem). In contrast, the landscape function adapted to the Bi-Laplacian does
indeed do quite well and becomes better as the problem becomes more localized.
Again, as we have seen many times, our method outperforms other approaches in
the case where eigenfunctions are fairly delocalized.

In addition to using the landscape function corresponding to the bi-Laplacian, given
by ((−∆)2 + V )u = 1, we also compute the landscape function using the standard
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Figure 7. The bi-Laplacian landscape function (top left), Wt for
bi-Laplacian (top right), and landscape function (bottom).

Laplacian (with the same potential), see Fig. 7 for comparison. We observe that the
bi-Laplacian landscape function and Wt are qualitatively quite similar, while the
Laplacian landscape function is much more oscillatory, even though it still captures
the location of large peaks.
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